fundamentals & applications of plasmonics svetlana v. boriskina lecture 2/2

34
Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

Upload: lisandro-mullady

Post on 16-Dec-2015

247 views

Category:

Documents


12 download

TRANSCRIPT

Page 1: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

Fundamentals & applications of plasmonics

Svetlana V. Boriskina

Lecture 2/2

Page 2: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Overview: lecture 2• Recap of Lecture 1• Refractive index sensing• SP-induced nanoscale optical forces

– Optical trapping & manipulation of nano-objects• Fluorescence & Raman spectroscopy• Plasmonics for photovoltaics• Hydrodynamic design of plasmonic components• Magnetic effects• Thermal effects:

– Plasmonic heating– Near-field heat transfer via SPP waves

• Plasmonic photosensitization of materials• Further reading & software packages• Omitted topics

Page 3: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Drude-Lorentz-Sommerfeld theory

Image credit: Wikipedia

Collision frequency

electron velocity

mean free path

lv 1

)(1)(

2

2

ipDrude

permittivity function:

ep mne 022 Plasma

frequency

Page 4: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Recap of Lecture 1: Propagating waves

Frequency (Quasi)particle Dispersion equation

Plane wave

transversephoton

Bulk plasmonlongitu-

dinal

plasmonmetals:

semicond.:

Surface plasmon

TM: E=(Ex,0,Ez)

polariton =photon + plasmon

21

dm

dmx ck

dx ck

21221px c

k e

p m

ne

0

2

d

p

1

eV10p

eV5.0p

ω

kx(ω)

p

dp 1

p

dp 1

p

High DOS, high localization

Page 5: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Recap of Lecture 1: Localized plasmonsScattering response Schematic dipoles Near-field

patterns

Plasmonic atom

Plasmonic molecules

Plasmonic antenna

array

High D

OS, high localization

Movie: http://juluribk.com

E

+++

- - -

Lowest-energy modes

λ

quadrupole

dipole

dimer heptamer

Page 6: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Plasmons interactions with matter• Optical

– Extreme light focusing/localization (sub-resolution imaging, photovoltaics)

– Strong sensitivity to environmental changes (sensing) – Amplification of weak molecular signals (fluorescence, Raman

scattering, absorption, circular dichroism)

• Electronic– Enhancement of catalytic reactions– Plasmonic photosensitization of materials

• Mechanical – Mechanical manipulation of nanoobjects

• Thermal– Selective heating of nanoscale areas– Enhanced near-field heat transfer

Page 7: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

SP-enhanced sensing

n

FoM

Resonance linewidth

Sensitivity

Sensor figure of merit (FoM):

http://www.bio-sensors.net

SPP sensors

McFarland, A.D. & R.P. Van Duyne, Nano Lett. 2003. 3(8): p. 1057-1062.

LSP sensors

Requirements:•High sensitivity•High spectral resolution•Compact design

Page 8: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

FOM enhancement & miniaturization• Fano resonances in plasmonic molecules

Mirin, N.A., K. Bao, & P. Nordlander, J. Phys. Chem. A, 2009. 113(16): p. 4028-4034.

Page 9: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Towards single-molecule sensitivityHybrid modes in optoplasmonic molecules:

Santiago-Cordoba, M.A. et al, Appl. Phys. Lett., 2011. 99: p. 073701. Also: Boriskina, S.V. & B.M. Reinhard, Opt. Express, 2011. 19(22): 22305-22315; Ahn, W. et al, ACS Nano, 2012. 6(1): 951-960.

Page 10: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Rayleigh ground

excited

virtual (induced dipole)

hν0

Raman spectroscopy Rayleigh scattering

Raman scattering

hν0 hν0

h(ν0 ± νm)hν0

νm - molecular fingerprint

Stokes Raman

vibrat.hνm

Raman – Nobel Prize in 1930

)cos( 00 tE

Dipole moment induced by light:

polarizability tensor

qqq 0)( vibrational coordinate

)cos(0 tqq m

t

tEq

qtE

m

m

)(cos

)(cos)cos(

0

00000

Rayleigh Raman (Stokes & anti-Stokes)

4

6

R ~ d

Iparticle size

R3

Ram 10~ II

a very weak effect!

