g -ray spectroscopy of the sd -shell hypernuclei

17
-ray spectroscopy of the -ray spectroscopy of the sd sd -shell -shell hypernuclei hypernuclei Graduate school of Science, Toho ku University T. Koike Hyperball-J collaboration Survey of sd-shell hypernuclear c ores -ray spectroscopy of well defor med hypernuclei 25 Mg • Summary

Upload: satin

Post on 17-Jan-2016

30 views

Category:

Documents


1 download

DESCRIPTION

g -ray spectroscopy of the sd -shell hypernuclei. Graduate school of Science, Tohoku University T. Koike Hyperball-J collaboration. Survey of sd-shell hypernuclear cores g -ray spectroscopy of well deformed hypernuclei 25 L Mg Summary. E13. Z=20. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: g -ray spectroscopy of the  sd -shell hypernuclei

-ray spectroscopy of the -ray spectroscopy of the sdsd-shell hypernuclei-shell hypernuclei

Graduate school of Science, Tohoku University

T. Koike

Hyperball-J collaboration

• Survey of sd-shell hypernuclear cores• -ray spectroscopy of well deformed hypernuclei

• 25Mg • Summary

Page 2: g -ray spectroscopy of the  sd -shell hypernuclei

1919FF

2020NeNe

2323NaNa

2424MgMg

2727AlAl

2828SiSi

3131PP

3232SS

3535ClCl

4040ArAr

3939KK

4040CaCa

3737ClCl

2626MgMg2525MgMg

2222NeNe

3030SiSi

3434SS

3939ClCl

3838ArAr

2323MgMg

2222NaNa

2727SiSi

2626AlAl

3030PP

3131SS

3434ClCl

3838KK

3939CaCaPossible sd-shell hypernuclei via -ray spectroscopy with

(K-,-) & (+,K+) reactions

Z

Z=20

Z=9

Most abundant isotopes (target)

abundance

proton decay

neutron decay

N

1919NeNe

1818FF

3939ArAr

3636ClCl

3636SS

2525NaNa2424NaNa

2121FF

2121NeNe

E13

Page 3: g -ray spectroscopy of the  sd -shell hypernuclei

Bound states of Bound states of sdsd-shell nuclei and hypernuclei-shell nuclei and hypernuclei

D. J. Millener et al., Phys. Rev. C, 38 2700 (1988)

• Co-existence of shell (mean field) and cluster-like structures • More valence nucleons

•higher level densities (especially odd-odd)

• Collective (rotational) excitation spectrum → low-lying energy •pstates also bound

• Shell model • Cluster model • Self-consistent calculations (12/4 Hagino)(12/4 Hagino)

•RMF•Hatree-Fcok+BCS

•AMD (12/4 Kimura)(12/4 Kimura)

Page 4: g -ray spectroscopy of the  sd -shell hypernuclei

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

18F

19Ne

22Na

23M

g

24M

g

25M

g

26Al

27Si

30P

32S

34C

l

39Ar

38K

39C

a

(keV

)SnSpEx(plambda)

BnBnBpBpEx(pEx(p

Target A -1ZXn-1

Page 5: g -ray spectroscopy of the  sd -shell hypernuclei

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

18F

19Ne

23M

g

24M

g

25M

g

26Al

27Si

30P

32S

34C

l

39Ar

38K

39C

a

(keV

)

28Si

s

pd

(+,K+) T.Hasegawa et al., Phys. Rev. C 53, 1210 (1996)

AZA-1

Z-1 A-1Z

Weak decay

(mostly via non-mesonic in the sd-shell hypernuclei)

- coincidence with Hyperball-J

SKSMinus?

Page 6: g -ray spectroscopy of the  sd -shell hypernuclei

1919FF

2020NeNe

2323NaNa

2424MgMg

2727AlAl

2828SiSi

3131PP

3232SS

3535ClCl

4040ArAr

3939KK

4040CaCa

3737ClCl

2626MgMg2525MgMg

2222NeNe

3030SiSi

3434SS

3939ClCl

3838ArAr

2323MgMg

2222NaNa

2727SiSi

2626AlAl

3030PP

3131SS

3434ClCl

3838KK

3939CaCaPossible sd-shell hypernuclei via -ray spectroscopy with

(K-,-) & (+,K+) reactions

Z

Z=20

Z=9

Most abundant isotopes (target)

abundance

proton decay

neutron decay

N

1919NeNe

1818FF

3939ArAr

3636ClCl

3636SS

2525NaNa2424NaNa

2121FF

2121NeNe

even-even

mirror

E13

Page 7: g -ray spectroscopy of the  sd -shell hypernuclei

)2cossinsin3)1cos3((cos

16

51),( 22

0

RR

CollectiveCollectiveprolateprolate

(, =0°)

