functional properties of ~-iactoglobulin phosphorylated ... functional properties of ~-iactoglobulin...

10
Lait (1995) 75, 503-512 © Elsevier/INRA 503 Original article Functional properties of ~-Iactoglobulin phosphorylated in the presence of different aliphatic amines M Sitahy*, JM Chabert 1, Y Papineau 2, T Haertlé 1 1 Laboratoire d'étude des interactions des molécules alimentaires; 2 Laboratoire de biochimie et de technologie des protéines, INRA, BP 1627, 44316 Nantes cedex 03, France (Received 24 November 1994; accepted 12 May 1995) Summary - Phosphorylation of ~-Iactoglobulin was carried out with 20, 40 and 80 mol POCI:!mol pro- tein in the presence of different aliphatic amines. The physicochemical properties of the modified pro- teins changed according to the nature of amine (tertiary or primary; shorter or longer aliphatic chain). The use of butylamine during the phosphorylation of ~-Iactoglobulin with POCI 3 resulted in a low phos- phorylation yield (2-4 mol P/mol protein), conferring, however, excellent foaming and emulsifying properties to the phosphobutylated protein. The use of longer aliphatic primary amines (8-12 C) as bases and nucleophiles du ring the phosphorylation of ~-Iactoglobulin gave rise to low phosphorylation, reduced solubility, poor foaming and emulsifying properties. ~-Iactoglobulin 1 phosphorylation 1 aliphatic amine 1 functional properties Résumé - Propriétés fonctionnelles de la ~-Iactoglobuline phosphorylée en présence de dif- férentes amines aliphatiques. La {3-lactoglobuline a été phosphorylée en utilisant différents rapports molaires d'oxychlorure de phosphore/mole de protéine (20, 40 et 80) et en présence de différentes amines aliphatiques. Les propriétés physicochimiques des protéines modifiées varient en fonction du type de l'amine utilisée (tertiaire ou primaire; cheîne aliphatique plus ou moins longue). L'utilisation de butylamine pendant la phosphorylation de la {3-lactoglobuline par POC/ 3 a conduit à un faible taux de phosphorylation (2-4 mol P/mol protéine), mais à d'excellentes propriétés moussantes et émulsi- fiantes de la protéine phosphobutylée. L'utilisation d'amines primaires aux plus longues chsînes (8-12 C) comme bases et agents nucléophiles durant la phosphorylation de la {3-lactoglobuline a donné naissance à des protéines faiblement phosphorylées, moins solubles et présentant de moins bonnes propriétés moussantes et émulsifiantes. {3-lactoglobuline / phosphorylation / amine aliphatique / propriétés fonctionnelles • On a fellowship from INRA France; Permanent address: Biochemistry Department, Faculty of Agriculture, Zagazig University, Egypt.

Upload: others

Post on 21-Mar-2020

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

Lait (1995) 75, 503-512© Elsevier/INRA

503

Original article

Functional properties of ~-Iactoglobulinphosphorylated in the presence of different

aliphatic amines

M Sitahy*, JM Chabert 1, Y Papineau 2, T Haertlé 1

1 Laboratoire d'étude des interactions des molécules alimentaires;2 Laboratoire de biochimie et de technologie des protéines,

INRA, BP 1627, 44316 Nantes cedex 03, France

(Received 24 November 1994; accepted 12 May 1995)

Summary - Phosphorylation of ~-Iactoglobulin was carried out with 20, 40 and 80 mol POCI:!mol pro-tein in the presence of different aliphatic amines. The physicochemical properties of the modified pro-teins changed according to the nature of amine (tertiary or primary; shorter or longer aliphatic chain).The use of butylamine during the phosphorylation of ~-Iactoglobulin with POCI3 resulted in a low phos-phorylation yield (2-4 mol P/mol protein), conferring, however, excellent foaming and emulsifyingproperties to the phosphobutylated protein. The use of longer aliphatic primary amines (8-12 C) as basesand nucleophiles du ring the phosphorylation of ~-Iactoglobulin gave rise to low phosphorylation,reduced solubility, poor foaming and emulsifying properties.

