fundamentals and applications of single molecule real-time ...€¦ · dna polymerase zmw...

36
FIND MEANING IN COMPLEXITY © Copyright 2013 by Pacific Biosciences of California, Inc. All rights reserved. Fundamentals and Applications of Single Molecule Real-Time SMRT® Sequencing Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, and SMRTbell are trademarks of Pacific Biosciences in the United States and/or other countries. Celera is a trademark of Celera Corporation; and HiSeq and MiSeq are trademarks of Illumina, Inc.© Copyright 2014 by Pacific Biosciences of California, Inc. All rights reserved. CAT-AgroFood Plant Research International Workshop for Pacbio Sequencing March 26, 2014 Dr. Christoph König

Upload: others

Post on 19-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • FIND MEANING IN COMPLEXITY

    © Copyright 2013 by Pacific Biosciences of California, Inc. All rights reserved.

    Fundamentals and Applications of Single Molecule

    Real-Time SMRT® Sequencing

    Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, and SMRTbell are trademarks of Pacific Biosciences in the United States and/or other countries. Celera is a trademark of Celera Corporation; and HiSeq and

    MiSeq are trademarks of Illumina, Inc.© Copyright 2014 by Pacific Biosciences of California, Inc. All rights reserved.

    CAT-AgroFood Plant Research International Workshop for Pacbio Sequencing

    March 26, 2014 Dr. Christoph König

  • DNA Polymerase ZMW Confinement Phospholinked Nucleotides

    Single-Molecule, Real-Time DNA Sequencing (SMRT) Is:

  • PacBio® RS II Typical Performance

  • Read Definitions in RS System & SMRT® Analysis v2.0

    SMRTbell™ Template

    Polymerase Read

    Definition:

    • Formerly called “read”

    • 1 pass

    • With adapters

    • 1 molecule, 1 pol. read

    Uses:

    • QC of instrument run

    Subreads

    Definition:

    • Adapters removed

    • 1 pass

    • 1 molecule, 1+ subread

    Uses:

    • Applications such as

    assembly and base

    modification

    Read (of Insert)

    Definition:

    • The highest quality

    single sequence for an

    insert

    • 1+ passes including

    partial passes

    • 1 molecule, 1 read

    Uses:

    • Insert size distribution

  • Blue Pippin™ System for Size Selection

    Size-Selected

    Mouse Lemur

    20 kb library

    20 kb AMPure®

    Mouse Lemur

    library

    - Input gDNA

    - Size-selected

  • Most Uniform Coverage

    • Ross et al. (2013) Characterizing and measuring bias in sequence data. Genome Biology, May 29;14(5):R51

    “Pacific Biosciences coverage

    levels are the least biased”

    http://genomebiology.com/content/14/5/R51http://genomebiology.com/content/14/5/R51http://genomebiology.com/content/14/5/R51http://genomebiology.com/content/14/5/R51http://genomebiology.com/content/14/5/R51http://genomebiology.com/content/14/5/R51http://genomebiology.com/content/14/5/R51

  • Detection of DNA Base Modifications by SMRT

    Sequencing

    Flusberg et al. (2010) Nature Methods 7: 461-465

  • Summary Sequence Performance

    1. Long sequence reads

    – Finish genomes, de novo assemblies

    – Full-length cDNA sequencing

    – Long-range haplotype phasing

    2. High Consensus Accuracy

    – >99.999% (QV50)

    – Lack of systematic sequencing errors

    3. Lack of sequence context bias

    – GC content

    – Low complexity sequence

    4. Base modification detection

    – Epigenome characterization

  • FIND MEANING IN COMPLEXITY

    © Copyright 2013 by Pacific Biosciences of California, Inc. All rights reserved.

    De Novo Assembly

  • Advantages of SMRT® Sequencing:

    Impact of Long Read Lengths on De Novo Assembly

    Koren S. et. al. (2013) Reducing assembly complexity of microbial genomes with single molecule sequencing.

    Genome Biology, 14:R101

    What can be achieved with infinite coverage given the read length?

    PacBio

    http://genomebiology.com/2013/14/9/R101http://genomebiology.com/2013/14/9/R101http://genomebiology.com/2013/14/9/R101http://genomebiology.com/2013/14/9/R101

  • Easy Bioinformatics Solution to Finish Genomes Using

    Only PacBio® Reads

    Full push-button solution from

    beginning to end

    • Longest reads for continuity

    • All reads for high consensus

    accuracy

    Hierarchical Genome Assembly Process (HGAP)

    Chin CS., et. al. (2013) Nonhybrid , finished microbial genome assemblies from long-read SMRT

    sequencing data. Nat Methods. Jun;10(6):563-9.

