g. cristofano, v. marotta, a. naddeo, g. niccoli, jstat...

21
CNISM, Unit CNISM, Unit à à di Ricerca di Salerno, Dipartimento di Fisica di Ricerca di Salerno, Dipartimento di Fisica E. R. E. R. Caianiello Caianiello , Universit , Universit à à di Salerno and Dipartimento di Scienze Fisiche, Universit di Salerno and Dipartimento di Scienze Fisiche, Universit à à di Napoli di Napoli Federico II Federico II Adele Naddeo Adele Naddeo In In collaboration collaboration with with : : Gerardo Cristofano (Napoli), Gerardo Cristofano (Napoli), Vincenzo Vincenzo Marotta Marotta (Napoli), (Napoli), Giuliano Giuliano Niccoli Niccoli (DESY, Amburgo) (DESY, Amburgo) with with Mobius Mobius boundary boundary conditions conditions G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT (2008) P12010.

Upload: others

Post on 29-Jul-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

CNISM, UnitCNISM, Unitàà di Ricerca di Salerno, Dipartimento di Fisica di Ricerca di Salerno, Dipartimento di Fisica ““E. R. E. R. CaianielloCaianiello””, Universit, Universitààdi Salerno and Dipartimento di Scienze Fisiche, Universitdi Salerno and Dipartimento di Scienze Fisiche, Universitàà di Napoli di Napoli ““Federico IIFederico II””

Adele NaddeoAdele Naddeo In In collaborationcollaboration withwith::Gerardo Cristofano (Napoli),Gerardo Cristofano (Napoli),Vincenzo Vincenzo MarottaMarotta (Napoli),(Napoli),Giuliano Giuliano NiccoliNiccoli (DESY, Amburgo)(DESY, Amburgo)

withwith MobiusMobius boundaryboundary conditionsconditions

G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT (2008) P12010.

Page 2: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

Introduction: 2-leg XXZ spin-1/2 ladders with Mobiusboundary conditions

The XXZ spin-1/2 chain in the continuum limit

2-reduction technique on the plane: generalities, the 2-leg XXZ spin-1/2 ladder, the special XXX case

Renormalization group analysis for the XXX case

Outline

Page 3: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

Let us introduce the physical system, i. e. two antiferromagnetic spin-1/2 XXZ chains arranged in a closed geometry for different boundary

conditions imposed at the ends. Then we switch to the interacting case and describe the following perturbations: railroad, zigzag, 4-spin, 4-dimer.

LetLet usus introduce the introduce the physicalphysical system, i. e. system, i. e. twotwo antiferromagneticantiferromagnetic spinspin--1/2 1/2 XXZXXZ chainschains arrangedarranged in a in a closedclosed geometrygeometry forfor differentdifferent boundaryboundary

conditionsconditions imposedimposed at the at the endsends. . ThenThen wewe switchswitch toto the the interactinginteracting case case and and describedescribe the the followingfollowing perturbationsperturbations: : railroadrailroad, zigzag, 4, zigzag, 4--spin, 4spin, 4--dimer.dimer.

1. Non interacting system: two spin-1/2 XXZ chains

M

i

zi

zi

yi

yi

xi

xi SSSSSSJH

122200

Total number of sitesTotal Total numbernumber of of sitessites

Antiferromagnetic couplingAntiferromagneticAntiferromagnetic couplingcoupling Anisotropy parameterAnisotropyAnisotropy parameterparameter

We assume that the odd sites belong to the down leg of the ladder while the even sites belong to the up leg. The legs now are non interacting. Let us nowclose the chains imposing the following boundary conditions:

22,11 MM

Page 4: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

Depending on M, we get two topologically inequivalentboundary conditions:

1. M even: we get two independent XXZ spin-1/2 chains, each one closed by gluing opposite ends, that is periodic boundaryconditions (PBC).

2. M odd: the two legs are not independent, they appear to beconnected at a point upon gluing the opposite ends and the system can be viewed as a single eight shaped chain, that isMobius boundary conditions (MBC).

For M odd the system presents a local topological defect in the gluing point: itcoincides with two closed XXZ spin-1/2 chains, each one with (M+1)/2 sites, which intersect each other in the topological defect at site M+11. The general Hamiltonian in this case is written as:

For M odd the system presents a local topological defect in the gluing point: itcoincides with two closed XXZ spin-1/2 chains, each one with (M+1)/2 sites, which intersect each other in the topological defect at site M+11. The general Hamiltonian in this case is written as:

zM

zM

yM

yM

xM

xM

MMi

zi

zi

yi

yi

xi

xiMBC

MBCMBC

SSSSSSJSSSSSSJHHHH

22201,

1110

00

Page 5: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

In the weak coupling limit J0>>JR, for the isotropic XXX case (=1), we have a gapful spectrum with the formation of massive spin S=1 and S=0 particles (D. G. Shelton, A. A. Nersesian, A. M. Tsvelick, PRB 53 (1996) 8521).

