gain fluctuations of cryogenic amplifiers

35
5th Engineering Forum Workshop (Cagliari 13/05/ 11) 1 Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain) Gain Fluctuations of Cryogenic Amplifiers Juan Daniel Gallego, Isaac López- Fernández,Carmen Diez, Alberto Barcia Centro Astronómico de Yebes Observatorio Astronómico Nacional Apartado 148, 19080 Guadalajara, SPAIN

Upload: nat

Post on 24-Feb-2016

35 views

Category:

Documents


0 download

DESCRIPTION

Gain Fluctuations of Cryogenic Amplifiers. Juan Daniel Gallego, Isaac López-Fernández,Carmen Diez, Alberto Barcia Centro Astronómico de Yebes Observatorio Astronómico Nacional Apartado 148, 19080 Guadalajara, SPAIN. Contents. Introduction Allan variance vs. Spectrum of Gain Fluctuations - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Gain Fluctuations of Cryogenic Amplifiers

1Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Gain Fluctuations of Cryogenic Amplifiers

Juan Daniel Gallego, Isaac López-Fernández,Carmen Diez, Alberto Barcia

Centro Astronómico de YebesObservatorio Astronómico Nacional

Apartado 148, 19080 Guadalajara, SPAIN

Page 2: Gain Fluctuations of Cryogenic Amplifiers

2Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Contents

Introduction Allan variance vs. Spectrum of Gain Fluctuations Specifications

Measuring methods and examples What do we know:

Device Technology Temperature Repeatability Bias point

Conclusions

Page 3: Gain Fluctuations of Cryogenic Amplifiers

3Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Radiometer Sensitivity

Radiometer model

Radiometer sensitivity (total power radiometer)

Radiometer

rf

rf

out

out

rarfout

GG

Bk

PP

TTBGKP

)(

BfG

fSB

fV

fS gv

,

)(2)()(

2

0

2

0

Pow

er

Time

Page 4: Gain Fluctuations of Cryogenic Amplifiers

4Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Gain Stability Characterization

Allan Variance of Normalized Gain (unitless): Time domain Astronomer's choice

SNGF (units: 1/√Hz, sometimes 1/Hz ): Spectrum of Normalized Gain Fluctuation Frequency (video) domain Engineer's choice

22 )()(21)( tGtG

max

min

2 ))(var()(

1))(mean()0(f

f

tGdffS

tGS

Page 5: Gain Fluctuations of Cryogenic Amplifiers

5Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Allan Variance vs. SNGF

dS2

2

42

)()(sin4)()(

Page 6: Gain Fluctuations of Cryogenic Amplifiers

6Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Conversion of SNGF to Allan Variance

)-for (valid)( )(

23

21

1222

bKfbfS

2421

21

2234

)2ln(2

121532

32

41

41

21

43

0

21

K

K

K

K

K

K

SNGF in 1/√Hz units:

Ambiguity:Note that the inverse mapping is not

unique (more information in SNGF)

However in practical cases with random signals the inverse conversion is “valid”

Page 7: Gain Fluctuations of Cryogenic Amplifiers

7Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Why using SNGF ?

Example: 1 Hz gain oscillation

(typical refrigerator cycle)

A=2E-4 (0.0017 dB pp)

Typical InP amplifier fluctuation

Result: Allan Variance “bump”

spread over time (0.1-1 sec)

1 10 4 1 10 3 0.01 0.1 1 10 1001 10 5

1 10 4

1 10 3

0.01SPECTRUM

S i( )

f i

1 10 3 0.01 0.1 1 10 100 1 1031 10 10

1 10 9

1 10 8

1 10 7 ALLAN VARIANCE

Avar i

A1 i A2 i

0.1 1

i

Page 8: Gain Fluctuations of Cryogenic Amplifiers

8Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Why using SNGF ? (real world)

a 2.219 10 10 b 1.386 10 8 c 4.184 10 11 Fit: h a 1

b c

0.1 1 10 1001 10 10

1 10 9

1 10 8

1 10 7 MODULE ALLAN VARIANCE

OAVAR_G calm

h m a b c cal_g m

m

0.59 8.574 10 5 Fit: h f( ) f

0.01 0.1 1 101 10 5

1 10 4

1 10 3

0.01MODULE SPECTRUM

spn_G calk

h f k cal_g f k

f k

a 6.097 10 9 b 9.063 10 9 c 1.833 10 9 Fit: h a 1

b c

0.1 1 10 1001 10 10

1 10 9

1 10 8

1 10 7 MODULE ALLAN VARIANCE

OAVAR_G calm

h m a b c cal_g m

m

0.633 8.608 10 5 Fit: h f( ) f

0.01 0.1 1 101 10 5

1 10 4

1 10 3

0.01MODULE SPECTRUM

spn_Gcalk

h f k cal_g f k

f k

Page 9: Gain Fluctuations of Cryogenic Amplifiers

9Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Real receiver: CAY 40m

10-4 10-3 10-2 10-1 100 101 102 10310-5

10-4

10-3

10-2

10-1

100

OAY 14 + FFT

9.3 10-5 (1/sqrt(f))

