fusion power associates 2018firefusionpower.org/fpa18_gen_fusion_laberge_web.pdf · 6 parameter...

19
CONFIDENTIAL Michel Laberge Fusion Power Associates - Washington DC, USA – December 4-5, 2018

Upload: others

Post on 24-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

CONFIDENTIAL

Michel Laberge

Fusion Power Associates - Washington DC, USA – December 4-5, 2018

Page 2: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

2

The rise of the private fusion company continues

Source: PitchBook, Crunchbase.

Private Fusion Ventures Investment in Private Fusion Ventures

>$50M$20-50M<$20M>$50M$20-50M<$20M

0

5

10

15

20

25

Cu

mu

lati

ve N

um

ber

of

Ven

ture

s

Seed Stage Venture Stage Late Stage

$0M

$200M

$400M

$600M

$800M

$1,000M

$1,200M

2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Cu

mu

lati

ve In

vest

men

t

Seed Stage Venture Stage Late Stage

Page 3: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

3

Many companies exploring density regime between MF and ICF

MTF

1.00E+02

1.00E+05

1.00E+08

1.00E+11

1.00E+06

1.00E+09

1.00E+12

1.00E+15

1.00E+13 1.00E+16 1.00E+19 1.00E+22 1.00E+25

Driver PowerPlasma Energy

kJ

MJ

GJ

MW

GW

TW

$ C

ost of C

onfinem

ent

$ C

ost of D

river

ITERNIF

Plasma Density (cm-3)

Magnetically Confined

Plasma at Extremely High

Magnetic Fields

Page 4: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

4

Investors

Background on General Fusion

• Total invested capital of $110 million USD

• 20% funded by Canadian government

• 80 employees

Page 5: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

5

Plasma Injector

Compression

System

Page 6: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

6

Parameter Initial Final

Plasma Density (n) 2e20 m-3 6.5e22 m-3

Plasma Temperature (T) 1.3 keV 38 keV

Compression Ratio 1 6.5

Outside Radius of Liquid Metal Flux Conserver 2.2 m 0.34 m

Aspect Ratio (A) = R/a 1.6 2.4

Plasma Current (Ip) 4.7 MA 47 MA

Center Shaft Current (Is) 7 MA 76 MA

Magnetic Field on Axis (B0) 1 T 63 T

Magnetic Field on shaft surface (Bshaft) 2.8 T 100 T

Beta (b) 15% 40%

Thermal Energy (Eth) 4 MJ 133 MJ

Magnetic Energy (Em) 28 MJ 378 MJ

Confinement required (c) 4 m2/s 4 m2/s

Fusion Yield 0 488 MJ

Page 7: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

7

• Full coverage by 2 m of PbLi shields all solid structure, no neutron damage problems to structure

• Tritium Breeding ratio of 1.4 with natural Li

• No heat load issues on divertor or any metal surface, only liquid sees high energy plasma

• Straightforward energy extraction from the hot liquid liner through a heat exchanger

• Energy from inexpensive gas pistons leading to attractive economic

• No poloidal or toroidal superconductor coils

• No RF or neutral beam auxiliary heating

• No laser or particle beams

• No expensive target to replace

Advantages

Page 8: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

8

Spherical liquid compression experiment with 3D printed rotor and stator

Page 9: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

9

Well-Diagnosed Laboratory Small Spherical Tokamak100 % CHI

● Magnetic pick-up probes

● Interferometers

● Visible light photodiodes

Edge Magnetic Probes

Thomson Scattering

Collection Optics

Ion

Doppler

● X-ray photodiodes

● X-ray phosphor camera

● Visible Spectrometers

● Multi-point Thomson scattering

● Multi-chord FIR Polarimeter

● VUV Spectrometer

Page 10: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

10

2.0

1.5

1.0

0.5

0.0

MeV

2.52.01.51.00.50.0

x10-3

1000

800

600

400

200

0

eV

Self-organized plasmas

evolve continuously after

formation

General Fusion experience

with injector design and

operation enables tuning of

desired plasma properties

within a selected

compression window

Example:

• MHD stability

• Ion, electron temperatures >200 eV

• Density 0.7x1014 cm-3

• Strong AXUV, scintillator signals

• q profile, lambda profile (not shown)

Achieving Target Performance Within Compression Window

0.0

0.5

1.0

1.5

2.0

Neutron

Energy

(MeV)

0

Electron

Density

(1014 cm-3)

4

3

2

1

0

1014

cm^-3

2.52.01.51.00.50.0

ms

MRT2 Shot 13526

4

1

2

3

ms

4

3

2

1

0

µA

2.52.01.51.00.50.0

ms

250

200

150

100

50

0

eV

MRT2 Shot 13526

Raw

Signal

(μA)

4

0

1

2

3

250

0

50

100

150

200

1.0

0.8

0.6

0.4

0.2

0.0

Tesl

a

2.52.01.51.00.50.0

ms

MRT2 Shot 13526

Poloidal

Magnetic

Field (T)

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0

Ion

Temperature

(eV)

0

200

400

600

800

1000

Electron

Temperature

(eV)

B-dot Probes

Filtered AXUV

Diodes

2-Colour

Interferometer

Ion Doppler

Spectrometer

Scintillator Array

Compression Window

MRT2 Shot 13526

Page 11: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

11

Wall

Mag

netic ax

is

Page 12: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

12

Plasma Compression Science: Field Tests Explore Key Physics

Chemical driver compresses a magnetized plasma with an aluminum liner

Goals:

• Demonstrate plasma MHD stability in compression

• Demonstrate compression heating

Page 13: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

13

Consistent Progress in Magnetic Compression 16 PCS Shots, 2012-2018

Page 14: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

14

Plasma Compression

• Mechanical compression of magnetized plasma

• Recent experiments show good magnetic stability

Page 15: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

15

PI3 Large Injector: Prototype Relevant Design, Performance

Spherical tokamak plasma target

500% increase in radius from our small spherical

tokamak

10 MJ pulsed power supply

Presently commissioning

Vessel inner diameter 2 m

Major radius R 0.6 – 0.7 m

Minor radius a 0.3 – 0.4 m

Plasma current Ip 0.8 MA

Shaft current Is 1.6 MA

Plasma density ne 2x1019 – 2x1020 m-3

Temperature Te ~ Ti 100 – 500 eV

Goals, at Prototype-relevant scale:

• Validate plasma performance

• Develop and demonstrate technology

Page 16: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

16

Next Prototype

• Optimize performance with flexible operating envelope

• Modularize systems to permit rapid innovation

Strategy

Key Features and Specifications

• 3 meter Diameter Plasma (~70% power plant scale)

• 15 - 25 MJ Plasma Formation Bank

• MAST, SSPX equivalent starting plasma

• Liquid Lithium

• D-D

• 3.5 - 4 ms Compression Time

• Up to 10:1 Radial Compression Ratio

• Designed for 1 Compression Shot / Day Operating Rate

• 10 KeV, 10% of Lawson

Page 17: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

17

• 346 drivers (pistons)

• Lithium liquid metal (~9 tons)

• Superstructure supports center shaft, cones, plasma injector

Compression Systems

Vessel Inner Radius: 1.95 m

Liquid Lithium Temperature: 350 ºC

Liquid Lithium Volume: 17 m3

Pressure Pulse: 30 MPa over 2 ms

Page 18: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

18

• Sufficient plasma formation performance has been achieved

• Piston and servo control systems are working fine

• Plasma compressions tests are producing good results

• We are planning to build a large integrated liquid metal prototype, aiming for temperatures of 10 keV and 10% of Lawson

• MAST, NSTX class initial plasma, compressed 10X linear

• 5 ½ years design, build ,operate

Conclusion

Page 19: Fusion Power Associates 2018firefusionpower.org/FPA18_Gen_Fusion_Laberge_web.pdf · 6 Parameter Initial Final Plasma Density (n) 2e20 m-3 6.5e22 m-3 Plasma Temperature (T) 1.3 keV

19

Twitter

@generalfusion

Instagram

@generalfusion

LinkedIn

general-fusion

Website

generalfusion.com