(0,0)

sphericalspherical

triaxialtriaxial

Non collective Non collective oblateoblate

(, =60°)

Page 8: g -ray spectroscopy of the  sd -shell hypernuclei

Skyrme Hartree-Fock +BCSSkyrme Hartree-Fock +BCS

• self-consistent mean field• Skyrme-type N interaction• PES of hypernuclei with triaxial deformation: E(E(,,)) • Angular momentum not good quantum number

Myaing Thi Win et al., submitted to PRC

24Mg, 24Mg+

Page 9: g -ray spectroscopy of the  sd -shell hypernuclei

0+

21+

41+

Spectra of a deformed Spectra of a deformed even-eveneven-even nucleus nucleus (collective excitation mode) (collective excitation mode)

E(41+)/E(21

+)

-band

02+

23+

43+

2, J

band

22+

31+

42+

vibrational

v.s.rotational

K=0, n=1, n=0

K=2, n=0, n=1

K=0, n=0, n=0

Page 10: g -ray spectroscopy of the  sd -shell hypernuclei

0

2

4

6

8

8 10 12 14 16 18 20Z

Exci

tatio

n en

rgy

(MeV

)

1st 2+2nd 2+2nd 0+

2211++, 2, 222

++, and 0, and 022++

26Si38Ar 38Ca

18(▲) ,20Ne 22(▲) ,24Mg

30S

Page 11: g -ray spectroscopy of the  sd -shell hypernuclei

Rotational v.s. VibrationalRotational v.s. Vibrational

E(4)/ E(2)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

8 10 12 14 16 18 20 22Z

E(4)

/E(2

)

22Mg

24Mg

26Si 38Ar

18Ne

Rotational

Vibrational

38Ca20Ne

Page 12: g -ray spectroscopy of the  sd -shell hypernuclei

-ray spectroscopy of -ray spectroscopy of 2525MgMg

• Well deformed & even-even core hypernuclei– low and simple (regular) energy level– direct observation of core polarization effect of

• Nuclear density saturation at the g.s. with little change in size, but a shape can change in (,) plane

• A few 100 keV change• Observation of spin averaged 21

+, 22+, 02

+→ ( , )• Observation of 41

+

• p -bound-states particle stable (Bp=11693keV Bn=16532 keV)

– Observation of p splitting in the sd-shell• Hyperball-J with LaBr, CsI detectors (?)

• Use of a natural target– possibility of increasing the number of accessible hypernuclei– a test case for heavier hypernucley beyond sd-shell

Page 13: g -ray spectroscopy of the  sd -shell hypernuclei

2424Mg level schemeMg level scheme

12C 13C 24Mg 25

Mg

pp

p

T=0 T=0

Page 14: g -ray spectroscopy of the  sd -shell hypernuclei

s p d

24Mg

(0+)

0.790.79 24Mg 23

Na 23Mg

core 23Mg 22Na 22Mg

25Mg

(5/2+)

0.10 25Mg 25

Mg 24Mg 24

core 24Mg 24Mg 23Mg26Mg

(0+)

0.11 26Mg 25

Mg 25Na

core 25Mg 24Mg 24Na

Use of a natural Mg targetUse of a natural Mg target

even-even odd-A odd-odd

Page 15: g -ray spectroscopy of the  sd -shell hypernuclei

22221212MgMg10(2)10(2)

24241212MgMg12(4)12(4)

T=0 T=0

Mg even-even core: Mg even-even core: 22,2422,24MgMg

Page 16: g -ray spectroscopy of the  sd -shell hypernuclei

Use of natural Mg target and Use of natural Mg target and identification of six identification of six hypernuclei hypernuclei

s, d

←d

27Al(K-,-)→ p+26

Mg (p gate)

23Na(K-,-)→23Na (s gate)

(1) Natural Mg (2) 27Al(3) 23Na

s,p

2323NaNa

2626MgMg

2424NaNa

10%10% 11%11%79%79%

2525MgMg2424

MgMg2323MgMg

s d

Page 17: g -ray spectroscopy of the  sd -shell hypernuclei

SummarySummary

• The sd-shell region more vast than the p-shell

• Importance of coupling of to nuclear collectivity (non-spherical vacuum) in the sd-shell – Core polarization effect of in the 2D (,) plane

• Measurement of the inter shell (p→s) ray

• -ray spectroscopy of 25Mg with a use of natural

target (Hyperball-J, SKSMinus, LaBr3/CsI detectors?)

• Essential role of coincidence technique in the sd-shell