2.1 10-5 (1/f)

SQRT(2/500 MHz)

SNGF (X-band receiver RCP)G

n/Gn (H

z-1/2 )

Freq (Hz)

Page 10: Gain Fluctuations of Cryogenic Amplifiers

10

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Real receiver: CAY 40m VLBI

10-5 10-4 10-3 10-2 10-1 100 101 102 10310-5

10-4

10-3

10-2

10-1

100

BW=500 MHz BW=2 MHz BW=0.5 MHz BW=125 KHz BW=62.5 KHz

9.3 10-5 (1/sqrt(f))

2.1 10-5 (1/f)

SQRT(2/500 MHz)

SNGF (X-Band receiver, RCP, prediction)dG

n/Gn (H

z-1/2 )

Freq (Hz)

Page 11: Gain Fluctuations of Cryogenic Amplifiers

11

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Real receiver: CAY 40m VLBI

10-2 10-1 100 101 102 103 10410-10

10-9

10-8

10-7

10-6

1x10-5

1x10-4

BW=500 MHz BW=2 MHz BW=0.5 MHz BW=125 KHz BW=62.5 KHz

1/BW (t-1)(BW=500 MHz)

X-band RCP Allan Variance (prediction)A

llan

Var

ianc

e

Tau (sec)

Page 12: Gain Fluctuations of Cryogenic Amplifiers

12

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Specs of Gain Fluctuations (examples)

HERSCHEL: Far Infrared and Submillimeter 3.5 m Telescope orbiting in L2 with 3 cryogenic

instruments HIFI: Heterodyne Instrument for the Far Infrared with 7 dual polarization

submillimeter SIS and HEB receivers Low noise, wide band 4-8 GHz cryogenic IF preamplifiers Specification for cryo amplifiers:

HzHz

Gn [email protected] 4

HzHz

Gn [email protected] 5

ALMA: Atacama Large Millimeter Array (USA, Europe, Japan), 64 Antennas, 35-850 GHz 4-8 and 4-12 GHz cryogenic IF preamplifiers (bands 7 and 9)

(sec)300100102)(

(sec)10005.0102)(72

82

Page 13: Gain Fluctuations of Cryogenic Amplifiers

13

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Gain Fluctuation Measurements

Vector Network AnalyzerSignal Generator

VariableAtt.

DetectorDiode

PreampFFT Analyzer

DUT

CryostatVariableAtt. DUT

Cryostat

System BSystem A

Measurement of individual amplifiers

Details in ALMA memo 560

Page 14: Gain Fluctuations of Cryogenic Amplifiers

14

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Measurement Systems

10-4 10-3 10-2 10-1 100 101 102 103 104 10510-7

10-6

1x10-5

1x10-4

10-3

10-2

10-1

VNA HP 8510noise floor

FFT Analyzernoise floorPower = -20 dBm

Typical cryo InP amp1 x 10-4 x f -1/2

Gain Fluctuation Spectrum - Noise FloorS

pec.

Nor

mal

ized

Gai

n (H

z-1

/2 )

Freq (Hz)

Page 15: Gain Fluctuations of Cryogenic Amplifiers

15

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Performance of Signal Generators

10-2 10-1 100 101 102 103 104 10510-7

10-6

1x10-5

1x10-4

10-3

10-2

W Power = 0 dBm Frequency:8.45 GHz Agilent8.45 GHz RHODE5.40 GHz IFR0.48 GHz HP6806.00 GHz Anapico

HP 680 C (480 MHz) HP 680 C (480 MHz) ROHDE SMR40 ROHDE SMR40 RACAL (1.3 GHz) RACAL (1.3 GHz) Agilent 83650 B Agilent 83650 B IFR 2042 (5.4 GHz) IFR 2042 (5.4 GHz) Anapico (6.0 GHz) Anapico (6.0 GHz)

Normalized Power Fluctuation SpectrumP

/P (H

z-1/2)

Freq (Hz)

