fuzzy sets as a basis for a theory of possibility-1978

26
7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978 http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 1/26 Fuzzy Sets and Systems 1 (1978) 3-28. © North-Holland Publishing Company FUZZY SETS AS A BASIS FOR A THEORY OF POSSIBILITY L.A. ZADEH Computer Science Division Department of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory University of California Berkeley CA 94720 U.S.A. Received February 1977 Revi,;ed June 1077 The theory of possibility described in this paper is related to the theory of fuzzy sets by defining the concept of a possibility distribution as a fuzzy restriction which acts as an elastic constraint on the values that may be assigned to a variable. More specifically, if F is a fuzzy subset of a universe of discourse U = {u} which is characterized by its membership function/~r, then a proposition of the form "X is F," where X is a variable taking values in U, induces a possibility distribution Hx which equates the possibility of X taking the value u to/~r.(u)--the compatibility of u with F. In this way, X becomes a fuzzy variable which is associated with the possibility distribution Fix in much the same way as a random variable is associated with a probability distribution. In general, a variable may be associated both with a possibility distribution and a probability distribution, with the weak connection between the two expressed as the possibility/probability consistency principle. A thesis advanced in this paper is that the imprecision that is intrinsic in natural languages is, in the main, possibilistic rather than probabilistic in nature. Thus, by employing the concept of a possibility distribution, a proposition, p, in a natural language may be translated into a procedure which computes the probability distribution of a set of attributes which are implied by p. Several types of conditional translation rules are discussed and, in particular, a translation rule r,~rpropositions of the form"X is F is ~-possible, "~ where ~ is a num ber in the interval [0, ], is formulate~ and illustrated by examples. 1. Introduction The pioneering work of Wiener and Shannon on the statistical theory of communication has led to a universal acceptance of the belief that information is intrinsically statistical in nature ~nd, as such, must be dealt with by the methods provided by probability theory. Unquestionably, the statistical point of view has contributed deep insights into the fundamental processes involved in the coding, transmission and reception of data, and played a key role in the development of modern communication, detection and telemetering systems. In recent years, however, a number of other important applications have come to the fore in which the major issues center not on the To Professor Arnold Kaufmann. *Research supported by Naval Electronic Systems Command Contract N00039 77-C-0022, U.S. Army Research Office Contract DAHC04--75--G0056 and National Science Foundation Grant MCS76-06693. 3

Upload: naszacha

Post on 21-Feb-2018

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 1/26

Fu z z y Se t s a nd Sys t e m s 1 ( 1978) 3 - 28 .

© N o r t h - H o l l a n d P u b l i sh i n g C o m p a n y

F U Z Z Y S E T S A S A B A S I S F O R

A T H E O R Y O F P O S S I B I L I T Y

L .A . Z A D E H

Computer Science Division Department of Electrical Engineering and Co mpu ter Sciences and the

Electronics Research Laboratory University of California Berkeley C A 94720 U.S.A.

Re c e ive d Fe br ua r y 1977

Revi,;ed June 1077

T he th e or y o f poss ib i l i t y de sc ribe d i n t h i s pa pe r i s r e l at e d t o t he t he o r y o f f uzz y se t s by de f in ing t he

c onc e p t o f a poss ib i l i t y d i s t r ibu t ion a s a f uz zy r e s t ri c t i on w hic h a c t s a s a n e l a st ic c ons t r a in t on t he

va lues tha t m ay be as s igned to a var iable . M or e spec i f ica l ly , i f F i s a fuzzy subse t of a universe of

d i sc our se U = {u} w hic h i s c ha r a c t e r iz e d by i t s m e m be r sh ip f unc t ion /~ r , t he n a p r opos i t i on o f t he

form "X is F ," where X is a var iable taking va lues in U, induces a poss ibi l i ty dis t r ibut ion Hx which

e qua t e s t he poss ib i l it y o f X t a k ing t he va lue u t o /~ r . ( u ) - - t he c om pa t ib i l i t y o f u w i th F . I n t h i s w a y , X

be c om e s a f uzz y va r i a b l e w hic h i s a s soc i a t e d w i th t he poss ib i l it y d i s t r i bu t ion F ix in m uc h the sa m e

w a y a s a r a ndo m va r i a b l e i s a s soc i a t ed w i th a p r ob a b i l i t y d i s t r i bu t ion . I n ge ne ra l , a va r i a b l e m a y be

a ssoc i a t e d bo th w i th a poss ib i l i t y d i s t r i bu t ion a nd a p r oba b i l i t y d i s t r i bu t ion , w i th t he w e a k

c onne c t ion be tw e e n the tw o e xpr e s se d a s t he poss ib i l i t y /p r oba b i l i t y c ons i s t e nc y p r inc ip l e .

A thes is advanced in this paper i s tha t the imprec is ion tha t i s in t r ins ic in na tura l languages i s , in

the m a in , poss ib i li s t ic r a the r t ha n p r oba b i l i s t ic i n na tu re . T hus , by e m plo y ing the c onc e p t o f a

poss ib i l i t y d i s t r i bu t ion , a p r opos i t i on , p , i n a na tu r a l l a ngua ge m a y be t r a ns l a t e d i n to a p r oc e dur e

w hic h c om pu te s t he p r ob a b i l i t y d i s t r i bu t ion o f a s e t o f a t t r i bu t e s w h ic h a r e im pl i e d by p . Se ve r a l t ype s

of c ond i t i ona l t r a ns l a t i o n r u le s a r e d isc usse d a nd , i n pa r ti c u l a r , a t r a ns l a t i on r u le r ,~ r p r opo s i t i ons o f

the form "X is F is ~-po ssible, "~whe re ~ i s a num be r in the inte rva l [0 , ] , i s formu la te~ and i l lus t ra ted by

examples .

1 . In troduct ion

T h e p i o n e e ri n g w o r k o f W i e n e r a n d S h a n n o n o n t h e s t a ti st ic a l t h e o r y o f

c o m m u n i c a t i o n h a s l e d t o a u n i v e r s a l a c c e p t a n c e o f t h e b e l ie f t h a t i n f o r m a t i o n i s

i n t r i n s i c a l l y s t a t i s t i c a l i n n a t u r e ~ n d , a s s u c h , m u s t b e d e a l t w i t h b y t h e m e t h o d s

p r o v i d e d b y p r o b a b i l i t y t h e o r y .

U n q u e s t i o n a b l y , t h e s t a ti s ti c a l p o i n t o f v i e w h a s c o n t r i b u t e d d e e p i n s ig h t s i n t o t h e

f u n d a m e n t a l p r o c e s s e s i n v o l v e d i n t h e c o d i n g , t r a n s m i s s i o n a n d r e c ep t io n o f d a t a , a n d

p l a y e d a k e y r o le in th e d e v e l o p m e n t o f m o d e r n c o m m u n i c a t i o n , d e t e c t io n a n d

t e le m e t e r i n g s y s t e m s . I n r e c en t y e a r s, h o w e v e r , a n u m b e r o f o th e r i m p o r t a n t

a p p l i c a t i o n s h a v e c o m e t o t h e f o r e i n w h i c h t h e m a j o r i s s u e s c e n t e r n o t o n t h e

T o P r o f e s s o r A r n o l d K a u f m a n n .

* R e s e ar c h s u p p o r t e d b y N a v a l E l e c tr o n ic S y s te m s C o m m a n d C o n t r a c t N 0 0 0 3 9 7 7 - C - 0 0 2 2 , U . S . A r m y

R e s e a rc h O f fi ce C o n t r a c t D A H C 0 4 - - 7 5- -G 0 0 5 6 a n d N a t i o n a l S c i en c e F o u n d a t i o n G r a n t M C S 7 6 - 0 6 6 9 3 .

3

Page 2: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 2/26

4 L A Zadeh

t r a n s m i s s i o n o f i n f o r m a t i o n b u t o n i ts m e a n i n g . I n s u ch a p p l i c a ti o n s , w h a t m a t t e r s

i s t h e a b i l i t y t o a n sw e r q u e s t i o n s r e l a t i n g to i n f o r ma t io n th a t i s s t o r e d in a

d a t a b a s e - - - a s i n n a t u r a l l a n g u a g e p r o c e s s i n g , k n o w l e d g e r e p r e s e n t a t i o n , s p e e c h

r e c o g n i t i o n , r o b o t i c s , me d ic a l d i a g n o s i s , a n a ly s i s o f r a r e e v e n t s , d e c i s io n - ma k in g u n d e r

u n c e r t a in ty , p i c tu r e a n a ly s i s , i n f o r ma t io n r e t r i e v a l a n d r e l a t e d a r e a s .

A th e s is a d v a n c e d i n t h is p a p e r is t h a t w h e n o u r m a i n c o n c e r n is w it h t h e m e a n i n g o f

i n f o r m a t i o n - - r a t h e r t h a n w i t h i t s m e a s u r e - - t h e p r o p e r f r a m e w o r k f o r i n f o r m a t i o n

a n a ly s i s i s p o s s ib il i st i c t r a th e r t h a n p r o b a b i l i s t i c i n n a tu r e , t h u s imp ly in g th a t w h a t i s

n e e d e d f o r s u c h a n a n a l y s i s i s n o t p r o b a b i l i t y t h e o r y b u t a n a n a l o g o u s - a n d v e t

d i f f e r e n t - - t h e o r y w h i c h m i g h t b e c a ll e d th e t h eo r y o f p o s s i b i li t y 2

A s w i ll b e s e e n in t h e s e q u e l , t h e m a th e m a t i c a l a p p a r a tu s o f t h e t h e o r y o f f u z z y s e ts

p r o v id e s a n a tu r a l b a s i s f o r t h e t h e o r y o f p o s sib i li t y , p l a y in g a r o l e w h ic h i.s s imi l a r t o

th a t o f me a su r e t h e o r y i n r e la t i o n to t h e t h e o r y o f p r o b a b i l i t y . V ie w e d in t h i s

pe r spec t ive , a fuzzy re s t r ic t ion m ay be in te rpre ted a s a poss ib il f i y d is t r ibu t ion , wi th i t s

m e m b e r s h ip f u n c t io n p l a y in g th e r o le o f a p o s s ib i li t y d i s t r i b u t io n f u n c t io n , a n d a f u z z y

v a r i a b l e i s a s so c i a t e d w i th a p o s s ib i l i t y d i s t r i b u t io n in mu c h th e s a me ma n n e r a s a

r a n d o m v a r i a b l e i s a s so c i a t e d w i th a p r o b a b i l i t y d i s t r i b u t io n . I n g e n e r a l , h o w e v e r , a

v a r i a b l e ma y b e a s so c i a t e d b o th w i th a p o s s ib i l i t y d i s t r i b u t io n a n d a p r o b a b i l i t y

d i s t r i b u t io n , w i th t h e c o n n e c t io n b e tw e e n th e tw o e x p r e s s ib l e a s t i a e

poss ib i l i t y~probab i l i t y cons i s tency pr inc ip le

T h i s p r i n c i p l e - - w h i c h is a n e x p r e s si o n o f

a w e a k c o n n e c t io n b e tw e e n p o s s ib i l i t y a n d p r o b a b i l i t y - - w i l l b e d e sc r ib e d in g r e a t e r

de ta i l a t a la te r po in t in th i s pape r .

T h e i m p o r t a n c e o f t h e t h e o r y o f p o s s ib i li ty s t e m s fr o m t h e f a c t t h a t - - c o n t r a r y t o

w h a t h a s b e c o m e a w i d e l y a c c e p te d a s s u m p t i o n - - m u c h o f t h e i n fo r m a t i o n o n w h i c h

h u ma n d e c i s io n s a r e b a se d i s p o s s ib i l i s t i c r a th e r t h a n p r o b a b i l i s t i c i n n a tu r e . I n

p a r t i c u l a r , t h e i n t r in s i c f u z zin e ss o f n a tu r a l l a n g u a g e s - - w h ic h i s a lo g i c a l c o n s e q u e n c e

o f t h e n e c es s it y t o e x p r e s s i n f o r m a t io n in a su m ma r i z e d f o r m - - i s , i n t h e ma in ,

poss ib i l i s t ic in o r ig in . Based on th is p remise , J t i s poss ib le to cons t ruc t a un ive r sa l

l a n g u a g e a i n w h ic h th e t r a n s l a t i o n o f a p r o p o s i t i o n e x p r e s se d in a n a tu r a l l a n g u a g e

ta k e s t h e f o r m o f a p r o c e d u r e f o r c o m p u t in g th e p o s s ib il i ty d i s t r i b u t io n o f a s e t o f f u z z y

r e l a t i o n s i n a d a t a b a se . T h i s p r o c e d u r e , t h e n , m a y b e i n t e r p r e t e d a s th e me a n in g o f t h e

p r o p o s i t i o n i n q u e s t i o n , w i t h t h e c o m p u t e d p o s s ib i li ty d i s t r i b u t i o n p l a y in g t h e r o l e o f

t h e i n f o r m a t i o n w h i c h is c o n v e y e d b y t h e p r o p o s i t io n .