    Watch SMRT® Analysis Tutorial: Bacterial Assembly and

    Epigenetic Analysis

    http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.ncbi.nlm.nih.gov/pubmed/23644548http://www.pacificbiosciences.com/Tutorials/Bacterial_Assembly_Epigenetic_Analysis_HGAP/story_html5.htmlhttp://www.pacificbiosciences.com/Tutorials/Bacterial_Assembly_Epigenetic_Analysis_HGAP/story_html5.htmlhttp://www.pacificbiosciences.com/Tutorials/Bacterial_Assembly_Epigenetic_Analysis_HGAP/story_html5.htmlhttp://www.pacificbiosciences.com/Tutorials/Bacterial_Assembly_Epigenetic_Analysis_HGAP/story_html5.html

  • SMRT® Sequencing:

    Gold Standard for microbial De Novo Assembly

  • FIND MEANING IN COMPLEXITY

    © Copyright 2013 by Pacific Biosciences of California, Inc. All rights reserved.

  • Progress of PacBio-Only De Novo Assembly

    Spinach

    1 Gb

    Contig N50

    531 kb Drosophila

    170 Mb

    Contig N50

    4.5 Mb

    Arabidopsis

    120 Mb

    Contig N50

    7.1 Mb Human

    (haploid)

    3.2 Gb

    Contig N50

    4.4 Mb

    Max=44 Mb

    2013 2014

    Bacteria

    1-10 Mb

    Finished

    Genomes

    Yeast

    12 Mb

    Resolve most

    chromosomes

  • PacBio-Only Sequencing of Arabidopsis

    Short-read

    (Ler 1)*

    PacBio reads

    (Ler-0) Improvement

    Est. Genome

    Size (Mb) 110.4 124.6 11.5%

    Polished

    Contigs 4,662 545 8.5X

    N50 Contig

    Length (Mb) 0.067 6.36 95X

    Max Contig

    Length (Mb) 0.46 13.21 29X

    Read Blog Entry Download Arabidopsis

    • Original Col-0 strain assembly (Sanger + manual finishing)

    • ~$70M, several years

    • PacBio® data recently used to assemble Ler-0 strain

    *http://1001genomes.org/data/MPI/MPISchneeberger2011/releases/current/

    http://blog.pacificbiosciences.com/2014/01/data-release-preliminary-de-novo.htmlhttp://datasets.pacb.com.s3.amazonaws.com/2014/Arabidopsis/reads/list.htmlhttp://1001genomes.org/data/MPI/MPISchneeberger2011/releases/current/

  • SNP Discovery with PacBio® Assemblies

    17

    Watch Arabidopsis Genome Recording Other PAG XXII Recordings

    509,836

    95%/68%

    685,104

    92%/72%

    Ler0 ILMN

    PE

    27,106

    PacBio Ler0

    Assembly

    PacBio Cvi

    Assembly

    271,335

    Cvi ILMN

    PE

    55,947

    238,637

    Called SNPs between Cvi and Col

    Mapping of ILMN PE or PacBio Assembly to TAIR 10

    Discovery of single nucleotide polymorphism by PacBio assemblies

    Mapping of ILMN PE to PacBio Assembly

    Ler0 PE – Ler0 Assembly 885 homozygous SNPs

    Cvi PE – Cvi Assembly 838 homozygous SNPs

    SNP frequency 7.5 x 106

    These SNPs are highly enriched in peri-

    centromere and associate with aberrantly

    high coverage number

    http://aa314.gondor.co/webinar/resolving-the-complexity-of-genomic-and-epigenomic-variations-in-arabidopsis/http://blog.pacificbiosciences.com/2014/01/at-plant-animal-genome-workshop-users.html

  • SNP Discovery with PacBio® Assemblies

    18

    Watch Arabidopsis Genome Recording Other PAG XXII Recordings

    PacBio assembly identifies SNPs in Illumina low-

    coverage (unmappable) regions

    Called SNPs between Cvi and Col

    Both

    Illumina only

    PacBio only

    Analysis by Jason Chin

    http://aa314.gondor.co/webinar/resolving-the-complexity-of-genomic-and-epigenomic-variations-in-arabidopsis/http://blog.pacificbiosciences.com/2014/01/at-plant-animal-genome-workshop-users.html