Page 16: Gain Fluctuations of Cryogenic Amplifiers

16

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Measurement example

10-4 10-3 10-2 10-1 100 101 102 103 104 10510-7

10-6

1x10-5

1x10-4

10-3

10-2

10-1

VNA HP 8510noise floor

FFT Analyzernoise floor

4.5 x 10-5 x f -1/2

YXA 001

Gain Fluctuation SpectrumS

NG

F (H

z-1/2 )

Freq (Hz)

Page 17: Gain Fluctuations of Cryogenic Amplifiers

17

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Lessons Learned

Classical approach: noise input High MW gain needed (many amp. stages or complete radiometer) Sensitivity limited at high audio frequencies (noise bandwidth)

This approach: single tone Good generator or VNA needed Characterization of individual amplifiers (even a single stage!) Information at different input frequencies in the band Good sensitivity at high audio frequency (generator + FFT) Highly immune to interferences (VNA) Information on phase noise possible (VNA)

New VNAs (PNA) not as good as old models (8510) for stability measurements Measurements are slow and should be done very carefully

Stable temperature in the lab No cell phones!

Page 18: Gain Fluctuations of Cryogenic Amplifiers

18

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Gain Fluctuation Origin

Origins External

Power supply Temperature variations (refrigerator cycle) Microphonics (vacuum pumps)

Internal Intrinsic to the devices

Typical Intrinsic Spectrum of Cryogenic Amplifiers

fHzbfS 1)( α 1/2

Page 19: Gain Fluctuations of Cryogenic Amplifiers

19

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Is the Power Supply important?

Possibilities: Constant Vd, Vg Constant Id, Vg (variable Vd) Feedback: Constant Vd, Id (controlled Vg)

Power supply must be low noise Examples: Agilent N3280 or classical NRAO feedback supply Typically the gain fluctuation caused by noise from the power

supply is more than two orders of magnitude below the observed values in cryogenic amplifiers

Best results always obtained with feedback supply but not much improvement at cryogenic temperature

Worst results obtained with constant Id, Vg

Page 20: Gain Fluctuations of Cryogenic Amplifiers

20

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Illustration of the reduction of Id fluctuation with Feedback Power Supply at T=15 K

YCF 4001 Vd=1.10 Id=3 Rd=172 T=14 K, Constant Vd, Vg

YCF 4001 Vd=1.10 Id=3 Rd=172 T=14 K, Constant Id, Vg

YCF 4001 Vd=1.10 Id=3 Rd=172 T=14 K, Feedback Supply

Page 21: Gain Fluctuations of Cryogenic Amplifiers

21

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Coherence of Gain-Id fluctuations (ambient)

Measurements on 1 stage amplifier (YCF4001)

Peak at 10 Hz

• Very strong coherence at low drain voltage (linear part of Id-Vd curve)

• Only partial coherence at the “optimum” bias• The DC current fluctuation does not follow the same pattern • Worst results obtained with constant Id and Vg• Best results obtained with feedback supply

Page 22: Gain Fluctuations of Cryogenic Amplifiers

22

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Coherence of Gain-Id fluctuations (cryogenic)

Measurements on 1 stage amplifier (YCF4001)

• Low coherence (only observed at high Vd) • Higher values of gain fluctuation and Id fluctuation at

cryogenic temperature• No (significant) improvement with feedback supply

Page 23: Gain Fluctuations of Cryogenic Amplifiers

23

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

What can be done?

Unfortunately DC and MW fluctuation appear to be non-coherent at optimum bias and cryo temperature → power supply does not help much

Similar to problem with Rds and Gm (different values at low and MW, related with trap time constants)

Use of “pilot” signals has been suggested sometimes (E. Wollak 1995, S. Weinreb)

In this work: modulation at audio frequency of bias supply (low level, ~60 KHz, cryogenic temperature) for sampling Gm was tried. A coherence of 0.3 with was found

More work needed

Page 24: Gain Fluctuations of Cryogenic Amplifiers

24

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Intrinsic Gain Fluctuations Dependence

Improvements in Noise Shorter gate length HEMTs InP substrate Cryogenic Temperature

Improvements in Gain Stability Larger gate area Non HEMT GaAs substrate Ambient Temperature

Conclusion: Advances in the reduction of Noise Temperature have contributed to

increase Gain Fluctuations

Page 25: Gain Fluctuations of Cryogenic Amplifiers

25

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Material (InP vs. GaAs) and Temperature (amb. vs. cryo.)