In the weak coupling limit J0>>JR, for the isotropic XXX case (=1), we have a gapful spectrum with the formation of massive spin S=1 and S=0 particles (D. G. Shelton, A. A. Nersesian, A. M. Tsvelick, PRB 53 (1996) 8521).

2. Weak interacting system: we introduce the following interactions between the two spin-1/2 XXZ chains: railroad, zigzag, 4-spin, 4-dimer.

2/1

1212212212

0M

i

zi

zi

yi

yi

xi

xi

RRailroad

Railroad

SSSSSSJH

HHRailroadRailroad

Page 6: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

ZigzagZigzag

M

i

zi

zi

yi

yi

xi

xi

ZZigzag

Zigzag

SSSSSSJH

HH

1111

0

In the weak coupling limit J0>>JZ, for the isotropic XXX case (=1), anexponentially small gap develops and the weak interchain correlations break translational symmetry. There is a spontaneous dimerization along with a finite range incommensurate magnetic order (A. A. Nersesyan, A. O. Gogolin, F. H. L. Essler, PRL 81 (1998) 910; D. Allen, D. Senechal, PRB 55 (1997) 299).

In the weak coupling limit J0>>JZ, for the isotropic XXX case (=1), anexponentially small gap develops and the weak interchain correlations break translational symmetry. There is a spontaneous dimerization along with a finite range incommensurate magnetic order (A. A. Nersesyan, A. O. Gogolin, F. H. L. Essler, PRL 81 (1998) 910; D. Allen, D. Senechal, PRB 55 (1997) 299).

Page 7: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

4-Spin4-Spin

z

izi

yi

yi

xi

xi

iUpi

zi

zi

yi

yi

xi

xi

iDwi

M

i

Upi

DwiSpin

SSSSSSSSSSSS

JH

222222222

121212121212

2/1

14

11

4-Dimer4-Dimer

Such a coupling can be generated either by phonons or by the conventionalCoulomb repulsion between the holes.

Such a coupling can be generated either by phonons or by the conventionalCoulomb repulsion between the holes.

Upi

Dwii

M

iiiDimer JH

2/1

114

Such a term plays a crucial role in the presence of the marginal interaction HZigZag only, because it gives rise to the dynamical generation of the triplet or singlet mass respectively along two different RG flows.

Such a term plays a crucial role in the presence of the marginal interaction HZigZag only, because it gives rise to the dynamical generation of the triplet or singlet mass respectively along two different RG flows.

Page 8: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

The The XXZXXZ spinspin--1/2 1/2 chainchain in the continuum in the continuum limitlimit ((abelianabelian bosonizationbosonization))

Jordan-Wigner transformation:JordanJordan--WignerWigner transformationtransformation::

1

1

1

1 1,1,21 j

l lj

l l

j

nij

jj

nij

jjj

z ecSecSnS

The Fermi surface is made of two points, kF=/2, and linearizing the energyspectrum around them we get in the continuum:The Fermi The Fermi surfacesurface isis mademade of of twotwo pointspoints, , kkFF==/2, and /2, and linearizinglinearizing the the energyenergyspectrumspectrum aroundaround themthem wewe getget in the continuum:in the continuum:

xexexc Lxik

Rxik

jFF

N

j

zj

zj

yj

yj

xj

xjXXZ SSSSSSJH

1111

N

jjjjjjjXXZ nnccccJH

1111 2

121

21

Page 9: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

22

8

xxLL dxvH

where x=aj, for lattice spacing a, and R(x) and L(x) correspond to right and left movingfermions, which can be bosonized according to:wherewhere xx==ajaj, , forfor lattice lattice spacingspacing aa, and , and RR(x) and (x) and LL(x) (x) correspondcorrespond toto right and right and leftleft movingmovingfermionsfermions, , whichwhich can can bebe bosonizedbosonized accordingaccording toto::

By taking the continuum limit and keeping only the marginal operators, weget the exactly solvable Luttinger Hamiltonian:

where we defined:where we defined:

xiLR

LRex ,,

RLRL K

K

,

g

Kgvvv

kJg F

F

F

211,21

2,sin2 2

renormalized velocityrenormalized velocity Luttinger parameterLuttinger parameter