T h e p r e s e n t p a p e r h a s t h e l im i t e d o b j e ct i ve o f e x p l o r i n g s o m e o f t h e e l e m e n t a r y

p r o p e r t i e s o f t h e c o n c e p t o f a p o s s ib il i t y d i s t r i b u t io n , m o t iv a t e d p r in c ip a l ly b y th e

a p p l i c a t io n o f t h is c o n c e p t t o t h e r e p r e s e n t a t i o n o f m e a n i n g i n n a t u r a l l a n g u a g es . S i n c e

o u r i n tu i t i o n c o n c e r n in g th e p r o p e r t i e s o f p o s sib i li t y d i s t r i b u t io n s i s n o t a s y e t w e l l

d e v e lo p e d , so me o f t h e d e f in i ti o n s w h ic h a r e f o r mu la t e d i n t h e s e q u e l sh o u ld b e v i e w e d

a s p r o v i s io n a l i n n a tu r e .

~The term possib i l i s t ic-- in the sense used here--was coined by Gaines and Kohout in thei r paper on

poss ib l e au tom ata [1 ] .

2The in terpre ta t ion of the concept of possib i li ty in the theory of possib i l ity i s qui te d ifferent from th at of

mo dal logic [2] in which propo si t ions of the form "It i s possib le tha t . . . " and " I t is necessary tha t . . . " are

considered .

3Such a language, called PRUF (Possibil ist ic Relational Universal Fuzzy,), is described in [30].

Page 3: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 3/26

F u z z y s e t s a s a b a s i s f o r a t h eo r y o f p o s s i b i l i t y

2 Th e concep t o f a pos s i b i l it y d i s t r ibut i on

W h a t i s a p o s s i b i li t y d i s t r i b u t i o n ? I t is c o n v e n i e n t t o a n s w e r t h is q u e s t i o n i n t e r m s o f

a n o t h e r c o n c e p t , n a m e l y , t h a t o f a fu z zy r es t r i c t ion [4 , 5 ], t o wh i c h t h e c o n c e p t o f a

p o s s i b i l i t y d i s t r i b u t i c a b e a r s a c l o s e r e l a t i o n .

L e t X b e a v a r ia l '~ e wh i c h t a k e s v a l u e s i n a u n i v e r s e o f d i s c o u r s e U , w i t h t h e g e n e r i c

e l e m e n t o f U d e n o t e d b y u a n d

X = u (2.1)

s i g n i fy i n g t h a t X i s a s s i g n e d t h e v a l u e u , u ~ U.

L e t F b e a f u z z y s u b s e t o f U w h i c h i s c h a r a c t e r i z e d b y a m e m b e r s h i p f u n c t i o n / i v .

T h e n F is

afi4zzy re str ict ion on X

(o r

associated w ith X )

i f F a c t s a s a n e l a st ic c o n s t r a i n t

o n t h e v a l u e s t h a t m a y b e a s si g n ed t o X - - i n t h e s en s e t h a t t h e a s s i g n m e n t o f a v a l u e u t o

X h a s t h e fo rm

X =u: / t v u )

(2.2)

w h e r e / ~ r ( u ) i s i n t e r p r e t e d a s t h e d e g r e e t o w h i c h t h e c o n s t r a i n t r e p r e s e n t e d b y F i s

s a t is f ie d wh e n u i s a s s i g n e d t o X . Eq u i v a l e n t l y , ( 2.2 ) im p l i e s t h a t 1 - l a y (u ) i s t h e d e g re e

t o w h i c h th e c o n s t r a i n t i n q u e s t i o n m u s t b e s t r e t c h e d in o r d e r t o a l lo w t h e a s s i g n m e n t

o f u t o X . *

L e t R (X) d e n o t e a fu z z y r e s t r i c t io n a s s o c i a t e d w i t h X . Th e n , t o e x p re s s t h a t F p l a y s

t h e ro l e o f a fu z z y r e s t r ic t i o n i n r e l a t i o n t o X , we w r i te

R X ) = F . t2 .3)

An e q u a t i o n o f t h i s fo rm i s c a l l e d a

relational assignm ent equation

b e c a u s e i t r e p re s e n t s

t h e a s s i g n m e n t o f a fu z z y s e t (o r a fu z z y r e l a t i o n ) t o t h e r e s t r i c t i o n a s s o c i a t e d w i t h X .

T o i l lu s t r a t e t h e c o n c e p t o f a fu z z y r e s t r i c t io n , c o n s i d e r a p ro p o s i t i o n o f t h e fo rm p

a _X i s F , 5 wh e re X i s t h e n a m e o f a n o b j e c t , a v a r i a b l e o r a p ro p o s i t i o n , a n d F i s t h e

n a m e o f a fu z z y s u b s e t o f U , a s in " J e s s i e is v e ry i a t e l l ig e n t , " "X is a s m a l l n u m b e r , "

" H a r r i e t is b l o n d e i s q u i t e t r u e ," e tc . A s s h o w n in [ 4 ] a n d [ 6 ] , t h e t r a n s l a t i o n o f s u c h a

p r o p o s i t i o n m a y b e e x p r e s se d a s

R A X ) ) = F

(2.4)

wh e re A (X) is a n i m p l i e d a t t r i b u t e o f X wh i c h t a k e s v a l u e s i n U , a n d (2.4 ) s ig n i f ie s t h a t

t h e p r o p o s i t i o n

pa--X

i s F h a s t h e e f f e ct o f a s s i g n i n g F t o t h e fu z z y r e s t r i c t io n o n t h e

va lue s o f A (X) .

As a s i m p l e e x a m p l e o f (2.4 ), l e t p b e t h e p ro p o s i t i o n " J o h n i s y o u n g , " i n w h i c h y o u n g

is a fu z z y s u b s e t o f U = [ 0 , 1 00 ] c h a r a c t e r i z e d b y t h e m e m b e l s h i p f u n c t i o n

#you,g(U) = 1 -

S u;

20, 30, 40)

t 2 . 5 )

'~ A p o im th a t mu s t b e s t r e s s e d i s t h a t e f u z z y se t per s~ i s no t a fuzzy re s t r ic t i on . To be a fuzzy re s t r ic t ion , i t

m u s t b e a c t i n g a s a c o n s t r a i n t o n t h e v a l u e s o f a v a r i ab l e .

SThe sym bo l a__. s ta nd s for "d eno tes" or " i s de f in ed to be" .

Page 4: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 4/26

6 L A Zadeh

w h e r e u is t h e n u m e r i c a l a g e a n d th e S - f u n c t io n i s d e f in e d b y [ 4 ] .

S ( u ; ~ , f l, 7 ) = O f or u < ~

= 2 fo r 0 c < u < f l

\ 7 - 0 U

= l _ 2 ( u - - ' ~ 2

\ ~ - ~ / f o r f l < = u < ~

= 1 f o r u > ) , ,

(2.6)

in which the pa ram ete r fl -~ ( a + ) ,) /2 is the c ro ssov er po in t , th a t is , S ( fl ;~ , f l , ' t )= 0 .5 . In

th i s c a se, t h e imp l i e d a t t r i b u t e A ( X ) is A g e ( Jo h n ) a n d th e t r a n s l a t i o n o f " Jo h n is y o u n g "

a s s u m e s t h e f o r m :

J o h n is y o u n g - , R ( A g e (J o h n )) = y o u n g .

(2.7)

T o r e l a t e th e c o n c e p t o f a fu z z y r e s t r ic t i o n to t h a t o f a p o s s ib i l i ty d i s t r i b u t io n , w e

in t e r p r e t t h e r i g h t - h a n d m e m b e r o f 1 2 .7 ) i n th e f o l lo w in g m a n n e r .

Co n s id e r a n u m e r i c a l a g e , s a y u = 28 , w h o se g r a d e o f m e m b e r s h ip i n t h e fu z z y s et

y o u n g ( as d e fin e d b y ( 2 . 5) ) i s a p p r o x im a te ly 0 .7 . F i rs t , w e in t e r p r e t 0 .7 a s t h e d e g r e e o f

co mp a t ib i l i t y o f 2 8 w i th t h e c o n c e p t l a b e l e d y o u n g . T h e n , w e p o s tu l a t e t h a t t h e

p r o p o s i t i o n " J o h n is y o u n g " c o n v e r t s t h e m e a n i n g o f 0 .7 f r o m t h e d e g r ee o f

c o m p a t ib i l i t y o f 2 8 w i th y o u n g to t h e d e g r e e o f p o s s ib il i ty t h a t Jo h n i s 2 8 g iv e n th e

p r o p o s i t i o n " J o h n is y o u n g . " I n s h o r t , t h e c o m p a t i b i li t y o f a v a l u e o f u w i th y o u n g

b e c o m e s c o n v e r t e d i n to t h e p o s s ib i li t y o f t h a t v a lu e o f u g iv e n " Jo h n i s y o u n g . "

S ta t e d i n mo r e g e n e r a l t e r ms , t h e c o n c e p t o f a p o s s ib i l it y d i s t r i b u t io n m a y b e d e fin e d

a s f ol lo w s . ( F o r s imp l i c it y , w e a s su me th a t A ( X ) =X . )

ef init ion

2 .1 . Le t F be a fuzzy subs e t o f a un ive r se o f d isco urse U wh ich i s

c h a r a c t e r iz e d b y i ts m e m b e r s h i p f u n c t io n # r , w i th t h e g r a d e o f m e m b e r s h i p , p r ( u ) ,

i n t e r p r e t e d a s t h e c o m p a t ib i l i t y o f u w i th t h e c o n c e p t l a b e l e d F .

Le t X be a va r iab le tak ing va lues in U, and le t F ac t a s a fuzzy re s t r ic t ion , R(X) ,

a s so c i a t e d w i th X . T h e n th e p r o p o s i t i o n " X i s F , " w h ic h t r a n s l a t e s i n to

R ( X ) = F ,

(2.8)

assoc ia te s a

poss ib i l i t y d i s t r ibu t ion ,

l-Ix,

w i th X

w h ic h i s p o s tu l a t e d t o b e e q u a l t o R ( X ),

i.e.,

l-lv = R(X ). (2.9)

C o r r e s p o n d i n g l y , t h e

p o s s ib i l it y d i s t r ib u t i o n fu n c t i o n a s s o c ia ted w i th X

( o r t h e

p o s s ib i l i t y d i s t r i b u t io n f u n c t io n o f F ix ) i s d e n o te d b y n x a n d i s d e f in e d to b e

n u m e r i c a l ly e q u a l t o t h e m e m b e r sh ip f u n c t io n o f F , i.e .,

A

r r x= v . (2 .10)

T h u s , nx(U), t h e p o s s ib i l i t y t h a t X =u , i s p o s tu l a t e d t o b e e q u a l t o /~ r (u ) .

Page 5: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 5/26

F u z z , s e t s a s a b a s i s f o r a t h e o r y O [ p o s s i b i l i ty 7

In v iew of (2.9), the re la t iona l ass ig nm ent equ at ion (2.8) ma y be expressed

equ i va l en t l y i n the fo rm

H x = F . (2.11)

_A_X

lacing in ev idence tha t the pro po s i t ion p i s F has the ef fec t o f associa t ing X wi th a

poss ib i l i ty d i s t r ibu t ion F ix which , by (2.9) , is equal to F . Whe n expressed in the form of

12.1 l ) , a rela t ional a ss ig nm en t e qu at io n wil l be referred to as a possibility assignment

equation

with the unders tanding tha t l - Ix is

induced by p.

As a s imple i l lus t ra t ion , l e t U be the u n iverse o fpos i t ive in tegers and let F be the fuzzy

set o f small integ ers def ined by ( 4 a__un i on )

s m a ll i n te g e r = 1/1 + 1 /2 + 0 . 8 / 3 + 0 . 6 / 4 + 0 . 4 / 5 + 0 . 2 / 6 .

Then , the propos i t ion "X i s a smal l in teger" associa tes wi th X the poss ib i l i ty

d i s t r i bu t i on

H x = 1 /1 + 1/2 + 0 . 8 / 3 + 0 . 6 / 4 + 0 . 4 / 5 + 0 . 2 / 6

{2.12)

in which a term such as 0 .8/3 s ignif ies that the possibi l i ty that X is 3 , given that X is a

sm all integ er, is 0.8.