10-2 10-1 100 10110-5

10-4

10-3

10-2

T=297 K

T=14 K

YXV 005

InP LNA Gain Fluctuation Spectrum

Gn/G

n [H

z-1/2]

Freq. [Hz]

10-2 10-1 100 10110-5

10-4

10-3

10-2

T=297 K

T=14 K

YXV 001

GaAs LNA Gain Fluctuation Spectrum

Gn/G

n [H

z-1/2]

Freq. (Hz)

DEVICES NOISE TEMPERATURE [K] GAIN FLUCTUATIONS [ HZ-1/2] TECHNOLOGY MODEL 297 K 14 K VARIATION 297 K 14 K VARIATION

GaAs FHX13X 200×0.25μm 99 13.6 ÷ 7.3 2.0E-5 3.4E-5 × 1.7 NGST 160 160×0.1μm 96 6.5 ÷ 14.8 (1.3E-5) 9.4E-5 × (7.2) InP ETH 200 200×0.2μm 108 6.7 ÷ 16.1 (1.0E-5) 7.0E-5 × (7.0)

GaAs – InP Variation [times] None ÷ 2.1 – ÷ (1.7) × 2.8 –

Page 26: Gain Fluctuations of Cryogenic Amplifiers

26

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Frequency Band

BAND NOISE GAIN GAIN FLUCTUATIONS AMPLIFIER [GHz]

STAGES DEVICES [K] [dB] b [Hz-1/2] α

YCA 2 4 - 8 3 2 × NGST CRYO4 3.5 39.2 7.8E-5 0.64

YXF 0 8-12 2 NGST 160 + FHX13X 6.5 21.9 10E-5 0.58

YK22 18 - 26 3 NGST CRYO3 + 2 × NGST 160 8.9 26.1 13E-5 0.43

0 5 10 15 20 25 300

2

4

6

8

10

12

14

CAY LNAs noise

0.5 K/GHz

Noi

se T

empe

ratu

re [K

]

Frequency [GHz]

TN [K] ~ ½ f [GHz]

0 5 10 15 20 25 300

2

4

6

8

10

12

14

CAY LNA Gain Fluctuation

6 + 0.3 * F[GHz]

b [1

/SQ

RT(

Hz)

] * 1

0-5

Frequency [GHz]

Page 27: Gain Fluctuations of Cryogenic Amplifiers

27

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Different Frequencies in the Band

Page 28: Gain Fluctuations of Cryogenic Amplifiers

28

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Defective Materials

0.519 3.05 10 4 fit f

0.01 0.1 1 101 10 5

1 10 4

1 10 3

0.01MODULE SPECTRUM

spn_G calk

h fk cal_g fk

fk

• Manchester 0.13×200 m Run March 2011• Bad material, ~ 4 times more fluctuation• Noise was almost normal

Page 29: Gain Fluctuations of Cryogenic Amplifiers

29

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Statistical Analysis: Results of long series (1)

Analyzed two series of 9 and 10 state-of-the-art 4-8 GHz cryogenic amplifiers designed and built at CAY with microstrip hybrid technology: Development models for Herschel space telescope (all cryogenic LNAs for HIFI)

2 stages of InP NGST transistors Design constrained by space qualification

Pre-production phase of ALMA (cryogenic LNAs for the European contribution) 3 stages of InP NGST and ETH transistors. Based on HIFI design, with more degrees of freedom

Page 30: Gain Fluctuations of Cryogenic Amplifiers

30

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Statistical Analysis: Results of long series (2)

3 4 5 6 7 8 90

2

4

6

8

10

12

14

16

Noi

se T

empe

ratu

re [K

]

f [GHz]

0

5

10

15

20

25

30

35

40

HIFI IF1 DMs9 amplifiers, PD=4 mW, T=14 K, NGST

Gai

n [d

B]

3 4 5 6 7 8 90

2

4

6

8

10

12

14

16

Noi

se T

empe

ratu

re [K

]

f [GHz]

0

5

10

15

20

25

30

35

40

ALMA prototypes (YCA 2)10 amplifiers, PD=9 mW, T=14 K, NGST+ETH

Gai

n [d

B]

AMPLIFIER YCF

GAIN FLUCT. @ 1 HZ (b )

SPECTRAL INDEX (α)

6004 8.62E-05 0.754 6005 8.88E-05 0.706 6006 8.58E-05 0.332 6007 14.5E-05 0.430 6009 10.0E-05 0.726 6010 8.69E-05 0.415 6011 11.4E-05 0.324 6012 9.03E-05 0.429 6014 10.2E-05 0.762

AMPLIFIER YCA

GAIN FLUCT. @ 1 HZ (b )

SPECTRAL INDEX (α)