  • Assembling Rice Genomes

    21

    • Watch Richard McCombie's 2014 AGBT presentation

    http://aa314.gondor.co/webinar/a-near-perfect-de-novo-assembly-of-a-eukaryotic-genome-using-sequence-reads-of-greater-than-10-kilobases-generated-by-the-pacific-biosciences-rs-ii/http://aa314.gondor.co/webinar/a-near-perfect-de-novo-assembly-of-a-eukaryotic-genome-using-sequence-reads-of-greater-than-10-kilobases-generated-by-the-pacific-biosciences-rs-ii/http://aa314.gondor.co/webinar/a-near-perfect-de-novo-assembly-of-a-eukaryotic-genome-using-sequence-reads-of-greater-than-10-kilobases-generated-by-the-pacific-biosciences-rs-ii/http://aa314.gondor.co/webinar/a-near-perfect-de-novo-assembly-of-a-eukaryotic-genome-using-sequence-reads-of-greater-than-10-kilobases-generated-by-the-pacific-biosciences-rs-ii/

  • PacBio-Only Sequencing of a Spinach Genome (980 Mb)

    Watch Spinach Genome Recording Other PAG XXII Recordings

    http://aa314.gondor.co/webinar/a-de-novo-draft-assembly-of-spinach-using-pacific-biosciences-technology/http://blog.pacificbiosciences.com/2014/01/at-plant-animal-genome-workshop-users.html

  • Long-Read Shotgun Human Genome Data Release

    Read Blog Post

    • 54x coverage of CHMT1 cell line

    • Avg SMRT® Cell throughput: 608 Mb

    • Avg DNA insert length: 7,680 bp

    • Half of sequenced bases in reads

    greater than: 10,739 bp

    • Longest DNA insert sequenced:

    42,774 bp

    Download Dataset

    http://blog.pacificbiosciences.com/2014/02/data-release-54x-long-read-coverage-for.htmlhttp://datasets.pacb.com/2014/Human54x/fast.html

  • 107 7,4 5,5 24 127 144

    4378

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    2007 2009 2010 2010 2013 2013 2014

    Contig N50 (kb)

    Human Genome De Novo Assemblies Comparison

    2007 2009 2010 2010 2013 2013 2014

    HuRef (Venter) BGI YH KB1 NA12878 RP11_0.7 CHM1 CHM1

    Technology ABI 3730 Illumina GA 454 GS FLX

    Titanium

    Illumina GA 454 GS,

    HiSeq, MiSeq

    HiSeq,

    BAC clones

    PacBio RS II

    Assembly method Celera

    Assembler

    SOAP

    de novo

    Newbler ALLPATHS-LG Newbler Reference

    Guided

    FALCON,

    Celera

    Assembler

    Data sources: HuRef (Venter) (http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.0050254); BGI YH (http://genome.cshlp.org/content/

    20/2/265.abstract Table II); KB1 (http://www.nature.com/nature/journal/v463/n7283/full/nature08795.html); NA12878 (http://www.pnas.org/content/

    early/2010/12/20/1017351108.abstract Table3); CHM1 (http://www.ncbi.nlm.nih.gov/assembly/GCF_000306695.2/)

    # of library types 4 5 2 5 3 NA 1

    Total assembly size

    (Gb) 2.78 2.46 2.79 2.82 2.81 2.83 3.25

  • Comparison of Human CHM1 Assemblies

    2014 PacBio® de novo

    2013 reference-guided

    short-read with BACs

    gaps

    MHC region

    44 MB

    contig

  • The Next Challenge: Assembling Diploid Genomes

    Developing

    bioinformatics and

    visualization tools to

    resolve diploid

    genomes

    Early

    assembly

    result for the

    Ler-0 + Col-0

    “synthetic” diploid Watch Jason Chin’s 2014 AGBT

    presentation “String Graph Assembly for

    Diploid Genomes with Long Reads”

    http://aa314.gondor.co/webinar/string-graph-assembly-for-diploid-genomes-with-long-reads/http://aa314.gondor.co/webinar/string-graph-assembly-for-diploid-genomes-with-long-reads/http://aa314.gondor.co/webinar/string-graph-assembly-for-diploid-genomes-with-long-reads/

  • Benefits of PacBio® Sequencing for Large Genomes

    • PacBio data complements short reads to improve new and existing

    de novo assemblies

    • Improve N50 contig length even with modest 5x coverage

    • Scaffold PacBio long reads to set framework for genome completion

    • Resolve troublesome gaps with low-complexity and repetitive

    genomic regions

    • Catalog transposable elements

    • Conduct gene-specific surveys

    PacBio® De Novo Assembly Homepage

    http://www.pacb.com/applications/denovo/index.htmlhttp://www.pacb.com/applications/denovo/index.htmlhttp://www.pacb.com/applications/denovo/index.htmlhttp://www.pacb.com/applications/denovo/index.htmlhttp://www.pacb.com/applications/denovo/index.htmlhttp://www.pacb.com/applications/denovo/index.html

  • FIND MEANING IN COMPLEXITY

    © Copyright 2014 by Pacific Biosciences of California, Inc. All rights reserved.