The re are severa l im po r ta n t po in t s re la t ing to the abo ve def in it ion which are in need

o f c o m m e n t .

F i rs t , {2 .9) impl ies tha t the poss ib i l i ty d i s t r ibu t ion l- Ix m ay be rega rded as an

in terpr e ta t ion of the conc ept o f a fuzzy res t r i c tion and , con sequen t ly , tha t the

m a t hem at i ca l app a ra t u s o f t he t heo ry o f fuzzy s e t s - - a nd , e speci a ll y , t he ca l cu lu s o f

fuzzy r e s tr i c ti ons [4 ] - -p rov i de s a bas i s fo r the m an i pu l a t i on o f pos s ib i li t y d is t ri -

bu t ion s by the ru les o f th i s ca lcu lus.

Second , the def in i t ion im pl ies the assu m pt ion tha t ou r in tu i t ive percep t ion of the

wa ys in which poss ib i l it i es com bine i s in accord wi th the ru les o f com bina t ion of fuzzy

res tr i c ti ons . A l t ho ugh t he va l i d i ty c f t h is a s sum pt i on cann o t be p rov ed a t t h is j unc t u re ,

i t app ear s tha t the re i s a fa ir ly c lose agre em ent be tween such b as ic opera t ions as the

unio n and in tersec t ion of |uzzy set s, on the one hand , an d the po ss ib i l ity d i s t r ibu t ions

as soc i a t ed wi th t he d i s junc t ions and con junc t i ons o f p ropo s i t i ons o f t he fo rm "X is F . "

Ho wev er , s ince our in tu i t ion conc ern ing the beha viour of poss ib il i ti es i s no t very

re l iab le , a g rea t deal o f emp i r ica l work wo uld have to be don e to p rovide us wi th a

be t t e r unde r s t and i ng o f t he ways in wh i ch pos s ib i l it y d i s t r i bu t ions a re m an i p u l a t ed by

hum ans . S uch an under s t an d i ng wo u l d be enhanced by the deve l opm en t o f an

ax i om at i c app ro ach t o t he de f in i ti on o f sub jec ti ve pos s i b i l i t i e s - - an app roa ch wh i ch

m ight be in the sp i r i t o f the ax io ma t ic ap pro ach es to the def in i tion of sub jec t ive

proba bi l i t i es [7 , 8 ] .

Thi rd , the def in i t ion of ~rx(U) impl ies th a t the degree of poss ib i li ty ma y be any

num ber i n t he i n t e rva l [0 ,1 ] r a t he r t han j u s t 0 o r 1 . In t h i s connec t i on , i t s hou l d be

no ted tha t the ex i s tence of in term edia te degrees of poss ib i l i ty is impl ic i t in such

com m onl y encoun t e red p ropos i t i ons a s "There i s a s l i gh t pos s i b i l i t y t ha t M ar i l yn i s

ve ry r i ch ," " I t i s qu i t e pos s i b le t h a t J ean -P au l w i ll be p rom ot ed , . . . . I t is a l m os t

impo ss ib le to f ind a needle in a hay s tack ," e tc .

Page 6: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 6/26

8 L A Z a d e h

I t c o u l d b e a r g u e d , o f c o u r s e, t h a t a c h a r a c t e r i z a t io n o f a n i n t e r m e d i a t e d e g r e e o f

p o s s ib i li t y b y a la b e l s u c h a s " s l i g h t p o s s i b il i ty " i s c o m m o n l y m e a n t t o b e i n t e r p r e t e d a s

" s l i g h t p r o b a b i l i t y . " U n q u e s t io n a b ly , t h i s i s f r e q u e n t ly t h e c a se in e v e r y d a y d i s c o u r se .

N e v e r th e l e s s , t h e r e i s a f u n d a me n ta l d i f f e r e n c e b e tw e e n p r o b a b i l i t y a n d p o s s ib i l i t y

w h ic h , o n c e b e t t e r u n d e r s to o d , w i l l l e a d to a mo r e c a r e f u l d i f f e r e n t i a t i o n b e tw e e n th e

c h a r a c t e r i z a t i o n s o f d e g r e e s o f p o s s ib i l i ty v s . d e g r e e s o f p r o b a b i l i t y - - - e sp e c i a l l y i n l e g a l

d i s c o u r se , me d ic a l d i a g n o s i s , sy n th e t i c l a n g u a g e s a n d , mo r e g e n e r a l l y , t h o se

a p p l i c a t i o n s i n w h ic h a h ig h d e g r e e o f p r e c i s io n o f m e a n in g is a n im p o r t a n t

d e s i d e r a t u m .

T o i l lu s t r a t e t h e d i ff e re n c e b e tw e e n p r o b a b i l i t y a n d p o s s ib i l i t y b y a simp le e x a m p le ,

c o n s id e r t h e s t a t e m e n t " H a n s a t e X e g g s fo r b r e a k fa s t , " w i th X t a k in g v a lu e s in U = { 1,

2 , 3 , 4 , . . . } . W e m a y a s so c i a t e a p o s s ib i l it y d i s t r i b u t io n w i th X b y in t e r p r e t i n g n x (U ) a s

t h e d e g r e e o f e a s e w i t h w h i c h H a n s c a n e a t u e gg s. W e m a y a l s o a s so c i at e a p r o b a b i l i t y

d i s t r i b u t io n w i th X b y in t e r p r e t i n g

P x t ~ )

a s th e p r o b a b i l i t y o f H a n s e a t i n g u e g g s f or

b r e a k f a s t . A ssu m in g th a t w e e mp lo y so m e e x p li c it o r imp l i c i t c r i t e r io n f o r a s se s s in g th e

d e g r e e o f e a se w i th w h ic h H a n s c a n e a t u eg g s f o r b r e a k f a s t , t h e v a lu e s o f rex U) a n d

p x lu ) m ig h t b e as sh o w n in T a b le 1.

Tab le 1

Th e possib i li ty and proba bi l i ty d is t r ibut ions associa ted wi th X

u 2 3 4 5 6 7 8

rex U) 1 1 1 1 0 8 0 6 0 4 0 2

P x u )

0 1 0 8 0 1 0 0 0 0 0

We o b se r v e t h a t , w h e r e a s t h e p o s s ib i l it y t h a t H a n s m a y e a t 3 e g g s f o r b r e a k f a s t is 1 ,

t h e p r o b a b i l i t y t h a t h e m a y d o so m ig h t b e q u i t e sma l l, e .g ., 0 .1 . T h u s , a h ig h d e g r e e o f

p o s s ib i li t y d o e s n o t imp ly a h ig h d e g r e e o f p r o b a b i l i t y , n o r d o e s a l o w d e g r e e o f

p r o b a b i l i t y imp ly a l o w d e g r e e o f p o s s ib i li t y . H o w e v e r , i f a n e v e n t i s imp o ss ib l e , i t is

b o u n d to b e imp r o b a b le . T h i s h e u r i s t i c c o n n e c t io n b e tw e e n p o s s ib i l i t i e s a n d

p r o b a b i l i t i e s m a y b e s t a t e d i n t h e f o r m o f w h a t mig h t b e c a ll e d t h e

p o s s i b i l it y / p ro b a b i l i ty c o n s i s t e n c y p r in c i p le , n a m e l y :

I f a v a r i a b l e X c a n t a k e t h e v a lu e s

Ul, . . . ,un

with re spect iv e possibi l i t ies H = (n ~, . . .. n~)

a n d p r o b a b i l i t i e s

P = p ~ , . . . , p , ) ,

t h e n th e d e g r e e o f c o n s i s t e n c y o f t h e p r o b a b i l i t y

d is t r ibu t ion P wi th the poss ib i l i ty d is t r ib u t io n H is expressed b y ~+ A= a r i th m et ic sum )

Y= ~ 1P l + "" " + rtnPn.

(2.13)

I t sh o u ld b e u n d e r s to o d , o f c o u r se , t h a t t h e p o s s ib i l i t y /p r o b a b i l i t y c o n s i s t e n c y

p r in c ip l e i s n o t a p r e c i s e l a w o r a r e l a t i o n sh ip t h a t i s i n t r i n s i c i n t h e c o n c e p t s o f

p o s s ib i li t y a n d p r o b a b i l i t y . R a th e r i t i s a n a p p r o x i m a te f o r m a l i z a t i o n o f t h e h e u r i s t i c

o b s e r v a t io n th a t a l e s se n in g o f t h e p o s s ib il i ty o f a n e v e n t t e n d s t o l e s se n i t s

p r o b a b i l i t y - - b u t n o t v i c e -v e r sa. I n t h i s s e n se , t h e p r in c ip l e is o f u se i n s i t u a t io n s i n

w h i c h w h a t i s k n o w n a b o u t a v a r i a b l e X i s i ts p o s s i b i l i t y m r a t h e r t h a n i ts p r o b a b i l i t y - -

d i s t~ : ib u t io n . I n su c h c a se s - - w h ic h o c c u r f a r mo r e f r e q u e n t ly t h a n th o se i n w h ic h th e

Page 7: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 7/26

Fuzzy sets as a basis or a theory of possibil ity 9

r e ve r se i s t r ue - - the poss ib i l i ty /p roba b i l i ty c ons i s t e nc y p r inc ip le p rov ide s a ba s i s f o r

t h e c o m p u t a t i o n o f t h e p o s s i b il it y d i s t r i b u t i o n o f t h e p r o b a b i l i ty d i s t r i b u t io n o f X .

S u c h c o m p u t a t i o n s p l a y a p a r t i c u l a r l y i m p o r t a n t r o l e i n d e c i s i o n - m a k i n g u n d e r

u n c e r t a i n t y a n d i n t h e t h e o r i e s o f e v i d e n c e a n d b e li ef [ 9 - 1 2 ] .

I n the e xa m ple d i sc usse d a bove , the poss ib i l ity o f X a ssum ing a va lue u is in t e rp r e te d

a s the de gre e o f e a se w i th w hic h u m a y be a s s igne d to X , e .g ., t he de gre e o f e a se w i th

w h i c h H a n s m a y e a t u eg g s f o r b r e a k t a s t. I t s h o u l d b e u n d e r s t o o d , h o w e v e r , t h a t t h i s

" d e g r e e o f e a s e " m a y o r m a y n o t h a v e p h y s i c a l re a li ty . T h u s , t h e p r o p o s i t i o n " J o h n is

young" induc e s a poss ib i l i ty d i s t r ibu t ion whose poss ib i l i ty d i s t r ibu t ion func t ion i s

e xpre sse d by (2 .5 ). I n th i s c a se , the poss ib i l i ty tha t the va r i a b le Age ( Joh n) m a y t a ke the

va lue 28 is 0 .7 , w i th 0 .7 r e p re se n t ing the de g re e o f e a se wi th whic h 28 ma y be a s s igne d to

Age ( John) g ive n the e l a s t ic i ty o f the fuz z y r e s tr i c tion l a be le d yo ung . T hus , in th i s c a se

" the de gre e o f e a se " h a s a f igu ra tive r a th e r tha n phys ic a l s ign i fi c anc e .

2 .1 . P o s s i b i l i ty m e a s u r e

Addi t iona l in s igh t in to the d i s t inc t ion be twe e n p roba b i l i ty a nd poss ib i l i ty ma y be

g a i n e d b y c o m p a r i n g t h e c o n c e p t o f a p o s s i b i l i t y m e a s u r e wi th th e f a mi l i ar c onc e p t o f a

p rob a b i l i ty me a su re . M or e spe ci fi ca l ly , l e t A be a nonfuz z y sub se t o f U a nd l e t F ix be a

poss ib i li ty d i s t r ibu t ion a s soc ia t e d wi th a va r i a b le X w hic h t a ke s va lue s in U . The n , the

p o s s i b i l i t y m e a s u r e , n ( A ) , of A is def ined as a n um ber in [0 , 1] g iven by 6

rc(A ) ~ Su pu ~A rcX(U) ,

(2.14)

wh ere nx(U) i s the po ss ib i l i ty d is t r ibu t ion func t ion of l-Ix . Th i s numbe r , the n , ma y be

in te rp r e te d a s the poss ib i l ity t h a t a v a l u e o f X b e l o n g s t o A , tha t i s

Poss{X ~ A} a - n ( A )

A

= S u p . ~ A rc x(U ).

t2.15)

W he n A is a f uz z y se t, t he be long ing o f a va lue o f X to A i s no t me a n ingfu l . A m ore

gen era l def in i t ion of poss ib i l i ty m easu re wh ich exten ds (2.15) to fuzzy se ts is the

fol lowing.