Page 11: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Surface enhanced Raman spectroscopy (SERS)

Fleischman M,et al Chem. Phys. Lett. 1974; 26: 123.Jeanmaire DL, Duyne RPV. J. Electroanal. Chem. 1977; 84: 1.

0Ram ~ EggE R

Review: Moskovits, M., J. Raman Spectr., 2005. 36(6-7): p. 485-496 +references therein

E-field enhancement @ ν0 E-field enhancement @ (ν0 –νm)

High field localization enables SERS fingerprinting of single molecules

Nie, S. & S.R. Emory, Science, 1997. 275(5303): 1102-1106.

R6G molecules on Ag nanoparticles

@ the molecule position!

Page 12: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Single molecule delivery to the SP hot spot

De Angelis, F., et al. Nat Photon. 5(11): p. 682-687.

• super-hydrophobic delivery:

Page 13: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Single molecule delivery to the SP hot spot

• Optical trapping:

Review: Juan, M.L. et al, Nat Photon, 2011. 5(6): p. 349-356

)"'(0

0 GGc

nIFU D kF

Gradient force

Dissipative force

Intensity enhancementThe probability to find

a molecule @ r :

Optical potential

L. Novotny, et al, Phys. Rev. Lett. 79 (4), 645 (1997); H. Xu and M. Käll, Phys. Rev. Lett. 89 (24), 246802 (2002).

10)( TkU Br

Stable trapping:

Page 14: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

SP-enhanced fluorescence Fluorescence

Fluorescence rate of a dipole with moment μ:

)( nrrrexcf hνexc hνf

non-radiative rate (resistive

heating)radiative rateexcitation rate

2),( excmexc rEμ

Excitation rate:

),(3

2)(

2

0fmnrr

Fermi’s golden rule:

Local density of states

Spacer is needed to avoid quenching

The emission intensity affected by boththe excitation & emission modification Anger, P., P. Bharadwaj & L. Novotny,

Phys. Rev. Lett., 2006. 96(11): p. 113002

Page 15: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

SP-enhanced fluorescence

Russell, K.J., et al., Nat Photon, 2012. advance online publication.

),(3

2)(

2

0fmnrr

Emission spectrum shaping by the high-LDOS nanoparticle resonances

Kinkhabwala, A., et al. Nature Photon., 2009. 3(11): p. 654-657.

Single-molecule fluorescence

See also a review: Ming, T., et al., J. Phys. Chem. Lett. 3(2): p. 191-202 (2012).

Page 16: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

optical absorption

H. Atwater & A. Polman, Nature Mater. 2010

Plasmonic solar cells

charge carrier diffusion

c-Si: 250 - 700 μma-Si: 0.1 – 0.3 μm

Electronic/photonic lengths mismatch

Page 17: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Efficient nanoscale light trappingincrease of the local density of optical states in a certain frequency range

Callahan et al, Nano Lett. 2012

Atwater & Polman, Nature Mater. 2010

scattering field enhancement waveguiding

Page 18: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

extinction cross-section

How can a particle absorb more than the light incident upon it? C.F. Bohren, Am J. Phys. 1983, 51(4), p.326

HES Re21 Poynting vectordetermines electromagnetic power flow

powerflow saddle pointW. Ahn, S.V. Boriskina, et al, Nano Lett. 12, 219-227 (2012)

Page 19: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Optical energy flows in the direction of the phase changephase saddle

flow saddle

phase vortex

flow vortex

Local topological features (sources, saddle points, vortices & sinks) define phase landscape that governs optical power flow vortex nanogear transmission

W. Ahn, et al, Nano Lett. 12, 219-227 (2012)

kv g group velocity

Page 20: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Reconfigurable vortex transmissions