2003 7.43E-05 0.668 2004 7.65E-05 0.690 2005 7.91E-05 0.606 2006 7.51E-05 0.731 2007 7.04E-05 0.640 2008 8.72E-05 0.647 2009 8.61E-05 0.633 2010 8.39E-05 0.588 2011 7.21E-05 0.639 2012 7.13E-05 0.606

Page 31: Gain Fluctuations of Cryogenic Amplifiers

31

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

HIFI AMPLIFIERS

x MIN. MAX. x x/

TN [K] 3.4 4.2 3.78 0.076 b [Hz-1/2] 8.58E-5 14.5E-5 9.99E-5 0.194

α 0.321 0.762 0.542 0.351

ALMA AMPLIFIERS

x MIN. MAX. x x/

TN [K] 3.2 3.8 3.46 0.051 b [Hz-1/2] 7.04E-5 8.72E-5 7.76E-5 0.080

α 0.588 0.731 0.645 0.066

Statistical Analysis: Results of long series (3)

Mean values of noise and fluctuations are similar in both series Excellent repeatability in noise and gain Greater dispersion of gain fluctuations results (value @ 1 Hz and spectral index) HIFI dispersion in fluctuations significantly wider than ALMA

Bias conditions homogeneous for both series Different transistor batch used for each series of amplifiers

Some transistor batches exhibit high scattering of gain fluctuations within devices of the same batch not shown in noise results

Observed also a significant batch to batch variation

Page 32: Gain Fluctuations of Cryogenic Amplifiers

32

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Bias Point (1)

Tested the variation of gain fluctuations and noise with Vd, Ido Found a steep change in gain fluctuations around 0.4-0.5 Vo Noise (and gain) are much more insensitive to bias changeso High fluctuation zones could be avoided

with no penalty in noise or gain Gain fluctuations when Id

YCA 1001 Gain fluctuationsLED OFF, T=14 K

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

1.8E-04

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65VdT [V]

G

/G @

1 H

z [1

/Hz1/

2 ]

Id=3 mAId=4 mAId=5 mAId=6 mA

3,002,75

7,00

7,00

2,50

1 2 3 4 5 6 7 8 9 100,0

0,2

0,4

0,6

0,8

1,0

1,2

Noise Temperature @ 7 GHz [K]YCA 1003

2,502,753,003,253,503,754,004,254,504,755,005,255,505,756,006,256,506,757,00

Id [mA]

Vds

[V]

Page 33: Gain Fluctuations of Cryogenic Amplifiers

33

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Bias Point (2)

Tested also fluctuations of gate voltage with HP35670A Found similar bias dependence

Simple measurements of voltage fluctuations may help detecting sensitive bias regions

Correlation with gain fluctuations for different devices useful for pre-selecting least fluctuating devices from a batch

0,2 0,3 0,4 0,5 0,6 0,7 0,80,00

2,50x10-5

5,00x10-5

7,50x10-5

1,00x10-4

1,25x10-4

1,50x10-4

Gain fluctuations measurement noise floor

YCF 6001 1st stage fluctuationsLED OFF, 14 K Id=3 mA

VD1 (device) [V]

G/G

@1

Hz

[1/H

z1/2 ]

0,0

1,0x10-5

2,0x10-5

3,0x10-5

4,0x10-5

5,0x10-5

6,0x10-5

VG @

10 H

z [V

/Hz1/

2 ]

1st stage 2nd stage

100 101 10210n

100n

10µ

100µ

1m

10m

YCF 6001 VG fluctuations Spectrum8 GHz, 14 K, Vd1=0.85 V, Vd2=0.5 V, Id1,2=3 mA

VG [V

/Hz

1/2]

Freq. [Hz]

10 Hz

10-2 10-1 100 10110-5

10-4

10-3

10-2

YCF 6001 Gain fluctuations Spectrum8 GHz, 14 K Vd1=0.85 V Vd2=0.5 V Id1,2=3 mA

G/G

[H

z-1

/2]

Freq. [Hz]

measured fitted correction

1 Hz

Page 34: Gain Fluctuations of Cryogenic Amplifiers

34

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

Conclusions

The reduction in noise and the increase in bandwidth of modern cryogenic amplifiers have made more prominent the problem of gain fluctuations

Data on gain fluctuations of cryogenic amplifiers collected over the years

Systematic measurement with a VNA are possible, although very time consuming

The reduction (or at least some control) of the gain fluctuations is possible with an adequate selection of devices and bias

Lack of theoretical model

Page 35: Gain Fluctuations of Cryogenic Amplifiers

35

Centro Astronómico de Yebes, Obs. Astronómico Nacional, IGN (Spain)

5th Engineering Forum Workshop (Cagliari 13/05/ 11)

END