De f i n i t i on 2.2 . Le t A be a fuzzy subse t o f U and let I -Ix be a poss ib i l ity d is t r ibu t ion

a ssoc ia te d wi th a va r i a b le X whic h t a ke s va lue s in U . The p o s s i b i l i t y m e a s u r e , r c(A ) , o f A

is def ined by

Poss{X is

}

~ ( A )

£ Sup.~ t ,

.4(u) ^ rex(U),

(2.16)

~'The measure defined by {2.14)may be viewed as a particular case of the fuzzy measure defined by Sugeno

and Te rano [20 , 21]. Furthe rmo re, n(A ) as defined by (2.14) provides a possibilistic interpretation for tile

scale unction , a(A), which is defined by" Nah mias [2 2] as the supremum o f a membership function ove r a

nonfuzzy set A.

Page 8: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 8/26

10 L A Zadeh

w h e r e " X i s A ' " r e p la c e s 'XeA ' i n (2 .15) , ttA i s the m em be rs h i p func t ion of A , an d ^

s t a n d s , a s u su a l, f o r m i n . I t sh o u l d b e n o t e d t h a t , i n t e r m s o f t h e height of fuzzy se t,

w h i c h is d e f in e d a s t h e s u p r e m u m o f i ts m e m b e r s h i p f u n c t i o n [ 2 3 ] , (2 .1 6 ) m a y b e

e x p r e s s e d c o m p a c t l y b y t h e e q u a t i o n

u(A)a= He igh t (A c~ f ix ) . (2 .17)

A s a s im p l e i l l u s t r a t io n , c o n s i d e r t h e p o s s i b i l i ty d i s t r i b u t i o n ( 2 .1 2 ) w h i c h i s i n d u c e d

by th e p r op os i l ion "X i s a sma l l i n t ege r . " In th i s case , l e t A be the se t {3, 4 , 5}. Th en

~z(A )= 0. 8 v ' 0 .6 v 0 .4 =0.8 ,

wh ere v s t and s , a s usua l , fo r max .

O n the o th e r b road , i f A i s the fuzzy se t o f in t ege rs w hich a re no t sma l l , i. e. ,

A ~ 0.2/3 + 0 .4/4 + 0 .6/5 + 0 .8/6 + 1/7 + . . . (2 .18)

t h e n

P o ss{ X ~s n o t a sm a l l i n te g e r} = H e i g h t ( 0 . 2 /3 + 0 . 4 / 4 + 0 . 4 / 5 + 0 . 2 / 6 )

= 0 . 4 .

(2 .19)

I t sh o u l d b e n o t e d t h a t ( 2 .1 9 ) i s a n i m m e d i a t e c o n se q u e n c e o f t h e a s se r t i o n

X is F ~ P o s s { X is A } = H e i g h t ( F n A ) ,

(2 .20)

wh ich i s impl i ed by (2 .11) and (2 .17). In pa r t i cu la r , i f A i s a no rm al fuzzy se t ( i. e.,

H e i g h t ( A ) = 1 ), t h e n , a s s h o u l d b e e x p e c te d

X i s A :~ Po ss {X i s A} = 1.

(2 .21)

Le t A a n d B b e a r b i t r a r y f u z zy su b se t s o f U . T h e n , f r o m t h e d e f in i t io n o f t h e

possibiht2~ m ea su re of a fuzzy se t (2 .16) , i t fol lows t ha t 7

x ( A w B ) = x ( A ) v r r(B ).

(2 .22)

B y c o m p a r i s o n , t h e c o r r e s p o n d i n g r e l a t io n f or p r o b a b i l i t y m e a s u r e s o f A , B a n d

A w B {if the y e xist) is

P ( A w B ) < P ( A ) + P ( B )

(2 .23)

an d, i f A and B are di s jo int ( i. e. , VA(U)#n(u)--O),

P ( A w B ) = P ( A ) + P (B ), (2 .24)

Tit is of interest that (2.22) is analogous to the extension principle for fuzzy sets [5], with + (union) in the

right-hand side of the st;atement of the principle replaced by v.

Page 9: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 9/26

Fu zzy sets as a basis or tt theory of possibiiity 1

w h ic h e x p r e s ses t h e b a s ic a d d i t i v i t y p r o p e r ty o f p r o b a b i l i t y m e a su r e s . T h u s , i n c o n t r a s t

t o p r o b a b i l i t y m e a su r e , p o s s ib i l i ty m e a su r e i s n o t a d d i t i v e . I n s t e a d , it h a s t h e p r o p e r ty

e x p r e s se d b y ( 2. 22 ), w h ic h m a y b e v i e w e d a s a n a n a lo g o f ( 2. 24 t w i th + r e p l a c e d

b y v .

I n a s im i l a r f a sh io n , t h e p o s s ib i l i t y me a su r e o f t h e i n t e r s e c tio n o f A a n d B i s re l a t e d t o

t h o s e o f A a n d B b y

rc(A n B )< rc (A ) A re(B).

~2.25)

I n p a r t i c u l a r , i f A a n d B a r e non i n t e r ac t i v e , 8 (2 .25) holds with the equal i ty s ign, i .e . ,

n (A n B ) = n ( A J ^ n ( B ) . (2 .26)

B y c o m p a r i s o n , i n t h e c a s e o f p r o b a b i l i t y m e a s u r es , w e h a v e

P (A n B ) < P ( A ) ^ P ( B )

(2 .27)

a n d

P ( A ~ B ) = P ( A ) P ( B )

(2 .28)

i f A a n d B a r e i n d e p e n d e n t a n d n o n f u z z y . A s in th e c a se o f (2 .2 2 ), (2 .2 6 ) is a n a lo g o u s t o

( 2. 28 ), w i th p r o d u c t c o r r e sp o n d in g to m in .

2 . 2. P os s i b i l i t y and i n j b r m a t i on

I f p is a p r o p o s i t i o n o f t h e f o r m

p a=X

i s F which t r ans la te s in to the poss ib i l i ty

a s s i g n m e n t e q u a t i o n

I-IAIX = F, (2 .29)

wh ere F i s a fuzzy sub se t o f U and A (X) i s an im pl ied a t t r i bu te o f X tak in g v a lues in U,

th e n th e i n f o r m a t i on c onv e y e d by p , l ( p ) , may be iden t i f ied wi th the poss ib i l i ty

dis t r ibu t ion , l-lA(x~, of th e fuzzy v ar i ab le

A ( X ) .

T h u s , t h e c o n n e c t i o n b e t w e e n

l ( p ) ,

F la tx ~, R ( A ( X ) )

a n d F i s e x p r e s se d b y

w h e r e

l(p) a= -lmx~,

(2 .30)

I-IA tx~= R ( A ( X ) ) = F .

(2 .31)

A

F o r e x a mp le , i f t h e p r o p o s i t i o n p = J o h n is y o u n g t r a n s l a t e s i n to t h e p o s s ib i li t y

a s s i g n m e n t e q u a t i o n

l-lAge(Johnl"-young , (2 .32)

a N o n i n t e r a c t i o n i n t h e s e n s e d e f i n e d h e r e i s c l o s e l y r e l a t e d t o t h e c o n c e p t o f n o n i n t e r a c t i o n o f f u z z y

r e s t r ic t i o n s [ 5 , 6 ] . I t s h o u l d a l s o b e n o t e d t h a t ( 2 . 2 6 ) p r o v i d e s a p o s s i b i l i st i c in t e r p r e ta ' d o n f o r u n r e l a t e d n e s s '

a s d e fi n e d b y N a h m i a s [ 2 2 ] .

Page 10: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 10/26

1 2 L . A . Z a d e h

w h e r e y o u n g i s d e f in e d b y ( 2. 5) , t h e n

/ ( J o h n i s y o u n g ) = H A g e 0 o h n )

i n w h ic h th e p o s s ib i l i ty d i s t r i b u t io n f u n c t io n o f A g e ( Jo h n ) is g iv e n b y

(2.33)

~ t A g e O o h n ) u ) = l - - S U ; 2 0 , 3 0 , 4 0 ) .

U E [0 , 100] .

(2 .34)

F r o m t h e d e fi n it io n o f 1 (p ) i t fo l lows tha t i f p ~ X i s F an d q A=X i s G , th e n p is a t l e a s

as in form a t ive a s q , exp resse d a s 1 (p ) > 1 (q ), if F ~ G. Thu s , we h ave a pa r t ia l o rd e r in g o1 '

the l (p ) de f ined b y

F ~ G ~ I X is F)>=I X is G)

(2 .35)

w h ic h imp l i e s t h a t t h e mo r e r e s t r i c t i v e a p o s s ib i l i t y d i s t r i b u t io n i s , t h e mo r e

in f o r m a t iv e i s t h e p r o p o s i t i o n w i th w h ic h i t i s a s so c i a te d . F o r e x a m p le , s in c e v e ry t a ll

c ta l l , we have

I (Luc y i s ve ry ta l l ) > l (L uc y i s ta l l) .

(2 .36)

3 . N - a r y p o s s ib i l it y d i s t r i b u t i o n s

I n a s se r t i n g th a t t h e t r a n s l a t i o n o f a p r o p o s i t i o n o f t h e fo r m p ~X i s F i s e x p r e s se d b y

X i s F - + R A X ) ) = F

o r , e q u iv a l e n t ly ,

X is F - ) H a x ) = F,

(3.1)

(3.2)

w e a r e t a c i t l y a s su min g th a t p c o n ta in s a s in g l e imp l i e d a t t r i b u t e

A X )

w h o s e

p o ss ib i l it y d i s t r i b u t io n i s g iv e n b y th e r i g h t - h a n d m e m b e r o f (3 .2 ).

M o r e g e n e r a l l y , p m a y c o n t a i n n i m p l i e d a t t r i b u t e s

A ~ X ) , . . . , A . X ) ,

w i th

A i l X )

t a k in g v a lu e s i n U z , i= 1 , . . . , n . I n t h i s c a se , t h e t r a n s l a t i o n o f

p ~ - X

is F , where F is a

f u z zy r e l a t i o n in t h e c a r t e s i a n p r o d u c t U = U j x . . - x U . , a s su m e s th e f o r m

X is F --+ R A I X ) , . . . , A . X ) ) = F

o r , e q u iv a l e n t ly ,

X is F - - + H A ~ X ) . . . . A. X)) F

(3.3)

(3.4)

w h e r e

R A I X ) , . . . , A . X ) )

is an n-a ry fuzzy restr ic t ion an d H(al(x) . .. . A.(X)) is an

n-ary

possibil i ty distr ibution

which i s

induce d by p.

C o r r e s p o n d i n g l y , t h e

n-ary possibility

distr ibution u nctio n induced by p i s g iven by

7t al X) .... A. x, Ut,...,Un)= lar Ul,...,U:,), u l, .. - ,u .) ¢ U ,

(3.5)

w h e r e / t r i s t h e me m b e r s h ip f u n c t io n o f F . I n p a r t i c u l a r , i f F i s a c a r t e s i a n p r o d u c t o f n

Page 11: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 11/26

F u zzy se t s as a bas i s f o r a t he ory o f poss ib i l i ty 3

u n a r y f uz z y r e la t io n s F ~ , . . . , F . , t h e n t h e r i g h t h a n d m e m b e r o f (3 .3 ) d e c o m p o s e s i n t o a

sys t em o f n una ry r e l a t i ona l a s s i gnm en t equa t i ons , i.e .,

X is

F - R ( A 1

(X ) = F ,

3 . 6 )

R A2 X))=F2

k ( A . ( x ) )

C or re spond i ng l y ,9

a n d

where

I I ( A , ( X ) A . X ) ) ----- A t ( X ) X • • • X I - I A . ( X )

n A , x ) . . . . . A n X ) ) U , , . . . , U , , ) = r U , x ) U , ) ^ . . . A r C A . x ) U , , ) ,

3 . 7 )

(3.8)

7 rA ,( x) (U i )= l a F ,(U i) , u i e U i , i = 1 . . . , n

(3.9)

an d A denote s min ( in infix form).

A

As a s imple i llus t ra t ion , co ns ider the pro po s i t ion p = carpet i s l a rge , in which large is

a fuzzy re la t ion w hose tab leau i s o f the form show n in Table 2 (wi th length and wid th

expressed in metric uni ts)•

Table 2

Tab leau o f l a rge

Large W idth Leng th /~

250 300 0.6

250 350 0.7

300 400 0.8

400 600 1

In th i s case , the t ra ns la t ion 13 .3) l eads

t o

t he pos s i b i l i t y a s s i gnm en t equa t i on

l I ( w i d t h l c a r p e t } , l e n g t h ( c a r p e t } - -

large, (3.10)

which impl ies tha t i f the co mp at ib i l i ty o f a carpet whose w id th is , say , 250 cm and length

i s 350 cm wi th " large car pet " i s 0 .7 , then the p oss ib i li ty tha t the wid th of the ca rpet is

A

2 5 0 c m a n d i ts l e n g th i s 3 50 c m - - g i v e n t h e p r o p o s i ti o n p = c a r p e t is l a r g e - i s 0 .7 .

