fundamentals of materials for high temperature fuel cells ... · • solid ht vs liquid lt •...

43
Truls Norby University of Oslo, Department of Chemistry, SMN, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway Outline Solid HT vs liquid LT Solid ion conductors Charge carriers Mobility Trapping Space charge Electrodes & surfaces Solid HT vs liquid LT EERA/AMPEA workshop, Oslo, 7-8 February 2017 Thanks to students and scientists at UiO, CoorsTek MS AS, ITQ Valencia, NTNU, and SINTEF and for project funding from RCN (FOXCET, ROMA, NaProCs, PROTON, METALLICA) and EU FCH (ELECTRA) Fundamentals of materials for high temperature fuel cells, electrolysers, and gas separation membranes U,I 2H + H 2 ½O 2 H 2 O Cathode Electrolyte Anode 2e -

Upload: others

Post on 05-Mar-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Truls Norby University of Oslo, Department of Chemistry, SMN, FERMiO, Gaustadalléen 21, NO-0349 Oslo, Norway

Outline

• Solid HT vs liquid LT

• Solid ion conductors

• Charge carriers

• Mobility

• Trapping

• Space charge

• Electrodes & surfaces

• Solid HT vs liquid LT

EERA/AMPEA workshop,

Oslo, 7-8 February 2017

Thanks to students and scientists at UiO,

CoorsTek MS AS, ITQ Valencia, NTNU,

and SINTEF and for project funding from

RCN (FOXCET, ROMA, NaProCs,

PROTON, METALLICA) and EU FCH

(ELECTRA)

Fundamentals of materials for high temperature fuel cells,

electrolysers, and gas separation membranes

U,I

2H+ H2

½O2

H2O

Cathode Electrolyte Anode

2e-

Page 2: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

The membrane

iiiiiii uFCzuecz

U,I

2H+ H2

½O2

H2O

Cathode Electrolyte Anode

2e-

Page 3: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

U,I

2H+ H2

½O2

H2O

Cathode Electrolyte Anode

2e-

Solids vs liquids HT vs LT

Solid electrolytes: Ionic compounds

Liquid electrolytes: Covalent liquids (or ionic liquids)

BaZrO3 Eg ≈ 3.2 eV

H2O(l) Eg ≈ 7 eV * * C. Fang, Wun-Fan Li, R.S. Koster, J. Klimeš, A. van Blaaderen, M.A. van Huis, «The accurate

calculation of the band gap of liquid water by means of GW corrections applied to plane-wave density functional theory molecular dynamics simulations«, PCCP., 2015,17, 365-375.

Which has the higher mobility of ionic charge carriers?

Which has the higher mobility of electronic charge carriers?

Which has stronger trapping?

Which has more charge separation and space charge effects?

Which has better electrode kinetics?

Which has better thermal management and integration?

Page 4: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Solids vs liquids HT vs LT

H2 fuel cells «easy»; Liquid LT or solid-state HT

C-containing fuels: HT solid-state or ionic liquids

H2O→H2 electrolysers: Liquid LT, solid-state HT.

Faradayic vs thermal efficiency

Electrochemical and catalytic reactors and pumps: HT

Mixed conducting gas separation membranes: HT

Solid-state. Can ionic liquids be used?

Li ion batteries?

Page 5: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

S.H. Morejudo, R. Zanón, S. Escolástico, I. Yuste-Tirados, H. Malerød-Fjeld, P.K. Vestre, W.G. Coors, A. Martínez, T. Norby, J.M. Serra, C.

Kjølseth, "Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor", Science, 353 [6299] (2016) 563-566.

Catalytic dehydrogenation of natural gas using proton and co-ionic ceramics

Page 6: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Solid-state ionic conductors

O2- Acceptor-doped, vacancy mechanism

Y:ZrO2, Gd:CeO2, Sr,Mg:LaGaO3

Inherently disordered δ-Bi2O3, La2Mo2O9, La10O3+δ(SiO4)6, Ca12Al14O33,

H+

Acceptor-doped, hydratable (protonatable) Y:BaZrO2, Sr:LaNbO4

Inherently disordered, hydratable (protonatable) La28W7O54, Ca12Al14O33

Solid acids, inherently disordered CsH2PO4, CsHSO4

H3O+, Li+, Na+

β-Al2O3

La2/3-xLi3xv1/3-2xTiO3

U

O2-

600-800°C

U

H+

200-600°C

Page 7: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Charge carrier trapping

Charge carriers charge compensated by

Dopants

Attracted to and associates with (trapped at)

immobile dopant

Dissociation energy adds to enthalpy of mobility

Similar to aqueous acids

Dissociation (protolysis)

Inherent disorder

No trapping

A. Løken et al., J. Mater. Chem. A, 2015, 3, 23289

Page 8: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Charge carrier trapping

Percolation thresholds

Effect of trapping varies with dopant level

in a complex manner

Paired dopant traps

May reduce the number of effective traps

May reduce hydratability

A. Løken et al., J. Mater. Chem. A, 2015, 3, 23289

Page 9: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Interfaces and extended defects

Charge separation

Space charge regions

Enrichment or depletion of charge carriers

Page 10: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Space charge Bulk

Grain boundaries

Surfaces, electrodes

U

2O2-

2H2O

2H2

O2

SOFC 4e-

600-800°C

1 pF 1 nF 1 μF

bulk grain

boundary electrode

Ruiz-Morales et al., J. Mater. Chem., 2008

Page 11: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Grain boundary in

10%Y-doped BaZrO3

Sample/photo: Adrian

Lervik / Phuong D.