Page 10: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

A comparison with exact Bethe Ansatz calculations leads to the expressions:A comparison with exact Bethe Ansatz calculations leads to the expressions:

arccos2

,arccos

12

2

KJv

The assumption of periodic boundary conditions implies the compactification of the boson fields:The assumption of periodic boundary conditions implies the compactification of the boson fields:

KRZmRmtxtLxK

RZmRmtxtLx

2,,2,,

1,,2,,

nnnnnnnnnn

LixLixn n

nnnn

naaaanaaipqwpawpa

ivtezez

znaiz

niazaiziaqzz

,,

00

/2/20 0

00

,,0,,,,,,

,,

lnln,

The compactified boson field has the following mode expansion: The The compactifiedcompactified bosonboson fieldfield hashas the the followingfollowing mode mode expansionexpansion: :

Page 11: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

(G.Cristofano, G. Maiella, V.Marotta, MPLA 15, 1679 (2000); G. Cristofano, G. Maiella, V. Marotta, G. Niccoli, NPB 641, 547 (2002); G. Cristofano, V. Marotta, A. Naddeo, PLB 571, 250 (2003); G. Cristofano, V. Marotta, A. Naddeo, NPB 679,

621 (2004))

Mother theory: a CFT with c=1, described in terms of a boson fieldcompactified on a circle with general radius R. We can define two scalar fields, symmetric and antisymmetric under Z2:

Mother theory: a CFT with c=1, described in terms of a boson fieldcompactified on a circle with general radius R. We can define two scalar fields, symmetric and antisymmetric under Z2:

zz,

2

,,,~,2

,,,~ iiii eeee

DaughterDaughter theorytheory: : wewe implementimplement the the mapmap zz22, , gettinggetting ananorbifold CFT orbifold CFT withwith cc=2. =2. The new The new theorytheory isis describeddescribed in in termsterms of a of a ZZ22--invariant scalar invariant scalar fieldfield and a and a twistedtwisted fieldfield whichwhich satisfiessatisfiestwistedtwisted boundaryboundary conditionsconditions::

2/12/12/12/1 ,~,,,~, zzzzzzzz

Page 12: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

The mode expansion of these two fields is:The mode expansion of these two fields is:

1,0;,2

,2

,2

2/12/12,

lnln,

22/

22/0

2/12/12/12/1

0 0000

lNnaawqq

zniz

niwzz

zn

izn

iziziqzz

lnln

lnln

Zn Zn

nnnn

Zn Zn

nnnn

where:

lnlnlnlnlnln

llnnlnlnllnnlnln

iqiq

lnln

,0,02/0,0,02/02/2/

,,2/2/,,2/2/

,,,,0,2

,,2

,

The field X is a compactified boson with compactification radius RX=R/2.The field X is a compactified boson with compactification radius RX=R/2.

Page 13: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

tt DwUp ,0,0

We show that the Twisted Model (TM), generated by 2-reduction technique, describes the continuum limit of the 2-leg XXZ spin-1/2 ladder with PBC and MBC. Itis enough to show that the XXZ ladder with M odd and MBC is naturally mapped in the twisted sector of the TM. Such a system coincides with a system of 2 XXZ chains, each one with (M+1)/2 sites and size L=a(M+1)/2, which are closed with periodicitycondition in one gluing site common to the 2 chains.

We show that the Twisted Model (TM), generated by 2-reduction technique, describes the continuum limit of the 2-leg XXZ spin-1/2 ladder with PBC and MBC. Itis enough to show that the XXZ ladder with M odd and MBC is naturally mapped in the twisted sector of the TM. Such a system coincides with a system of 2 XXZ chains, each one with (M+1)/2 sites and size L=a(M+1)/2, which are closed with periodicitycondition in one gluing site common to the 2 chains.

Upon bosonizing each chain, we obtain two boson fields Up and Dw compactified on the two circles (up and down) of the samelength L and with the same compactification radius R=2(-arccos)/=1/K.

LxLtLx

Lxtxtx

Up

Dw

2,,0,,

,

The topological defect implies the following b.c. for the fields at the gluing point:

Folding fieldFolding field

Page 14: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

RmtxtLx 2,,2

Basic steps

The compactification space of the field is an eight of length 2L and the radius isR.

The compactification space of the field is an eight of length 2L and the radius isR.