No w , i f l a rge is def ined as

large = wid e x lon g (3.11 )

91fF and G are fuzzy relat ions in U and V, resp ectiv dy, then the ir cartes ian pro du ct F x G is a fuzzy relat ion

in [r ~ Vwhnse membership function is given by l ,)(u)~', p,~lt ,).

B

Page 12: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 12/26

14

L A Z a d e h

whe r e long a nd w ide a r e una r y f uz z y r e l a t i ons , t he n ( 3 . 10) de c ompose s i n to t he

poss ib i l it y a s soc i a tion e qu a t ion s

nd

t'[width(carpet ) ---"

w i d e

l" l e n g t h c a r p e t ) - - l o n g

whe r e the t a b l e a ux o f l ong a nd w ide a re o f t he f o r m shown in T a b le 3 .

T a b l e 3

T a b l e a u x o f w i d e a n d l o n g

W i d e W i d t h /~ L o n g L e n g t h * /t

250 0 .7 . 300 0 .6

3 0 0 0 . 8 3 5 0 0 . 7

3 5 0 0 . 8 4 0 0 0 . 8

4 0 0 1 5 0 0 1

3 .1 . M a r g i n a l p o s s i b i l i t y d i s t r ib u t i o n s

T h e c on c e p t o f a ma r g in a l poss ib i li ty d i s t r i bu t ion be a r s a c lose re l a ti on to t he

con cep t of a m argina l fuzzy res t r ic t ion 1-4], which in turn i s an a lo go us to the conce pt of

a ma r g in a l p r oba b i l i t y d i s t r i bu t ion .

M ore spec if ica lly , l e t X = (X t , . . . ,X , ) be an n-a ry fuzzy var iab le takin g va lues in U

= U t x - . - x U , , a nd l e t Hx be a poss ib i li t y d i s t r i bu t ion a s soc i a t e d w i th X , w i th

nx( Ut , . .. , u , ) d e no t ing the poss ib i li t y d i s t r i bu t ion f unc t ion o f [I x .

e t

A

q = ( i t , . . . , i k) be a subse quen ce of the index sequence (1 , . . . , n ) and le t X(q) be th e

q-ary fuzzy var iab le X(~) a= (Xi, , .. . ,Xi~) . T he m a r g i n a l p o s s i b i l i t y d i s t r i b u t i o n [ix~q) is a

poss ib i l i ty d is t r ibut io n asso c ia ted wi th X(a) wh ich i s

i n d u c e d

by l -Ix as the projec t ion of

H x o n U (o a__Ui t x . . . x Uic Thu s , by def in i t ion ,

H x,~, a=Projv(~)l-lx, (3.12)

which impl ies tha t the pro bab i l i ty d is t r ibu t ion func t ion of X(q) i s r e la ted to tha t o f X by

7rx,~,(u(q)= V r t x ( U ) (3.13)

U ~ q ,

whe r e u,q,,,=a uq , . . ., u~j) , q,a= i t , . . ",Jm) is a sub sequ ence of (1 , , . . , n) wh ich is

A

c om ple m e nta r y to q (e .g ., i f n = 5 a nd q = ( i t i 2 ) = (2 , 4) , t he n q = ~ j t , j 2 , j a ) = ( l , 3 , 5 ) ,

A -

u~¢) = (u~,, .. .,z.9, ) an d v , , , den otes th e su pr em um ove r ( u ~ , , . . . , u j . ) E U ~ , x . . . x U j , , .

• . . q '

A s a s imple i l lus t ra t ion, assu me tha t U 1 = U2 - U 3 = {a , b} an d the table au of r lx i s

g ive n by

Page 13: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 13/26

F u z z y s e t s a s a b a s i s f o r a t h eo r y o f p o s s i b i l i ty 1 5

T h e n ,

T a b l e 4

T a b l e a u o f l ' x

H x X l X 2 X a n

a a a 0 .8

a a b 1

b a a 0 .6

b a b 0 .2

b b b 0 .5

H(x, ,x , ) = P ro jv~ , , u 2 H x - ~ l / a , a ) + O . 6 / b , a ) + O . 5 / b , b )

w h i c h i n t a b u l a r f o r m r e a d s

T a b l e 5

T a b l e a u o f n ~ x ,.

g21

l-l(x v x2) X1

12

b

b

(3 .14)

X2 n

a

, t 0 .6

b 0 .5

Th en , f rom H~: i t fo l lows tha t the poss ib i l i t y t ha t X 1 = b , X2 = a an d X 3 = b is 0 .2 , whi l e

f r o m F l t x t . x 2 ~ i t f o l lo w s t h a t t h e p o s s i b i l it y o f X l = b a n d X 2 = a i s 0 .6 .

B y a n a l o g y w i th t h e c o n c e p t o f i n d e p e n d e n c e o f r a n d o m v a r ia b le s , th e f u z zy

v a r i a b l e s

a n d

A

X ~ q ) = X i ~ , . . . , X ~ )

A

a r e n o n i n t e r a c t i v e [ 5- 1 i f a n d o n l y i f t h e p o s s i b i li t y d i s t r i b u t i o n a s so c i a t e d w i t h X

= ( X I , . . . , X , ) i s t h e c a r t e s i a n p r o d u c t o f t h e p o s s ib i l it y d i s t r i b u t i o n s a s so c i a t e d w i~h

Xtq) an d Xt¢), i .e .,

H x =Hx~q~ x Flx,q.~ (3. 15 )

o r , e q u i v a l e n t l y ,

nx(U~ .. .. , u,, ) = nx,,,,(ui, . . . . . u ~k ) ^ n x , , , , u j t , . . . , u j , ,, ) .

(3 .16)

I n p a r t i c u l a r , t h e v a r i a b l e s X 1 , . . . , X , a r e n o n i n t e r a c t i v e i f a n d o n l y i f

l ' Ix =l -Ix1 x Fix2 x " '" x l ' Ix . (3 .17)

Page 14: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 14/26

16 L A Zadeh

T h e in tu i ti v e s ig n if i ca n c e o f n o n in t e r a c t io n m a y b e c la r if i ed b y a s imp le e x a m p le .

Su pp os e tha t X a_. (X ~ ,X2 ), an d X t an d X 2 a re non in te rac t iv e , i .e .,

nx(u l , u2 )= n x , (u i ) /x nx ,(u21. (3 .18)

F u r t h e r m o r e , s u p p o s e t h a t f o r s o m e p a r t i c u l a r v a lu e s o f u t a n d u 2 ,

n x , ( U t

) = ~ t , n x2 ( u 2)

=or2 < o q a n d h e n c e

n x ( U t , U 2 ) = o t 2 .

N o w , i f t h e v a lu e o f

n x ~ ( u t )

i s inc reas ed to oft + f i t ,

61 > 0 , i t i s no t po ss i lqe to dec reas e the v a lue of ~ tx2(u2) by a p os i t ive am ou nt , say 62 ,

s u c h t h a t t h e v a l u e o f

r t x ( U l , U 2 )

r e ma in s u n c h a n g e d . I n t h i s s e n se , a n i n c r e a se i n t h e

p os s ~ . ii ty o f u l c a n n o t b e c o m p e n sa t e d b y a d e c r e a se in t h e p o s s ib i l it y o f u2 , a n d v i c e-

v e r s t , h u s , i n e s sen c e , n o n in t e r a c t io n m a y b e v i e w e d a s a f o r m o f n o n c o m p e n sa t io n in

w h i c h a v a r i a t io n i n o n e o r m o r e c o m p o n e n t s o f a p o ss i b il it y d i s t r ib u t i o n c a n n o t b e

c o m p e n s a t e d b y v a r i a ti o n s i n t h e c o m p l e m e n t a r y c o m p o n e n t s .

I n t h e m a n ip u la t i o n o f p o s s ib i l it y d i s t ri b u t io n s , i t i s c o n v e n ie n t t o e m p lo y a t y p e o f

sy m b o l i c r e p r e se n t a t i o n w h ic h i s c o m m o n ly u se d in th e c a se o f f u z z y s e ts . S p ec i fi c al ly ,

a ssu m e , fo r s impl ic i ty , th a t U 1, . . . , U . a re f in i te se t s, and le t r ~ = ( r ] , . . . , ? . ) den ote an n-

tu p l e o f v a lu e s d r a w n f r o m U t , . . . , U . , r e sp ec t iv ely . F u r th e r m o r e , l e t n~ d e n o te t h e

poss ib i l i ty o f r ~an d le t the n - tup le ( r ] , . . . , r~) be wr i t ten a s the s t r ing r ] . . . r~..

U s in g th i s n o t a t i o n , a p o s s ib i l i t y d i s t r i b u t io n H x ma y b e e x p r e s se d in t h e sy mb o l i c

f o r m

N

= ~ 1 . i ( 3 . 1 9 )

I-Ix ni r] r~ "'" ~.

i=

o r , in c a se a s e p a r a to r sy m b o l i s n e e d e d , a s

N

H x = E

n,/r~r~2 r~,

(3.20)

i= 1

w h e r e N i s t h e n u m b e r o f n - tu p l e s in t h e t a b l e a u o f l-Ix , a n d th e su m m a t io n sh o u ld b e

in t e r p r e t e d a s t h e u n io n o f t h e f u z zy s in g l e to n s

n i / ( r ] , . . . , r ~ ) .

As an i l lus t r a t ion , in the

n o ta t i o n o f ( 3. 19 ), t h e p o s s ib i l it y d i s t r i b u t io n d e f in e d in T a b le 4 r e a d s

F i x = 0 . 8 a a a + l a a b + 0 .6 b a a + 0 .2 b a b + 0 . 5 bb b .

(3 .21)

T h e a d v a n ta g e o f t h i s n o t a t i o n i s t h a t i t a l l o w s th e p o s s ib il i t y d i s t r i b u t io n s t o b e

m a n i p u l a t e d i n m u c h t h e s a m e m a n n e r a s l i n e a r f o r m s i n n v a r i a b l e s , w i t h t h e

u n d e r s t a n d in g th a t , i f r a n d s a r e tw o tu p l e s a n d ~ a n d f l a r e t h e i r r e sp e c t iv e

poss ib i l i ti e s , then

~ r+ / l r = qu. v / /b r (3 .22)

u.r ,-~/It= 1~ ~ 11~" (3.23)

a n d

~r x / J s = ( ~ ^ f l it s . ( 3 .2 4 )

Page 15: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 15/26

F u z z y s e t s a s a b a s i s f o r a t h e o r y o f p o s s i b i l i ty 1 7

w h e r e r s d e n o t e s t h e c o n c a t e n a t i o n o f r a n d s. F o r e x a m p l e , if

a n d

l-Ix = 0 .8a a + 0 . 5 a b + l b b

t h e n

a n d

(3 .25)

H r = O . 9 b a + O . 6 b b

(3 .26)

l - I x + H r = O . 8 a a + O . 5 a b + O . 9 b a + l b b

(3 .27)

l-lx c~ l-Iv = 0. 6b b (3.2 8)

H x x H v = 0 . 8 a a b a + 0 .5 a b b a + 0 . 9 b b b a + 0 . 6 a a b h + 0 . 5 a b b b + 0 . 6 b b b b .

(3.29 j

A

T o o b t a i n t h e p r o j e c t i o n o f a p o s s i b i li t y d i s t r i b u t i o n H x o n Utq~= (Ui, , . . . , Uik), i t is

su ff ic ie n t to s e t t h e v a l u e s o f X i , , . . . , X j , , i n e a c h t u p l e in H x e q u a l t o t h e n u l l s t r i n g A

( i. e. , mu l t ip l i ca t ive ide n t i ty ) . As an i l l us t ra t io n , t he p r o je c t ion of the poss ib i l i t y

d i s t r ibu t ion de f ined by Table 4 on U~ x U2 i s g iven by

Pro j v , × u2Hx = 0 . 8 a a + 1a a + 0 . 6 b a + 0 . 2 b a + 0 . 5 b b

(3 .30)

= l a a + O . 6 b a + O . 5 b b

w h i c h a g r e e s w it h T a b l e 5 .