    PacBio® Isoform Sequencing of Full-length Transcripts

  • Transcript Diversity

  • Current State of Transcript Assembly

    “The way we do RNA-seq now is…

    you take the transcriptome, you

    blow it up into pieces and then

    you try to figure out how they all

    go back together again… If you

    think about it, it’s kind of a crazy

    way to do things”

    Michael Snyder

    Professor and Chair of Genetics

    Stanford University

    Tal Nawy, End to end RNA Sequencing, Nature

    Methods, v10, n10, Dec . 2013, p1144–1145

    Ian Korf (2013) Genomics: the state of the art in

    RNA-seq analysis, Nature Methods, Nov 26;10(12):1165-6.

    doi: 10.1038/nmeth.2735.

    http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473http://www.ncbi.nlm.nih.gov/pubmed/24296473

  • SampleNet: Iso-Seq Method with Clonetech cDNA Synthesis Kit

    PacBio’s Iso-Seq™ Method for High-quality, Full-length Transcripts

    PolyA mRNA

    AAAAA

    AAAAA

    AAAAA

    AAAAA

    cDNA synthesis

    with adapters

    AAAAA TTTTT

    AAAAA TTTTT

    AAAAA TTTTT

    AAAAA TTTTT

    AAAAA TTTTT

    AAAAA TTTTT

    AAAAA TTTTT

    AAAAA TTTTT

    Size partitioning &

    PCR amplification

    SMRTbell™

    ligation

    PacBio® RS II

    Sequencing

    Experimental Pipeline

    Informatics Pipeline

    Remove adapters

    Remove artifacts

    Clean

    sequence

    reads

    Reads

    clustering

    Isoform

    clusters

    Consensus

    calling

    Nonredundant

    transcript

    isoforms

    Quality

    filtering

    Final isoforms

    PacBio raw

    sequence

    reads

    Raw 5’ primer 3’ primer

    Map to

    reference genome

    Experimental pipeline Informatics pipeline

    PacBio raw

    sequence reads

    Figure 1

    a b

    AAAA

    AAAA

    AAAAA

    AAAAA

    AAAAA

    AAAAA

    AAAAA

    Size partitioning &

    PCR amplification

    cDNA synthesis

    with adapters

    SMRTbell ligation

    RS sequencing

    Remove adapters

    Remove artifacts

    Reads clustering

    Quality filtering

    Clean

    sequence reads

    Nonredundant

    transcript isoforms

    Final isoforms

    TTTT

    TTTT

    Consensus calling

    Isoform clusters

    Map to reference genome

    Evidence-based gene models

    polyA mRNA

    AAAA

    AAAA

    TTTT

    TTTT

    AAAATTTT

    AAAATTTT

    AAAATTTT

    AAAATTTT

    Evidenced-based

    gene models

    (AAA)n

    (TTT)n

    SMRT adapter

    1 2 3 4 5

    6 7 8 9 10

    (TTT)n

    (AAA)n

    Coding sequence polyA

    tail

    SMRT adapter

    DevNet: Iso-Seq wiki page

    (AAA)n Reads of Insert (AAA)n

    http://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttp://www.smrtcommunity.com/Share/Protocol?id=a1q70000000HqSvAAK&strRecordTypeName=Protocolhttps://github.com/PacificBiosciences/cDNA_primer/wikihttps://github.com/PacificBiosciences/cDNA_primer/wikihttps://github.com/PacificBiosciences/cDNA_primer/wikihttps://github.com/PacificBiosciences/cDNA_primer/wikihttps://github.com/PacificBiosciences/cDNA_primer/wikihttps://github.com/PacificBiosciences/cDNA_primer/wiki

  • No Assembly required

    Multiple isoforms observed at a single loci

    Tseng, PAG 2014, “ Isoform Sequencing: Unveiling the Complex Landscape of the Eukaryotic Transcriptome on the

    PacBio® RS II” (poster)