LxLRmtLxLxRmtx

LxLtxLxtLx

tLx

Up

Dw

Up

Dw

2,2,0,2,

2,,0,,

,2

2-reduction

ivtee LixLix ,, 2/22/2 ,~,,~

LixLix ezez /22/22 , zzzz ,,,

Page 15: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

By means of 2-reduction technique we have transformed the boson field compactified on the eight of length 2L with radius R into the two independentboson fields and compactified on a circle of length L, where R= R/2. Thusthe 2-leg XXZ spin-1/2 ladder with general anisotropy and MBC is described bythe twisted sector of the TM.

Let us put =1, which corresponds to the isotropic XXX ladder.Let us put =1, which corresponds to the isotropic XXX ladder.

Mother theory: a CFT with c=1, described in terms of a boson fieldcompactified on a circle with radius R=2 (K=1/2).

Mother theory: a CFT with c=1, described in terms of a boson fieldcompactified on a circle with radius R=2 (K=1/2).

DaughterDaughter theorytheory: : asas a a resultresult of the 2of the 2--reduction procedure, reduction procedure, wewe getgetanan orbifold CFT orbifold CFT withwith cc=2. The new =2. The new theorytheory isis describeddescribed in in termsterms of of twotwo bosonboson fieldsfields, , and and , , whichwhich describedescribe the the spinspin chainschains of the of the twotwo legslegs. . ItIt decomposesdecomposes intointo a a tensortensor productproduct of of twotwo CFTsCFTs, a , a twistedtwisted invariantinvariant one one withwith cc=3/2, =3/2, realizedrealized byby the the bosonboson and a and a RamondRamond MajoranaMajorana fermionfermion, , whilewhile the the secondsecond hashas cc=1/2 and =1/2 and isisrealizedrealized in in termsterms of a of a NeveuNeveu--SchwartzSchwartz MajoranaMajorana fermionfermion: : susu(2)(2)22II..

Page 16: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

Let us consider the weakly interacting 2-leg ladder in the isotropic case, i. e. XXX, and study the different RG trajectories flowing from the UV fixed point describedby our TM with central charge c=2.

The daughter fields and and their duals admit the following representation in terms of left and right chiral components:

The daughter fields and and their duals admit the following representation in terms of left and right chiral components:

zzzzzzwzz

zXzXzzzXzXzziwzz

,,2,

,,ln,

A representation in terms of four Majorana fermion fields gives (for holomorphicand anti-holomorphic components):

A representation in terms of four Majorana fermion fields gives (for holomorphicand anti-holomorphic components):

z

zzz

zzzXzzXzz

zzz

zzzXzzXz

cos,sin,cos,sin

cos,sin,cos,sin

0321

0321

Page 17: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

The Lagrangian describing the UV fixed point for the XXX ladder is:

8

10L

1. Railroad and 4-Spin perturbations: massive flow

while the perturbing terms V depend on the particular system under study:

VLL 0

RRRRailroad JmzzzzzzmV ,,cos2,cos,cos

This is a relevant perturbation to the UV fixed point; the i (i=1,2,3) fields form anIsing triplet with the same mass mR (su(2)2 sector) and 0 is an Ising singlet (Isector) with a larger mass –3mR (D. G. Shelton, A. A. Nersesyan, A. M. Tsvelick, PRB 53 (1996) 8521).

ThisThis isis a a relevantrelevant perturbationperturbation toto the UV the UV fixedfixed pointpoint; the ; the ii (i=1,2,3) (i=1,2,3) fieldsfields formform ananIsingIsing triplettriplet withwith the the samesame mass mass mmRR ((susu(2)(2)22 sectorsector) and ) and 00 isis anan IsingIsing singletsinglet ((IIsectorsector) ) withwith a a largerlarger mass mass ––33mmRR (D. G. (D. G. SheltonShelton, A. A. , A. A. NersesyanNersesyan, A. M. , A. M. TsvelickTsvelick, , PRB 53 (1996) 8521).PRB 53 (1996) 8521).

zzimzzimV Ri

iiRRailroad 00

3

13

Majorana fermionrepresentation

Page 18: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

A. A. Nersesyan, A. M. Tsvelick,PRL 78 (1997) 3939

JmzzzzmV Spin ,,cos,cos4

3

04

iiiSpin zzimV

Such a relevant mass term gives rise to the same mass contribution m for all the Ising fields i (i=0,1,2,3). That allows the triplet or singlet mass to vanish also forfinite values of the coupling constants, i.e. far from the UV conformal fixed point c=2

SuchSuch a a relevantrelevant mass mass termterm givesgives rise rise toto the the samesame mass mass contributioncontribution mm forfor allall the the IsingIsing fieldsfields ii (i=0,1,2,3). (i=0,1,2,3). ThatThat allowsallows the the triplettriplet or or singletsinglet mass mass toto vanishvanish alsoalso forforfinite finite valuesvalues of the of the couplingcoupling constantsconstants, i.e. far , i.e. far fromfrom the UV the UV conformalconformal fixedfixed pointpoint cc=2=2

We get two possible RG flows: a flow to an IR fixed point with c=3/2 as a resultof the Ising I decoupling (mt=0, ms0); a flow to a different IR fixed point withc=1/2 as a result of the su(2)2 decoupling (mt0, ms=0).