S.V. Boriskina & B.M. Reinhard, Nanoscale, 4, 76-90, 2012

Page 21: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

‘… the title is straight out of Enterprise's engineering room’

NextBigFuture.com SciTech forum

Reconfigurable vortex transmissions:vortex nanogates

Physical picture behind vortex nanogate

Page 22: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Hydrodynamic design of SP componentsElectromagnetics

?Maxwell’s equations:

t

t

ΕJH

HE

H

E

0

Gauss’ law

Gauss’ law for magnetism

Faraday’s law

Ampere’s law

+ boundary conditions

Continuity (mass conservation) equation

Momentum conservation equation

Navier-Stokes equations:

0)( v t

fT

vvv

p

t )(

fluid density flow velocity

Fluid dynamics

Page 23: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Hydrodynamic form of Maxwell’s equations

2|)(|)()( rUrr I

)(rv

‘Photon fluid’ density:

‘Photon fluid’ velocity:

))((exp)(),( tit rrUrE

Madelung transformation:

S.V. Boriskina & B.M. Reinhard, Nanoscale, 4, 76-90, 2012

convective term

)()()()( rrrvr

)()()()( rrrvrv QV

‘mass’ conservation:

momentum conservation:

)(12)( 20 rr kV

external potential created by the nanostructure

)()( 20 rr k

material loss or gain

• steady state flow• local convective acceleration possible• fluid flux (the momentum density):

)()()2(1 0 rvrS

Page 24: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Hydrodynamic form of Maxwell’s equations

)()()()( rrrvrv QV

Vortex generates a velocity field:

S.V. Boriskina & B.M. Reinhard, Nanoscale, 4, 76-90, 2012

Page 25: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Energy flows in plasmonic nanostructures

Surface plasmon polariton wave:

Stockman’s nanolens:

Li, K., M.I. Stockman, & D.J. Bergman, Phys. Rev. Lett., 2003. 91(22): p. 227402.

S.V. Boriskina & Reinhard, Nanoscale, 4, 76-90, 2012

Page 26: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Magnetic SP effects

t HE

Plasmonic nanostructures built from nonmagnetic materials can exhibit effective magnetic permeability

Image: http://www.ndt-ed.org/

coil magnet

rotating currents in the rings induce magnetic flux

effective permeability

Split-ring resonator:

Pendry, J.B. et al, IEEE Trans. Microw. Theory Tech., 47(11), p.2075, 1999

double-negative metamaterials

Shelby, R.A., et al Science, 2001. 292(5514): p. 77-79.

Page 27: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Magnetic SP effects in nanoparticle clusterst HE

Liu, N., et al., Nano Letters, 2011. 12(1): p. 364-369.

charge density:

induced magnetic moments:

Anti-ferromagnetic response:

dy

yz

x

dx

2r

Ag

E

k

dy

yz

x

yz

x

dx

2r

Ag

E

k

E

kElectric field intensity:

Magnetic field distribution:S.V. Boriskina, in Plasmonics in metal nanostructures: Theory & applications ( Shahbazyan & Stockman eds.) Springer, 2012

Magnetic dipole

Fan, J.A., et al. Science, 2010. 328(5982): p. 1135-1138.

Page 28: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Thermal SP effects

Electric field to heat:

),(),(~ tttT rErj dissipation of optical energy

temperature

nanopatterning

Atanasov, P.A., et al., Int. J. Nanopart. 2010. 3(3): p. 206-219.

cancer treatment

Chen, J., et al. Small, 2010. 6(7): p. 811-817.