Nguyen

Page 12: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Grain boundaries in 10%Y-doped BaZrO3

Sample/photo: Adrian Lervik/Phuong D. Nguyen

Page 13: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

0 5 10 15 20

-0,4

-0,3

-0,2

-0,1

0,0

0,1

ΔV

nm

Image of grain boundary Reconstructed phase map Potential profile from line scan.

Tentatively, the grain boundary

core is negative, not positive as

expected.

TEM electron holography

Results by Tarjei Bondevik, PhD fellow in the FOXCET project

Page 14: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Enhanced transport along grain boundaries

14

c

GB

+

+

+

+

+

+

+

Page 15: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

600 ℃ Film (multi layers,

layer thickness 8~11 nm)

SrTiO3/BaZrO3/MgO

position1

Geometric phase analysis (GPA)

HAADF-STEM Fourier filtered

image

BaZrO3/SrTiO3 interface

Sample by PLD: Sarmad Saeed STEM imaging and analysis: Wei Zhan

-1

1

There is dislocation (εxx and εyy) at the interface (flat).

BaZrO3 [100] (001)/SrTiO3 [100] (001)

εxx εyy

Page 16: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Jonathan Polfus, SINTEF;

DFT modelling of interfaces

Surface space-charge model

16

co

re

bu

lk

J.M. Polfus, T.S. Bjørheim, T. Norby, R.

Bredesen, “Surface Defect Chemistry of Y-

substituted and hydrated BaZrO3 with

Subsurface Space-Charge Regions”, J.

Materials Chemistry A, 4 [19] (2016) 7437-7444.

Page 17: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

17

Potential and concentration profile: 373 K

373 K

2.5 % H2O

core space-charge region

Ns,O=2Ns,Zr

Page 18: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Electrodics

Page 19: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Oxide Electrolyte Metal

Electrodes

Reaction pathways

Charge transfer

Page 20: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Charge transfer (ct) in H2+H2O; Pt, Cu on BZCY

eOHvO H pbO,pbads,

2

pbO,pbads,

redred

redprodredreactredctredredred

eq

redct

eq

redct QQkkT

en

kT

ein

RG

1

,,

0

,

2,0

,

,

)(1

4/1

,/,

,/, 2

eV 93.0expS/cm 1000

1

Heq

redBZCYPtct

eq

redBZCYPtct pkTR

G

4/3

,/,

,/, 2

eV 82.0expS/cm 160

1

Heq

redBZCYCuct

eq

redBZCYCuct pkTR

G

S.A. Robinson, C. Kjølseth, T. Norby, “Comparison of Cu and Pt point-contact electrodes on proton conducting BaZr0.7Ce0.2Y0.1O3−d“, submitted.

H H H H H

OH- Pt

O2-

Cu OH-

O H O O O

O2-

Page 21: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Mass transfer (MT) in H2+H2O; Pt, Cu on BZCY

Adsorption

Dissociation

Dissolution

Diffusion

2/1

,/,

,/, 2

eV 73.0exp S/cm 6.2

1Heq

redBZCYPtmt

eq

redBZCYPtmt pkTR

G

2/1

,/,

,/, 2

eV 21.1exp S/cm 10000

1Heq

redBZCYCumt

eq

redBZCYCumt pkTR

G

S.A. Robinson, C. Kjølseth, T. Norby, “Comparison of Cu and Pt point-contact electrodes on proton conducting BaZr0.7Ce0.2Y0.1O3−d“, submitted.

Pt mediocre H2

catalyst

Cu poor H2

catalyst. Uses

more tpb surface

Page 22: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

PCFC oxygen electrodes (cathodes)

Mixed conductivity: protons, oxide ions, electrons (holes)

R. Strandbakke, V. Cherepanov, A. Zuev, D.S. Tsvetkov, C. Argirusis, G. Sourkouni-Argirusis,

S. Prünte, T. Norby, “Gd- and Pr-based double perovskite cobaltites as oxygen side electrodes

for proton ceramic fuel cells and electrolyser cells”, Solid State Ionics, 278 (2015) 120.