~-Iactoglobulin 1phosphorylation 1 aliphatic amine 1 functional properties

Résumé - Propriétés fonctionnelles de la ~-Iactoglobuline phosphorylée en présence de dif-férentes amines aliphatiques. La {3-lactoglobuline a été phosphorylée en utilisant différents rapportsmolaires d'oxychlorure de phosphore/mole de protéine (20, 40 et 80) et en présence de différentesamines aliphatiques. Les propriétés physicochimiques des protéines modifiées varient en fonction dutype de l'amine utilisée (tertiaire ou primaire; cheîne aliphatique plus ou moins longue). L'utilisation debutylamine pendant la phosphorylation de la {3-lactoglobuline par POC/3 a conduit à un faible taux dephosphorylation (2-4 mol P/mol protéine), mais à d'excellentes propriétés moussantes et émulsi-fiantes de la protéine phosphobutylée. L'utilisation d'amines primaires aux plus longues chsînes (8-12C) comme bases et agents nucléophiles durant la phosphorylation de la {3-lactoglobuline a donnénaissance à des protéines faiblement phosphorylées, moins solubles et présentant de moins bonnespropriétés moussantes et émulsifiantes.

{3-lactoglobuline / phosphorylation / amine aliphatique / propriétés fonctionnelles

• On a fellowship from INRA France; Permanent address: Biochemistry Department, Faculty ofAgriculture, Zagazig University, Egypt.

Page 2: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

504 M Sitohy et al

INTRODUCTION

There is an increasing demand for proteinswith changed functional properties eitherfor food or non-food applications. Chemicalphosphorylation may provide a powerlul toolfor a change of the physicochemical prop-erties of the proteins (Yoshikawa et al, 1981;Hirotsuka et al, 1984; Huang and Kinsella,1987; Chobert et al, 1989a; Matheis, 1991).lt may be very efficient if the reaction con-ditions are carefully designed (Medina et al,1992; Sitohy et al, 1994). Recently, it wasfound possible to phosphorylate proteinsunder mild conditions avoiding oligomer-ization (Sitohy et al, 1994, 1995). Theseconditions included the use of low molarratio of phosphorus oxychloride (POCI3) andstoichiometric addition of a nucleophile ami-dating the phosphoryl groups of the modifiedproteins. The aim of this work was to com-pare the physicochemical and functionalproperties of ~-Iactoglobulin phosphorylatedwith POCI3 in the presence of differentaliphatic amines in arder to reveal the effectsof aliphatic chain length.

MATERIALS AND METHODS

Materials

(3-Lactoglobulin (a mixture of variants A and B)was purchased from Laiteries Triballat(NoyaINilaine, France) and purified accordingto the procedure of Mailliart and RibadeauDumas (1988). Ali other chemicals were reagentgrade.

Phosphorylation

The procedure of Sitohy et al (1994) was appliedas follows: POCI3 was dissolved in carbon tetra-chloride at 20%; amounts of phosphorus oxy-

chloride equivalent to molar ratios (MR) of 20, 40and 80 mol POCI:fmol protein were added drop-wise to 1% aqueous (3-lactoglobulin solution dur-ing 30 min. Six-fold molar excess of aliphaticamines (triethylamine -TEA, butylamine, hexy-lamine, octylamine, decylamine or dodecylamine)per mol POCI3 (if otherwise stated) were added toprotein solutions before reaction start except fordodecylamine, which because of its poor solu-bility in water was dissolved in small aliquot ofethyl alcohol before being added to the reactionmedium. Six-fold excess of this base wasrequested to neutralize protons generated dur-ing the hydrolysis of POCI3. This simple methodmakes it possible to control the pH during thereaction. The reaction was carried out in an ice-bath (G-5°C). The reaction medium was left for 10min for complete separation of the organic phasefrom the aqueous layer, which was then recov-ered and dialysed against several changes ofdistilled water for 4 d and freeze-dried. Phos-phorus content was determined in both nativeand modified (3-lactoglobulin according to BartleU(1959) as modified by Sitohy et al (1994). Theextent of phosphorylation was determined by sub-tracting the phosphorus content in the native fromthat in the modified protein.

Electrophoresis

Urea-PAGE was carried out according to the pro-cedure described by Chobert et al (1989b). SOS-PAGE was performed according to Laemmli(1970) on 15% acrylamide running gel and 3.2%acrylamide stacking gel. Electrofocusing was per-formed in the pH range of 3-7 on ready-to-useisoelectric focusing gels (FMC, Rockland, USA).A marker kit of pl in the range of 3.5-7.35 wasused (Pharmacia LKB, Uppsala, Sweden).

Surface hydrophobicity measurement

Surface hydrophobicity was measured accord-ing to Halpin and Richardson (1985) in nativeand modified prote in solutions (10-<>mol/Il pre-pared in 0.01 molli phosphate buffer, pH 7, using1-anilinonaphthalene-8-sulphonate (ANS) ashydrophobic probe.