We get two possible RG flows: a flow to an IR fixed point with c=3/2 as a resultof the Ising I decoupling (mt=0, ms0); a flow to a different IR fixed point withc=1/2 as a result of the su(2)2 decoupling (mt0, ms=0).

2. Zigzag and 4-Dimer perturbations: massive flow

Let us write the non interacting Lagrangian in terms of Majorana fermions onlyand observe that the simple continuum limit, without adding the zigzag perturbation, produces a marginal interaction VU (D. Allen, D. Senechal, PRB 55 (1997) 299):

aJvvvvLi

iiiii 030

3

00 ...,

21

Page 19: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

zzzzzzzzO

zzzzzzzzzzzzO

tUOOV UUU

332211002

3322

331122111

21 0/,

The zigzag interaction is, in the fermionic language:The zigzag interaction The zigzag interaction isis, in the , in the fermionicfermionic languagelanguage::

0/,3

021

tJzTzTOOV Z

Zi

iiZZigZag

Such an interaction is marginally relevant and contains a non scalar term, whoseeffect is simply that of renormalizing the fields and the velocities. After renormalization, the whole effect of the two terms VU and VZigZag can be expressed asa marginal interaction:

SuchSuch anan interaction interaction isis marginallymarginally relevantrelevant and and containscontains a non scalar a non scalar termterm, , whosewhoseeffecteffect isis simplysimply thatthat of of renormalizingrenormalizing the the fieldsfields and the and the velocitiesvelocities. After . After renormalizationrenormalization, the , the wholewhole effecteffect of the of the twotwo termsterms VVUU and and VVZigZagZigZag can can bebe expressedexpressed asasa a marginalmarginal interaction:interaction:

Z

UZ

Z

UZ

ZZigZag OOOOVV

131121, 0

210

210

The following RG equations hold: 20

0

8ln

Ld

d

Page 20: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

Under the flow 0+ renormalizes to zero while 0

- increases and thatresults in a dynamical length scale exp(1/0

-). The Z2 symmetry of L0and VVZigZag spontaneously breaks, a mass scale appears dynamically and provides a non vanishing mass for the four fermions:

mmmmmmvmivm ii

0321

100

1

;0;3,2,1,

It is not possible to extract trajectories in the RG flow characterized by a vanishingmass in the c=1/2 or c=3/2 sector respectively. So, we need to introduce the 4-dimerperturbation:

The whole perturbation is:

JzzzzOOVji

iijjDimer

,3

0214

00

21214

,

OOOOVVVV DimerZigZagTot

Page 21: G. Cristofano, V. Marotta, A. Naddeo, G. Niccoli, JSTAT ...sestrilevante09.ge.infn.it/presentazioni/naddeo.pdf · Renormalization group analysis for the XXXcase Outline. Let us introduce

It is now possible to define a path in the RG flow characterizedby a vanishing singlet mass, i.e. mt0, ms=0, as shown byrewriting VTot as:

A vanishing singlet mass ms can be obtained by requiring the marginality of the operator O2 along the RG flow. This selects the condition += - which makes 2 to vanish. The triplet mass mt isdynamically generated and reads as (F is the momentum cutoff and vt is the spin triplet velocity):

The 4-Dimer interaction allows us to describe a RG trajectory flowing from the c=2UV fixed point (TM) toward the Ising I, the c=1/2 IR fixed point, as a result of the dynamical generation of the mass mt and the consequent decoupling of su(2)2.

The 4The 4--Dimer interaction Dimer interaction allowsallows usus toto describedescribe a RG a RG trajectorytrajectory flowingflowing fromfrom the the cc=2=2UV UV fixedfixed pointpoint (TM) (TM) towardtoward the the IsingIsing II, the , the cc=1/2 IR =1/2 IR fixedfixed pointpoint, , asas a a resultresult of the of the dynamicaldynamical generation of the mass generation of the mass mmtt and the and the consequentconsequent decouplingdecoupling of of susu(2)(2)22..

21

2211

,OOVTot

8/1expFvm tt