3 . 2 . C o n d i t i o n e d p o , s s ib i li t) , d i s t r i b u t i o n s

I n t h e t h e o r y o f p o s s ib i li ti e s , t h e c o n c e p t o f a c o n d i t i o n e d p o s s i b i li t y d i s t r i b u t i o n

p l ay s a ro le t h a t is a n a l o g o u s - - t h o u g h n o t c o m p l e t e l y - - t o t h a t o f a c o n d i t io n a l

p o s s i b i l it y d i s t r i b u t i o n i n t h e t h e o r y o f p r o b a b i l i t i e s .

M o r e c o n c r e t e l y , l e t a v a r i a b l e X = X ~ , . . . , X , ) be assoc ia t ed wi th a poss ib i J i ty

d i s t r ibu t ion I -Ix , w i th I -Ix cha rac te r i ze d by a poss ib i l i t y d i s t r ib u t ion func t ion

nx Ul , . . . ,Un)

which ass igns to each n - tup le (u l , . . . . u , ) in U~ x . . . x U , i t s poss ib i l i t y

r C x U l , . . . , u , ) .

L e t q = i ~ , . . . , i k ) a n d s = (j'~ . . . , i s ) b e s u b s e q u e n c e s o f t h e i n d e x s e q u e n c e ( 1 , . . . , n ) ,

a n d l e t a j , , . . . , a i m ) b e a n n - t u p l e o f v a l u e s a s s i g n e d t o X W } = X i , , . . . , X i m ) . B y

def in i t ion , t he c o n d i t i o n e d p o s s i b i l i t y d i s t r i b u t i o n o f

g iven

A

X q ) = X i l , . . . , X i k )

X ~ , ~ = a i , , . . . , a i . )

is a p o s s ib i l it y d i s t r i b u t i o n e x p r e s se d a s

1-Ix,~ EX , = a j , ; . . . ; X i = a ~ . ]

Page 16: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 16/26

18 L A Zadeh

who se poss ib i li t y d i s t r i bu t ion f unc t ion i s g ive n b y ~°

n x , ,, (u ~ , , .. ., u ~ , X ~ , = ; . . . ; X j . = a j . ) (3.31)

7rx(Ut,. •., u n) [

uj , = . . . . . u j =a~ .

A s a s im p l e e x a m p l e , i n th e c a s e o f 3 .2 1 ), w e h a v e

I l t x , . x 3 ) [ X l = a ] = 0 . 8 a a + l a b

(3.32)

as the ex press ion for the con di t io ned poss ib i l i ty d is t r ibut ion of (X , ,X a ) g iven X 1 = a .

An e q u iva l e n t e xpr e ssion f o r t he c ond i t i one d po ss ib i li ty d i s t r i bu t ion w hic h ma ke s

c l e a r e r t he c onne c t ion b e twe e o

l-lx,,,[Xj, = % ;.. .;X ~= aj .]

a nd l ' lx m a y be de r ive d a s fo l lows .

Le t

l -lx [X h = a j , ; . . . ; X j = a J

de no te a poss ib i l i ty d is t r ibu t ion which cons is t s of those te rms in (3 .19) in which the j t th

e l e me nt i s a i ,, t he j , t h e l e me nt i s a ye, .. ., a nd the jmth e le me nt is a j . Fo r e xa mple , in t he

case of (3.21)

H x ( X 1

= a ]

= 0 . 8 a a a + l a a b .

(3.33)

E xpr e sse d in t he a b ove no ta t ion , t he c o nd i t i one d poss ib i li t y d i s t r i bu t ion o f X tq}

= ( X~ ,, .. ., X~) g iveh X j , = a j ~ , . . . , X j = a j m a y be wr i t te n a s

rlx,,,Exh

=

; . . . ;X~ =aj

= Projv~,~Hx[Xh = a h ; . . . ; X j = a J

(3.34)

wh ich p laces in evid ence th at l -Ix, ~ con dit io ned on X{s)=a{~)) is a m arg ina l po ssibi l i ty

distr ibut ion reduced by 1-1x ( c ond i t ione d on

X ~ s ) = a t e } ) .

T hus , by e mp loy ing ( 3 .33) a nd

(3,34), we o bta in

I I~ x 2 . x 3 ) [ X 1 = a ] = 0 . 8 a a + I a b

(3.35)

wh ich agrees w ith (3.32).

I n t he f o r e go ing d i sc ussion , we ha ve a s su me d tha t t he poss ib i li t y d i s t ri bu t ion o f X

= ( X 1 , . . . , X n ) i s con di t io ned on the va lues ass igned to a spec i fied subse t , X{s), of the

const i tuent var iables of X. In a more genera l se t t ing , what might be spec i f ied i s a

~°In some appl icat ions , i t ma y be a pprop r iate to n orma l ize the express ion for the condi t ioned poss ibi l i ty

dis t r ibut ion funct ion by dividing the r ight-ha nd mem ber of (3.31) by i ts supre mu m over Ui, . - - x Uic

Page 17: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 17/26

F u z z y s e t s a s a b a s i s f o r a t h e o r y o f p o s s i b i l i ty 1 9

poss ib i l it y d i s t r ibu t ion a s soc i a t e d w i th X{~) r a the r t ha n the va lue s o f X j~ , . . . , X j . I n suc h

cases, we shal l say th at 1-Ix is p a r t i c u l a r i z e d ~~ by spe cify ing th a t rlx{~}= G, wh ere G is a

given m-ary poss ib i l ity d is t r ibu t ion. I t shou ld be no ted th a t in the present con text l'Ix,~

i s a g ive n poss ib il it y d i s t r i bu t io n r a the r t h a n a m a r g ina l d i s t r i bu t ion tha t i s i nduc e d by

l -I x .

T o a n a ly z e t h is ca se , i t is co n v e n i e n t t o a s s u m e - - i n o r d e r t o s i m p li fy th e n o t a t i o n ~

t h a t Xj~ = X ~ , ? : h = X z , . . . , X j . = X ~ , m < n . L e t G d e n o t e th e c y l i n d r i c a l e x t e n s i o n of G,

tha t i s, the poss ib i l i ty d is t r ibu t ion def ined by

G ~ G x U s + ~ x x U n (3.36)

wlalch implies that

A

• -

# r . ( u l , . . , u n ) # ~ ( u : , . . . , u ~ ) ,

u : e U j ,

j = l , . . . , n , t 3 . 3 7 )

wh ere #~ is the mem bers hip func t ion o f the fuzzy re la t ion G.

T h e a s sum pt ion tha t we a r e g ive n l' Ix a nd G is e qu iva l e n t t o a s suming tha t we a r e

given the in te r sec t ion Flx n G. Fr om this in te r sec t ion, then, we can dedu ce the

pa r t i c u l a r iz e d poss ib i l it y d i s t r i bu t ion I lx , , , [ Hx , , = G by p r o je c t ion on U,o . T h u s

Hx,q,[l 'Ix,~ = G ] = Projv,q,H x n G.

(3.38)

E qu iva l e n t ly , the l e f t -ha nd me m be r o f (3 .38) ma y be r e ga r de d a s t he c om pos i t i on o f I-Ix

and G [5] .

As a s imple i l lus t ra t ion, cons ider the poss ib i l i ty d is t r ibut ion def ined by (3 .21) and

a ssume tha t

G = 0 .4aa + 0 .8ba +

l b b .

(3.39)

T h e n

( i = 0 . 4 a a a + 0 . 4 a a b + 0 . 8 b a a + 0 . 8 b a b + l b b a + I b b b

(3.40)

a n d

l-Ix

c~ G = 0 . 4 a a a + 0 . 4 a a b + 0 . 6 b a a + 0 . 2 b a b + 0 . 5 b b b

Flx3[Il tx, .x~) = G] = 0. 6a + 0.5b.

(3.41)

(3.42)

A

As a n e l e me nta r y a pp l i c a t ion o f (3 .38), c ons ide r t he p r op os i t i on p = Joh n i s b ig ,

whe r e b ig i s a r e l a t ion who se t a b l e a u is o f t he f o r m show n in T a b le 6 (w i th he igh t a nd

weigh t expressed in m et r ic uni t s ) .

~ n t h e c a s e o f n o n f u z z y r e l a t i o n s , p a r t i c u l a r i z a t i o n i s c l o se l y re l a t e d t o w h a t is c o m m o n l y r e f e rr e d t o a s

r e s t r i c t i o n W e a r e n o t e m p l o y i n g th i s m o r e c o n v e n t i o n a l te r m h e r e b e c a u s e o f o u r u s e o f t h e t e r m " f u zz y

r e s t r i c t i o n " t o d e n o t e a n e l a s t ic c o n s t r a i n t o n t h e v a l u e s t h a t m a y b e a s s i g n e d t o a v a r i a b l e .

Page 18: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 18/26

20 L A Zadeh

Table 6

Tableau of big

Big Height Weight /~

170 70 0.7

170 80 0.8

180 80 0.9

190 90 1

N o w , s u p p o s e t h a t i n a d d i t i o n t o k n o w i n g i h a t J o h n i s b i g , w e a l s o k n o w t h a t q

a= Jo h n i s t a ll , w h e r e t h e t a b l e a u o f ta l l is g iv e n ( i n p a r t i a l l y t a b u la t e d f o r m) b y T a b le 7 .

Table 7

Tableau of tall

Tall Height /a

170 0.8

180 0.9

190 1

T h e q u e s t io n is " W h a t i s t h e w e ig h t o f Jo h n ? B y ma k in g u se o f ( 3. 38 ), th e p o s s ib i l it y

d i s t r i b u t io n o f t h e w e ig h t o f Jo h n m a y b e e x p r e s se d a s

I' ] weight =

P r o j

weight 1"1 (height. weight 1[ f l height - -

t a i l ]

(3.39)

= 0 . 7 / 7 0 + 0 . 9 / 8 0 + 1 / 9 0 .

A n a c c e p ta b l e l in g u i s ti c a p p r o x im a t io n [ 5 ] , [ 1 3 ] t o t h e r i g h t - h a n d s id e .o f ( 3. 39 ) mig h t

b e " so m e w h a t h e a v y , " w h e r e " s o m e w h a t " i s a mo d i f i e r w h ic h h a s a sp e c if ie d ef fe ct o n

t h e fu z zy se t la b e l ed " h e a v y . " C o r r e s p o n d i n g l y , a n a p p r o x i m a t e a n s w e r t o t h e q u e s t i o n

w o u l d b e " J o h n is s o m e w h a t h e a v y . "

4 Poss ib i l i ty d is tribut ions o f com pos i te and qual if ied propos i tions

A s w a s s t a t e d i n t h e I n t r o d u c t io n , t h e c o n c e p t o f a p o s sib i li t y d i s t r i b u t io n p r o v id e s a

n a t u r a l w a y f o r d e fi n in g t h e m e a n i n g a s w e ll a s th e i n f o r m a t i o n c o n t e n t o f a

p r o p o s i t i o n i n a n a tu r a l l a n g u a g e . T h u s , i f p i s a p r o p o s i t i o n i n a n a tu r a l l a n g u a g e N L

a n d M i s i t s me a n in g , t h e n M ma y b e v i e w e d a s a p r o c e d u r e w h ic h a c t s o n a s e t o f

r e l a t i o n s i n a u n iv e r se o f d i s c o u r se a s so c i a t e d w i th N L a n d y i e ld s t h e p o s s ib i li t y

d i s t r i b u t io n o f a s e t o f v a r i a b l e s o r r e l a t io n s w h ic h a r e e x p l ic i t o r im p l i c i t i n p .

I n c o n s t r u c t in g th e me a n in g o f a g iv e n p r o p o s i t i o n , i t i s c o n v e n ie n t t o h a v e a

c o l l e c t io n o f w h a t m ig h t b e c a l l e d

condition l tr nsl tion rules

[ 3 0 ] w h ic h r e l a t e t h e

Page 19: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 19/26

F u z z y s e t s a s a b a s i s o r a t h eo O , o f p o s s i b i l i ty 2 1

m e a n i n g o f a p r o p o s i t i o n t o t h e m e a n i n g o f i ts m o d i f ic a t io n s o r c o m b i n a t i o n s w i t h

o t h e r p r o p o s i t i o n s . I n w h a t f o l lo w s , w e sh a l l d i s c u s s b r i e fl y so m e o f t h e b a s i c r u l es o f

t h i s t y p e a n d , i n p a r t i c u l a r , w i l l f o r m u l a t e a r u l e g o v e r n i n g t h e m o d i f i c a t i o n o f

p o s s i b i li t y d i s tr i b u t i o n s b y t h e

poss ib i l i t y qua l i f ica t ion

o f a p r o p o s i t i o n .