Typical

PCFC

cathode

Typical

oxide H+

conductor

O2

4e-

2H2O

4H+

2O2- 2O2- O2

4e-

e- e-

Page 23: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Perovskite electrode on BaZr0.7Ce0.2Y0.1O3 (BZCY)

Modelling by fitting all data

Protons vs oxide ions

Effect of electronic conduction

CT and MT(d)

1.0 1.2 1.4 1.6-2

-1

0

1

Rp,O

2-

Rp,H

+

Rp,d,H

+

Rp,ct,H

+

Rp

Rp,app

700 600 500 400

0.01

0.1

1

10

T (C)

1000/T (K-1)

log

(R(

cm

2))

R(

cm

2)

Page 24: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

J. Jamnik, J. Maier, S. Pejovnik, Solid State Ionics 75 (1995) 51-58

Jamnik & Maier 1995; Shouldn’t electrodes have space

charge layers, too?

Page 25: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Zimag

Zreal

Grain

boundary

Charge transfer

+

Space charge layer Mass transfer

𝑂𝐻𝑂•

Gas

Negative Space

charge layer

Electrode

+

+

Cchemical Cdouble layer

CGB

Rd

iffusio

n

Rc

harg

e tran

sfe

r Rspace charge layer RGB

Bulk of BaZr0.9Y0.1O3-δ Positive Core

layer

Electrical

potential Example: BaZr0.9Y0.1O3-δ

+ +

+ +

+

+

+

+ +

Concentrations

𝑉𝑂•• ℎ•

Grain

CGI

Page 26: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

B+GB+SCL+CT for nanograined Ni on BZY in H2+H2O

Min Chen, T. Norby, “Space Charge Layer Effect at the Ni/BaZr0.9Y0.1O3-δ Electrode

Interface in Proton Ceramic Electrochemical Cells”, under publication

( ) ( )

Page 27: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Let’s fly from high to low temperature…

Page 28: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Porous oxide ceramic Acceptor doped; oxygen vacancies

High temperatures – dry atmospheres

Bulk oxide ion conduction

Grain boundary resistance

vO..

vO..

vO.. vO

..

O2- O2- O2-

Page 29: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Porous oxide ceramic Lower temperatures – wet atmospheres

Hydrated, protonated

Bulk proton conduction

Grain boundary resistance

OHO.

H+ H+ H+

OHO. OHO

.

OHO.

Page 30: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

OH-

Porous oxide ceramic Intermediate temperatures – wet atmospheres

Surface chemisorbed water

Surface proton conduction

OHO.

H+ H+ H+

OHO. OHO

.

OHO.

H+ H+ H+ H+ H+ H+ H+ OH- OH- OH- OH- OH-

Page 31: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

OH-

Porous oxide ceramic Lower temperatures – wetter atmospheres

Surface physisorbed water – one layer – «ice-like»

OHO.

H+ H+ H+

OHO. OHO

.

OHO.

H+ H+ H+ H+ H+ OH- OH- OH- OH- OH-

H2O H2O H3O+ H2O H2O H3O

+ H2O

Page 32: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

OH-

Porous oxide ceramic Lower temperatures – wetter atmospheres

Surface physisorbed water – multilayer – «water-like»

OHO.

H+ H+ H+

OHO. OHO

.

OHO.

H+ H+ OH- OH- OH- OH- OH-

H2O H2O H3O+ H2O H2O H3O

+ H2O

H2O H3O+ H2O

H2O H3O+ H2O

H2O

H2O H2O H3O+ H2O H2O H3O

+ H2O

Page 33: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

SO3-

H-

Porous oxide ceramic Surface functionalization

Acid surface groups. Secondary phases.

OHO.

H+ H+ H+

OHO. OHO

.

OHO.

H3O+ H3O

+ H2O H2O H3O+ H2O

H2O H3O+ H2O

H2O H3O+ H2O

H3O+

H2O H2O H3O+ H2O H2O H3O

+ H2O

P2O5

Page 34: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge
Page 35: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge
Page 36: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge
Page 37: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge
Page 38: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge
Page 39: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge
Page 40: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Mesoporous pore condensation

Page 41: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Acid/base doping

“SnP2O7”

Acid/base doping

Nafion®

Page 42: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Summary

Solid electrolytes and mixed conductors

Bulk transport

Defect thermodynamics

Defect mobilities

Trapping

Charge separation

Grain boundaries

Dislocations

Surfaces

Electrodes

Electrodics

Relationships between solid and liquid, HT and LT

8H+

8e-

CO2

CH4+2H2O

4H2

Page 43: Fundamentals of materials for high temperature fuel cells ... · • Solid HT vs liquid LT • Solid ion conductors • Charge carriers • Mobility • Trapping • Space charge

Acknowledgements Thanks to many contributing students and scientists at UiO, CoorsTek MS AS, ITQ Valencia, NTNU, and SINTEF

The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement n° 621244, and from the Research Council of Norway through the NaProCs (216039), PROTON (225103), FOXCET (228355), METALLICA (228819) and ROMA (219194) projects.