Govorov A.O. & Richardson, Nano Today, 2007. 2(1) 30-38

Page 29: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Thermal SP effectsHeat to electric field:

V

dGi '),'(),',(),( 0 xxjxxrE fluctuating currents

~ DOS

Near-field heat transfer:

e.g., Narayanaswamy, A. & G. Chen, Appl. Phys. Lett. 2003. 82(20): p. 3544-3546; Fu, C.J. & W.C. Tan, J. Quant. Spectr. Radiat. Transf. 2009. 110(12): p. 1027-1036; Rousseau, E., et al. Nat Photon, 2009. 3(9): p. 514-517; Volokitin, A.I. & B.N.J. Persson. Rev. Mod. Phys., 2007. 79(4): p. 1291-1329

(cold, T2)

(hot, T1)+-+ -

+ -+-

High SPP-induced DOS results in the near-field coherence

d

Page 30: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Plasmonic photosensitization of semiconductors

• hot electrons can tunnel from metal nanoantennas into semiconductor• photon detection at energies below the semiconductor band gap

Knight, M.W., et al., Science. 332(6030): p. 702-704.

Theoretical prediction: Shalaev, V.M., et al., Phys. Rev. B, 1996. 53(17): p. 11388-11402.

Page 31: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Plasmonic enhancement of photocurrent

Mubeen, S., et al., Nano Letters. 11(12): p. 5548-5552.

Xu, G., et al (2012), Adv. Mater., 24: OP71–OP76

Echtermeyer, T.J., et al. 2012,

Nature Commun. 2: p. 458.

in silicon:

in graphene:

Page 32: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Books & review articles on plasmonics:

• Lal, S., S. Link, and N.J. Halas, Nano-optics from sensing to waveguiding. Nat Photon, 2007. 1(11): p. 641-648

• Halas, N.J., et al., Plasmons in strongly coupled metallic nanostructures. Chem. Rev., 2011. 111(6): p. 3913-3961

• Schuller, J.A., et al., Plasmonics for extreme light concentration and manipulation. Nature Mater., 2010. 9(3): p. 193-204

• Stockman, M.I., Nanoplasmonics: past, present, and glimpse into future. Opt. Express. 2011, 19(22): p. 22029-22106

• Maier, SA, Plasmonics: Fundamentals and Applications, Springer, NY, 2007• Novotny, L., and B. Hecht. Principles of Nano-Optics, Cambridge University

Press, 2006

This list is by no means complete …

Page 33: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Commercial & free software

• Lumerical FDTD Solutions http://www.lumerical.com/tcad-products/fdtd/• COMSOL Multiphysics® (FEM) http://www.comsol.com/products/multiphysics/• MEEP (FDTD)http://ab-initio.mit.edu/wiki/index.php/Meep• DDSCAT (discrete dipole approximation)http://www.astro.princeton.edu/~draine/DDSCAT.html• A collection of free software (including Mie theory methods)http://www.scattport.org/index.php/light-scattering-software

Page 34: Fundamentals & applications of plasmonics Svetlana V. Boriskina Lecture 2/2

S.V. Boriskina, 2012

Topics I had to omit due to the lack of timePlasmonic cloaking:New Journal of Physics, Focus Issue on 'Cloaking and Transformation Optics', Guest Editors: Ulf Leonhardt and David R. Smith, Vol. 10, Nov 2008.

Non-local response:A.D. Boardman, Electromagnetic Surface Modes, Ch. Hydrodynamic Theory of Plasmon–polaritons on Plane Surfaces, John Wiley & Sons Ltd., 1982.

Resonant energy transfer & ‘dark’ plasmonic nanocircuits:Andrew, P. and W.L. Barnes, Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons. Science, 2004. 306(5698): p. 1002-1005Akimov, A.V., et al., Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature, 2007. 450(7168): p. 402-406. Boriskina, S.V. and B.M. Reinhard, Spectrally and spatially configurable superlenses for optoplasmonic nanocircuits. Proc. Natl. Acad. Sci. USA, 2011. 108(8): p. 3147-3151.

Spasers:Stockman, M.I., Spasers explained. Nat Photon, 2008. 2(6): p. 327-329.Plasmonic particles on demand:Luther, J.M., et al., Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat Mater, 2011. 10(5): p. 361-366.

finally, Metamaterials is a huge area in itself – could be a separate class