    Rat heart Rat lung

    https://s3.amazonaws.com/files.pacb.com/pdf/Isoform+Sequencing+-+Unveiling+the+Complexity+of+the+Eukaryotic+Transcriptome.pdfhttps://s3.amazonaws.com/files.pacb.com/pdf/Isoform+Sequencing+-+Unveiling+the+Complexity+of+the+Eukaryotic+Transcriptome.pdfhttps://s3.amazonaws.com/files.pacb.com/pdf/Isoform+Sequencing+-+Unveiling+the+Complexity+of+the+Eukaryotic+Transcriptome.pdfhttps://s3.amazonaws.com/files.pacb.com/pdf/Isoform+Sequencing+-+Unveiling+the+Complexity+of+the+Eukaryotic+Transcriptome.pdf

  • “Gene Identification, Even in Well-Characterized Human

    Cell Lines and Tissues, is Likely Far From Complete”

    Au et al. (2013) Characterization of the human ESC transcriptome by hybrid sequencing. PNAS doi:

    10.1038/pnas.1320101110.

    8,048 RefSeq-annotated, full-length isoforms and 5,459

    predicted isoforms

    “Over one-third of these are novel isoforms, including 273

    RNAs from gene loci that have not previously been identified”

    http://www.ncbi.nlm.nih.gov/pubmed/24282307http://www.ncbi.nlm.nih.gov/pubmed/24282307http://www.ncbi.nlm.nih.gov/pubmed/24282307http://www.ncbi.nlm.nih.gov/pubmed/24282307http://www.ncbi.nlm.nih.gov/pubmed/24282307http://www.ncbi.nlm.nih.gov/pubmed/24282307http://www.ncbi.nlm.nih.gov/pubmed/24282307

  • ABRF NGS RNA-Seq Comparative Study:

    Iso-Seq™ Application provides Most Uniform 5’ to 3’ Coverage

  • Splice Landscape of Neurexin 1a

    Treutlein et al. (2014) Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA

    sequencing. PNAS. doi:10.1073/pnas.1403244111

    Nrxn1α domain

    structure

    Exons

    • green – present

    • white – absent

    Splice isoform

    abundance

    (2,574 full-length

    Nrxn1α mRNAs

    sequence reads)

    6 SMRT® Cells

    247 unique

    alternatively-

    spliced

    isoforms

    http://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstracthttp://www.pnas.org/content/early/2014/03/12/1403244111.abstract

  • Confidence

    Without

    PacBio

    reads

    Including

    PacBio

    reads

    Additional ~5000

    gene models

    validated

    PacBio® Sequences Used for

    Gene Model Validation in Lettuce

    PAG 2014, Marilena Christopouku “Targeted transcriptome analysis using PacBio sequencing to dissect multi-gene

    families encoding NBS-LBR resistance proteins in lettuce”

    https://pag.confex.com/pag/xxii/webprogram/Paper10681.htmlhttps://pag.confex.com/pag/xxii/webprogram/Paper10681.htmlhttps://pag.confex.com/pag/xxii/webprogram/Paper10681.htmlhttps://pag.confex.com/pag/xxii/webprogram/Paper10681.htmlhttps://pag.confex.com/pag/xxii/webprogram/Paper10681.htmlhttps://pag.confex.com/pag/xxii/webprogram/Paper10681.html

  • PacBio® Iso-Seq Data Used to Confirm Predicted

    Scaffolds in Norway Spruce Genome

    39

    PAG 2014: Yao-Cheng Lin “PacBio cDNA sequencing of Norway spruce”

    14 SMRT® Cells

    of PacBio data

    using early

    chemistry &

    protocols

    https://pag.confex.com/pag/xxii/webprogram/Paper9725.html

  • Selection of Additional Customer References/Publications

    Case Study: A SMRT® Approach for Finishing

    Plant and Animal Genomes

    Click on graphic to hyperlink to example

    http://files.pacb.com/pdf/CS_SMRTApproach_FinishingPlantAnimalGenomes.pdfhttp://files.pacb.com/pdf/CS_SMRTApproach_FinishingPlantAnimalGenomes.pdfhttp://files.pacb.com/pdf/CS_SMRTApproach_FinishingPlantAnimalGenomes.pdfhttp://files.pacb.com/pdf/CS_SMRTApproach_FinishingPlantAnimalGenomes.pdfhttp://files.pacb.com/pdf/CS_SMRTApproach_FinishingPlantAnimalGenomes.pdf

  • Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, and Iso-Seq are trademarks of Pacific

    Biosciences in the United States and/or other countries. All other trademarks are the sole property of their respective owners.