4 .1 . Ru les o f t ype I

Le t p b e a p r o p o s i t i o n o f t h e f o r m X i s F , a n d l e t m b e a m o d i f i e r su c h a s v e r y , q u i t e ,

r a t h e r , e t c . T h e so - c a l l e d

modif ier rule

[ 6 1 w h i c h d e f i n e s t h e m o d i f i c a t i o n i n t h e

p o s s i b i li t y d i s t r i b u t i o n i n d u c e d b y p m a y b e s t a t e d a s fo ll ow s .

I f

t h e n

X is

F--,rlaix~ = F

(4 .1)

X is

m F - - + H a x ) =

F +

4 . 2 }

w h e r e

A X )

is a n i m p l i e d a t t r i b u t e o f X a n d F + is a m o d i f i c a t i o n o f F d e f i n e d b y m . ~2

~

. F F 2 a

o r e x a m p l e , i f m - v e r y , t h e n = ; i f m = m o r e o r l es s t h e n F + = \ / F " a n d if m

a= n o t t h e n F + = F ' a= c o m p l e m e n t o f F . A s a n i l lu s t r a t i o n "

I f

Jo h n is y o u n g - - * H

Age(Joh,,J-'-

y o u n g

14.3)

t h e n

Jo hn is ve ry y o un g ~ H A~,,h ,,I = y ou n g 2 .

I n p a r t i c u l a r , i f

y o u n g = 1 - S ( 2 0 , 30 , 4 0 )

1 4 . 4 )

t h e n

yo un g 2 = (1 - S (20 , 30 , 40) )2 ,

w h e r e t h e S - f u n c t i o n ( w i t h i ts a r g u m e n t su p p r e s se d ) is d e f i n e d b y (2 .6 ).

4 .2 . Ru les o f t ype I I

A

I f p a n d q a re p r o p o s i t i o n s , t h e n

r = p * q

d e n o t e s a p r o p o s i t i o n w h i c h i s a

co m p o s i t i o n

o f p a n d q . T h e t h r e e m o s t c o m m o n l y u s e d m o d e s o f c o m p o s i t i o n a r e ( i)

c o n j u n c t i v e , i n v o l v i n g t h e c o n n e c t i v e " a n d " ; (ii) d i s ju n c ti v e , i n v o l v i n g t h e c o n n e c t i v e

" o r " ; a n d ( i i i ) c o n d i t i o n a l , i n v o l v i n g t h e c o n n e c t i v e " i f . . . t h e n . " T h e c o n d i t i o n a l

t r a n s l a t i o n r u le s re l a t in g t o t h e s e m o d e s o f c o m p o s i t i o n a r e s t a te d b e l o w .

12A m ore de ta i led discuss ion of the e f fec t of modif ie r s (or hedg es) ma y be fou nd in [ 15, 16,17, 8 , 6 ,13 and

18].

Page 20: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 20/26

22 L A Zadeh

a n d

the n

Co n j u n c t i ve ( non in t e r a c t ive ) : I f

X i s F - - , II A x ~ = F

(4.5)

Y i s G - , H s t r~ = G 4 . 6 )

X is F and Y is G~l'lcatx~,n~r~ = F x G

(4.7)

wh,~re A (X) a nd B (Y ) are the im pl ied at t r ib ut es of X an d Y, respect ively, I 'I(A(x),B(r)) s

the po ss ib il i ty d i s t r i bu t ion o f t he va r i a b le s A ( X ) a n d B ( Y ) , and F x G is the ca r tes ian

pr od uc t o f F a nd G . I t shou ld be no te d tha t F x G ma y be e xpr e sse d e qu iva l e n t ly a s

F x G = F n CJ

(4.8)

whe re F an d Cr a re the cy l indr ic a l extens ions of F and G, respect ively .

Dis junc t i ve

(noni .nteract ive) : I f (4.5) and (4.6) hold, th en

X is F or Y is G--*l-ltA~x~.B(r~= F +¢~ ( 4. 9)

where the symb ols have the same m eanin g as in (4.5) and (4 .6), and + deno tes the

union.

Co n d i t i o n a l

~noninteract ive)" I f (4.5) and (4.6) hold, th en

I fX i s F the n Y i s

G~II~A~x~.n{r}~= F ~ C ,

whe r e F ' is t he c om ple m e nt o f F a nd ~ is t he bou nd e d sum de f ine d by

(4.10)

/#.~c,= 1 ^ {1--1tr+l.tc,),

(4.11)

in whic h + a nd - de no te the a r i thm e t i c a dd i t i on a nd sub t r a c t ion , a nd #v a nd #6 a r e

the m e mb e r sh ip f unc t ions o f F a n d G , r e spe c tively . I l l us t r a t i ons o f t he se r u l e s - -

e xpr e sse d in t e rms o f f uz zy r e s tr i ct i ons r a the r t ha n poss ib i li ty d i s t r i b u t io ns - - m a y be

fou nd in I -6 an d 14].

4 .3 . Tru th qua l~ca t ion , p roba bi l i t y qua l if i ca tion and poss ib i l i t y qua l i f ica t ion

I n na tu r a l l a ngua ge s , a n im po r t a n t m e c ha n i sm f o r t he mo di f i c a t ion o f t he me a n in g

of a prop osi t ion i s pro vid ed by the adju c t ion of three types of qua l i f ie r s : ( i) i s X, wh ere

is a l ing uist ic t ruth -va lue , e .g. , t rue, v ery t rue, m ore or less t rue, fa lse, e tc . ; ( ii ) is 2, w he re

2 is a l ingu ist ic prob ab il i ty -va lue (or l ike l ihoo d) , e.g. , l ikely, very l ikely, very unlikely ,

etc.; a n d (iii) is ~c, w he re n is a lingu istic possi bility -valu e, e.g. , po ssible , qu ite po ssib le,

sh~h t ly poss ib le, imposs ible , e tc. These m od es of qua l i f ica t ion wi l l be re fe r red to ,

Page 21: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 21/26

Fuzzy sets as a basis.for

a theory of

possibility

23

respectively, as t ruth .qual i j i cat i on, probabi l i t y qual i j i cat i on and possib i l i t y quai+

ication. The rules governing these qualifications may be stated as follows.

Truth quali f i cati on: If

4.12)

.

x sF+II x, -F

then

X is F isr+IIA(xj=F+,

where

PF+@)=P,(P&))9

UEUU;

(4.13)

~1, nd PF are the membership functions of r and

F,

respectively, and U is the universe of

discourse associated with A(X). As an illustration, if young is defined by (4.4); z = very

true is defined by

very true = S2 (0.6,0.&l )

(4.14)

then

John is young+IIAge(John) young

John is young is very true-+nApe(,ahn)=youngt

where

PI

p&ll)=S’(l --WC 20, 30, 40); 0.6, 0.8, l ,

LIEU

It should be noted that for the unitary truth-value, u-true, defined by

Pu-true(V)v,

4-0911

(4.15)

(4.13) reduces to

PF+(U)=PF(U)~

UdJ

and hence

X is F is u-true+& =F.

(4.16)

Thus, the possibility distribution induced by any proposition is invariant under unitary

truth qualification.

Probabi l i t y qual i f icat i on:

If

then

X is F+I I A X I=F

X is F is ~-‘n,,,,,,,,,,,,,,,,,=E.

(4.17)

Page 22: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 22/26

2 4 L A Zadeh

where

p ( u ) d u

i s the p rob abi l i ty tha t the va lue of A (X) fal ls in the in te rva l (u , u + d u) ; the

integra l

~v p(u)laF(u)du

is the prob abi l i t y of the fuzzy even t F [19] ; and 2 is a linguis t ic prob abi l i ty-v a lue . Thus ,

(4.17) def ines a poss ib i l i ty d is t r ib ut io n of pro bab i l i ty d is t r ibut ions , wi th th e poss ib i l i ty

of a pro bab i l i ty d ens i ty p( - ) g iven impl ic i tly by

n [ j v p ( u ) l ( u

)du] = #x[ jv

p(u

)#r(u )du] . (4.18)

As an i l lus t ra t ion, cons ide r th e pro pos i t ion p a= Jo hn is youn g i s very l ike ly , in which

yo un g i s def ined by (4.4) and

T h e n

/ -/very l ikely -- $ 2

(0.6, 0.8, 1 ).

2 1

rc[~v p(u) v(u)du ] = S

[ jo p(u)(1 - S(u ;20 , 30, 40 ))du;0 .6, 0.8, 1].

(4.19)

I t shou ld be no te d tha t t he p r ob a b i l i t y qua l i fi c a t ion r u le is a c onse que nc e o f t he

a ssum pt ion tha t t he p r op os i t i ons "X i s F i s 2" a nd "Pr ob{ X is F} = 2" a r e

semantical ly

equivalent

( i.e ., induce ident ica l poss ib i l i ty d is tr ibut ions) , w hich i s expressed in sym bols

a s

X i s F i s 2 o P r o b { X is F } = 2 .

(4.20)

Thus , s ince the pro bab i l i ty of the fuzzy event F i s g iven by

Pro b{X is F} = ~v

p(u)l~v(u)du,

i t fo l lows f rom (4.20) tha t we ca n asse r t the sem ant ic equ iva lence

X i s F i s 2 ~ v

p(u)lav(u)du

is 2,

which by (2 .11) leads to the r igh t -han d m em ber of (4 .17).

Possibility qualification:

O ur c onc e r n he r e i s w i th t he f o llowing qu e s t io n :G ive n tha t

" 'X i s F" t r ans la tes in to the poss ib i l i ty ass ignment equa t ion I IA~x}=F, what i s the

tran slat ion of "X is F is re ," wh ere rc is a l ingu ist ic poss ibi l i ty-valu e such as qu i te

poss ib le , very poss ib le , mo re or less possib le , etc . ? S ince ou r in tu i t ion regardin g the

beh avio r of poss ib i l i ty d is t r ibu t ions i s not wel l -deve loped a t th i s jun c ture , the answer

sugge s t e d in t he f o llowing shou ld be v i e we d a s t e n t a t ive i n na tu r e .

Fo r s im pl ic ity , we sha l l in te rp re t the qua l i fie r "poss ib le" as " l -po ss ib le , " th a t i s , a s

the ass ignm ent of the po ss ib i l i ty-va lue 1 to the p rop osi t ion which i t qua li f ies . Wi th th is

unde r s t a nd ing , t he t r a ns l a t i on o f " X is F is poss ib l e " w il l be a s sume d to be g ive n by

X is F is possible ~ l ' la (x )= F +, (4.21)

Page 23: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 23/26

F u z z , s e t s a s a 9 a s i s. fo r a t h e o r y o f p o s s i b i li t y

25

i n w h ic h

F + =FO I-I

w here I I i s a fuzzy se t o f Ty pe 2 la de f ined b y

(4.22)

/Zn(U) = [0, 1],

u e U ,

(4 .23)

a n d ~ ) is t h e b o u n d e d su m d e f in e d b y (4 .1 1 ). E q u iv a l e n t ly ,

/ t r + ( u ) = [ # r ( u ) , 1 ], u ~ U ,

(4 .24)

w h i c h d e f i n e s / # + a s a n i n t e r v a l - v a l u e d m e m b e r s h i p f u n ct io n .

In e f fec t , the ru le in ques t ion s ign i f ie s tha t poss ib i l i ty qua l i f ica t ion has the e f fec t o f

w e a k e n in g th e p r o p o s i t i o n w h ic h i t q u a l if i es t h r o u g h th e a d d i t i o n to F o f a p o s s ib i l i ty

d i s t r i b u t io n H w h ic h r e p r e se n t s t o t a l i n d e t e r m in a c y 14 in t h e s e n se t h a t t h e d e g r e e o f

p o s s ib i l i ty w h ic h it a s so c i a t e s w i th e a c h p o in t i n U m a y b e a n y n u m b e r i n th e i n t e r v a l

[ 0 , 1 ] . A n i l l u s t ra t i o n o f t h e a p p l i c a t i o n o f t h i s r u l e t o t h e p r o p o s i t i o n pa=X is sm all is

shown in Fig. 1 .

/ s m a l l

F s m o l l +

0

Fig. 1. Th e possibil i ty dis tribution ol "'X is small is possible".

A s a n e x t e n s io n o f t h e a b o v e r u l e , w e h a v e : I f

X is

F-oI-la~x =F

t h e n , f o r 0 < 0 t < 1,

X is F is ~t-possible-- , Ha(x) = F +

(4.25)

(4.26)

w h e r e F + is a f u zz y s e t o f T y p e 2 w h o se i n t e r v a l - v a lu e d m e m b e r s h ip f u n c t io n i s g iv e n

b y

# r + ( u ) = [~ . ^ l , r ( u ) , ~ ) ( l - p , ~ ( u ) ) ] ,

u e U .

(4 .27)

t3The mem bership funct ion of a fuzzy se t of Typ e 2 takes values in the se t of luzzy subsets of the uni t

in terval [5 .6] .

J41-1 ma y be interp reted as the possibil ist ic co un terp art of white noise.

Page 24: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 24/26

26

L A Zadeh

As a n i l lus t r a t ion , t he r e su l t o f t he a p p l i c a t ion o f t h i s r u l e to t he p r op os i t i on p ~ X i s

smal l is sho w n it~ Fig . 2. No te t ha t th e ru le expressed by (4 .24) m ay be reg arde d as a

spec ia l ease of (4 .27) co r resp on din g to ct = 1 .

/ - F / - F

I - - - -

0

u

Fig. 2." Th e possibili ty dis t r ibut ion of" X is small is e-possible".

A fur ther ex tens ion of the ru le expressed by t4 .25) to l inguis t ic poss ib i l i ty-va lues may

be ob ta ine d by a n a pp l i c a t ion o f t he e x t e ns ion p r inc ip l e , l e a d ing to t he

l i ngu i s t i c

poss ib i l i t y qua l i f i ca t ion ru le

I f

X i s F - - , H a ~ x = F

then

X is F is

n - + H A x ) = F

+

(4.28)

where F ÷ i s a fuzzy se t of Ty pe 2 whose m em bersh ip func t ion i s g iven by

/@ (u ) - { =>c ( r rA~r(u) ) n ( ~ o ( r r~ (1- -gF(U)) ) )} , (4 .29)

wh ere rc is the l inguist ic possib i l i ty (e .g., qu i te pos sible , a lm ost imp ossib le , e tc .) and o

de no te s t he c om pos i t i on o f f uz zy r e l at i ons. T h i s r u l e shou ld be r e ga r d e d a s spe c u la t ive

in na ture s ince the imp l ica t ions of a l inguis tic poss ib i l ity qua l i f ica tion a re no t as ye t wel l

l l l l de : ' q lTr~ d

An a l te rna t iv e ap pro ach to the t r an s la t ion of "X i s F i s n" i s to in te rp re t th i s

p r opo s i t i on a s

X is F i s ~ ,- : Poss{X isF} =n , (4 .30)

which is in the spir i t of (4.20), an d then form ulate a ru le of the form (4.28) in wh ich I IA(x)

is the la rges t ( i .e . , l eas t r es t r ic t ive) poss ib i l i ty d is t r ibut io n sa t i s fy ing the con s t ra in t

Poss{X is F} =n . A com pl ica t ing fac tor in th is case is tha t the pro po si t io n "X is F i s n"

ma y be a s soc i a t e d w i th o the r impl i c i t p r opos i t i ons suc h a s "X i s no t F i s [ 0 , 1J -

poss ib le, " or "X i s not F i s no t im poss ible ," which a ffec t the t r ans la t io n of" X is F i s n . "

In th is connec t io n, i t wou ld be useful to dedu ce th e t r an s la t ion ru les (4.21), (4.26) an d

(4.29) (or the i r var iants ) f rom a conju nc t ion of "X is F i s n" w i th o ther impl ic i t

p r o p o s i t i o n s i n v o lv i n g t h e n e g a t i o n o f " X is F . "

An in te res t ing aspec t of poss ib i l i ty qua l i f ica t ion re la tes to the invar iance of

Page 25: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 25/26

  u z z y s e t s a s a b a s is f o r a t h e o r y o f p o s s i b i l it y 27

i m p l i ca t i on under t h is m ode o f qua l if i ca ti on . Thu s , f rom t he de f i n i ti on o f im p l i ca t i on

[6] , i t fo l lows a t once tha t

X i s F = ~ X is G i f F c G

No w, i t can r ead i l y be shown t ha t

F c G= ~F c G

(4.31)

where c i n t he r igh t -hand m em ber o f (4.31 ) shou l d be i n t e rp re t ed a s the r e la t i on o f

co nta inm en t for fuzzy se t s o f Ty pe 2 . In con sequ enc e of (4.31), then , w e can asser t tha t

X is F is possible= , ,X is G is poss ible i f F ~ G.

(4.32)

5 C o n c l u d i n g r e m a r k s

The expos i t i on o f t he t heo ry o f pos s i b il i ty in t he p resen t pap e r t ouch es upon on l y a

few o f t he m any face ts o f t h i s - - a s ye t l a rge ly une xp l o red - - t he o ry . C l ea r l y , t he i n tu i ti ve

concep t s o f pos s ib i l it y and p rob ab i l i t y p l ay a cen t r a l ro l e in hum an dec i s i on -m ak i ng

and unde r l ie m uc h o f t he hum an ab i li t y t o r eason i n app rox i m a t e t e rm s . C onse quen t l y ,

i t wi ll be essen t ia l to develop a be t ter u nde rs tan din g of th e in terp lay between poss ib i l i ty

and p rob ab i l i t y - - e spec i a l l y i n r e la t i on t o t he ro l e s wh ich t hese concep t s p l ay in na t u ra l

l ang uag es - - i n o rde r t o er, hance ou r ab i li t y t o deve l op m ach i nes wh i ch can s i m u l a t e the

rem arka b l e hum an ab i l it y to a t t a i n i m prec is e l y de f ined goa l s in a fuzzy env i ronm en t .

A c k n o w l e d g m e n t

Th e ide a of em ploy ing the theo ry of fuzzy se t s as a bas is fo r the th eo ry of poss ib i li t3~

was i n sp i r ed by the pape r o f B .R . Ga i nes and L . Koh ou t on pos s i b l e au t om at a [ 1 ]. In

add i t i on , ou r work was s t i m u l a t ed by d i s cus s i ons wi t h H . J . Z i m m erm ann rega rd i ng

t he i n t e rp re t a t i on o f t he op e ra t i ons o f con jun c t i on and d i s junc t i on ; t he r e su lt s o f a

psycho l og i ca l s t udy conduc t ed by E l eano r R osch and L ou i s Gom ez" and d i s cus s i ons

wi t h Barba ra ( ' e : nv .

R e f e r e n c e s

[1] B .R. Gaines and L.J. Koh out , Possible autom ata, Proc. Int . Symp. on Mul t iple-Valued Logic,

Unive rsi ty of Indian a, Blo om ington , IN t 1975) 183-196.

[2] G.E. Hu ghes and M.J. Cresswell , An Int roduc t ion to M odal Logic tMe thuen, Londo n, 1968).

[3] A. Kaufmann, Va luat ion and prob abi l ization, in: A. Kaufman n and E. Sanchez, eds., Theory of Fuzzy

Subsets, Vol. 5 IM asson an d Co., Paris, 1977).

[4] L.A. Zadeh , Calculus of fuzzy rest rictions, in: L.A. Zadeh, K .S. Fu, K. Ta na ka and M. Shimura, eds. ,

Fuz zy Sets and The ir Ap plications to Cognh ive and Decision Processes IAcademic Press, New Y ork,

1975~ I--39.

Page 26: Fuzzy Sets as a Basis for a Theory of Possibility-1978

7/24/2019 Fuzzy Sets as a Basis for a Theory of Possibility-1978

http://slidepdf.com/reader/full/fuzzy-sets-as-a-basis-for-a-theory-of-possibility-1978 26/26

28 L A Zadeh

[5] L.A . Zad eh, The concept of a l inguist ic variab e and i ts appl icat ion to app roximate reasoning, Part I ,

Info rm ation Sci . 8 ~1975) 199--249; Pa rt 11, lnlbrm ation Sci . 8 (1975) 301--357; Pa rt I11, Info rma tion

Sci. 9 (197 5) 43--80.

[6] R.E. B el lman and L.A. Zadeh , L ocal a nd fuzzy logics, ERL Mem o. M-584, Universi ty of Cal ifornia,

Berkeley, CA 11976): M ode rn Uses of M ultiple-Valued Logics, D. Epstein, ed. (D. Reidel , Dordre cht,

19771.

[7] B. De Fine tt i , Prob abil i ty Th eory lWiley, New Y ork, 1974).

[8] T. Fine, The ories of Prob abil i ty Acade mic Press, New Yo rk, 1973).

[9] A. Dem pster , Upper an d lower probabi l it ies induced by m ul t i-valued mapping, Ann. M ath. Stat is t . 38

11967) 325-3 39.

G. Sharer, A Mathe ma tical Theo ry of Evidence (Prince ton U niversi ty Press, Princeto n, N J, 1976).

E.H. Shortliffe, A model of inexac t reas on ing in medicine, Ma th. Biosciences 23 (1975) 351--379.

R.O. l~uda, P.F. H art an d N .J. Nilsson, Subjective Bayesian m ethod s tor rule-based inference systems,

Stanfo rd R esearch Ins ti tute Tech . Note 124, Stanford, CA (1976).

F. We nstop, D eductive verbal mo dels of organization, Int . J. M an-M ach ine Studies 8 (1976) 293--311.

L.A. Za deh , Theor y of fuzzy sets, Mem o. N o. UC B /ER L M77/1, U niversi ty o f California, B erkeley, CA

11977).

L.A. Za deh , A fuzzy-set-theoretic interp retat ion of l inguistic hedges, J. Cyb ernet . 2 (19 72)4-3 4.

G. Lakoff, Hedges: a study in me anin g cri teria and th e logic of fuzzy concepts, J. Phil . Lo gic 2 (1973)

458-5 08; also pap er presen ted at 8th Regional M eeting of Ch icago Linguistic Soc. (1972) and in: D.

Hockney, W. Harper and B. Freed, eds. , Conteml3orarv Research in Philosophical Logic and

Linguist ic Sem antics (D. Reidel, D ordre cht, 1975) 221 271.

H.M. H ersch and A. Caram azza, A fu zzy set appro ach to m odifiers and vagueness in natural

languages, De pt. of Psych. , Th e John s H opk ins University, Balt imore, M D (1975).

P J M acV icar-W helan, Fuzz y sets, the concept nf b, :lght an d the hedge very, Tech . M em o 1, Physics

Dept., G ra nd Valley State College, Allendale, M I (1974).

L.A. Za deh , P roba bil i ty m easure s oi fuzzy events, J. M ath. Anal. Appl. 23 (1968) 421-427.

M. Sugeno, T heory of fuzzy integrals and i ts appl icat ions, Ph.D. Thesis , To kyo Inst i tute of

Tech nology , Toky o 11974).

T. Te ran o and M. Sugeno, Co ndit io nal tuzzy measures and their applications, in: L.A. Za deh , K.S. Fu,

K. Tanaka and M. Shimura, eds. , Fuzz) Sets and Thei r Appl icat ions to Cogni t ive and Decision

Processes IAcademic Press, New Y ork, 1975) 151-170.

S. Na hm ias, Fuzzy variables, Tech. Rep. 33, Dept. of Ind. Eng., Systems Man ag. E ng. and O pera tions

Research, Universi ty of Pi tt sburgh, PA (1976); Presented at the O RS A/TIM S meet ing, Miami, F L

INovember 19761.

L.A. Za deh , Similari ty relat ions a nd fuzzy orderings, Info rm ation Sci . 3 (1971) 177--200.

W. R/~dder, O n "and" and "or' conn ectives in fuzzy set theory, Inst . for Op er. Res. , Tech nical Universi ty

of Aachen , Aachen (1975).

L.A. Zad eh, K .S. Fu, K. Ta nak a a nd M. S himura, eds., Fuzzy Sets and Thei r Appl icat ions to Cogni t ive

and Decision Processes (Academic Press, New Yo rk, 1975).

E. Ma m dan i, App lication of fuzzy logic to app roximat~ reaso ning using linguist ic synthesis. Proc. 6th

Int . Symp. on M ultiple-Valued Logic, U tah S tate Universi ty, Logan, UT (1976) 196--202.

V.V. Nalim ov, Pro babil ist ic model of languag e, Moscow S tate University, M oscow (1974).

J .A. Goguen, Concept representat ion in natural and art i f ic ial languages: axioms, extensions and

applica tions lot fuzzy sets, Int . J. M an- M ach ine Studies 611974) 513-561.

C.V. Nego ita and D.A. Ralescu, Applications of Fuzzy Sets to Systems Analysis IB irkhause r, Stuttga rt ,

1975~.

LA . Zadeh , P RU F- A meaning represen ta t ion l anguage for na tura l languages, M emo No. U CB/ERL

M77/61, Universi ty of California, B erkeley. CA (1977).

[1o]

[113

[12]

[133

[ 4 ]

[ 5 ]

[16]

[17]

[ 8 ]

[191

[20]

[213

[22]

[23]

[24]

[253

[26]

[273

[283

[ 93

[3o3