Page 3: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

~-Lactoglobulin phosphorylation

Protein solubilityandemu~fflcaffonproperlres

Protein pH solubility curves and emulsifying activ-ity were assayed in the pH range of 2-7 accord-ing to the procedure outlined by Chobert et al(1991). Emulsifying stability was measuredaccording to Chobert et al (1991) with slight mod-ifications.

Foaming properties

The foaming properties of native and phospho-rylated ~-Iactoglobulin solutions (0.4 mg/ml) pre-pared in 0.1 molli phosphate buffer, pH 7.0, weremeasured with a recently described apparatus(Guillerme et al, 1993; Loisel et al, 1993).

RESUL TS AND DISCUSSION

Extentofphosphorylaffon

The phosphorylation yield of ~-Iactoglobulinincreased proportionally to the molar ratioof POCliprotein, especially in the presenceof tertiary or short chain primary amines(table 1).Triethylamine addition was the mostefficient for the phosphorylation reaction fol-lowed by hexylamine then butylamine. Thisis due to the different basicity and reactivity

505

of these 3 amines. Triethylamine plays ascavenger role in this reaction by bindinggenerated HCI which otherwise wouldhydrolyse phosphoamide bonds. Other stud-ied amines with long aliphatic chains (8-12C) were associated with poor phosphoryla-tion yields, possibly due to their highhydrophobicities which might make phos-phoamidated protein molecules less solu-ble and hence less accessible for furtherphosphorylation. Poor solubility wasobserved for proteins phosphorylated in thepresence of octylamine, decylamine anddodecylamine. The convenience of usingthe tertiary amine TEA as a base for thephosphorylation reaction may be due to itshigh basicity, making it possible to quenchthe excess of produced HCI, a relatively lowhydrophobicity which leads to products weilsoluble in the reaction medium and hencemore accessible to further phosphorylation.

Electrophoreffc patterns

ln general, the urea-PAGE patterns of thephosphorylated ~-Iactoglobulins showedincreased migration towards the anode dueto their increased contents of the negativelycharged phosphoryl groups. The migrationrate of the samples phosphorylated in thepresence of butylamine increased propor-

Table 1. Extent of ~-Iactoglobulin phosphorylation (mol P/mol protein) with different molar ratios ofPOCI3 in the presence of different aliphatic amines (6 mol amine/mol POCI3).Étendue de la phosphorylation de la f3-lactoglobuline, à différents rapports molaires de POCI3 et enprésence de diverses amines aliphatiques (6 mol amine/mol PO CI;}.

Molarratio Triethyl- But yl- Hexyl- Octyl- Decyl- Dodecyl-(POC/;/protein) amine amine amine amine amine amine

(mol P/mol protein)

20 7 2 2 2 2 240 8 3 5 3 3 380 9 4 7 3 3 3

Page 4: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

506 M Sitohy et al

tionally to the molar ratio of POC1iprotein oramine/POCl3; this was due to the increaseof the phosphorylation yield and amidation(fig 1A).

Hexylamine gave rise to similar elec-trophoretic patterns while the amines withlonger aliphatic chains (8-12 C) did not givec1ear-cut results because of their poor solu-bility (data not shown). The SDS-PAGE pat-terns of the samples phosphorylated in thepresence of butylamine showed negligiblecross-linking (fig 18), and the same was vis-ible in the case of hexylamine (data notshown). The isoelectrofocusing patterns ofthe samples phosphorylated in the presenceof either butylamine (fig 2A) or hexylamine(fig 28) demonstrated 2 separated regions of

N12345N

+

A

bands with different isoionic points distinctfrom samples phosphorylated in the pres-ence of triethylamine (fig 28). This separationis not only due to a low extent of phospho-rylation which gives rise to heterogenousproducts but also to the covalent binding ofaliphatic amine to the protein phosphorylgroups by phosphoamide bonds. Primaryamines may bind to protein phosphorylgroups either through amide or salt bondswhile tertiary amines bind exclusively throughquaternary salt bonds. The modified pro-teins with phosphoamide bonds displaysmaller negative charges. The soluble frac-tions of the proteins phosphorylated in thepresence of longer aliphatic amines (fig 2C)showed only 1 group of bands with small

N12345NS

94.067.043.0

30.0

20.\

14.4

B

Fig 1. Urea- (A) and SDS-PAGE (8) electrophoretic patterns of native (N) and phosphorylated ,B-Iac-toglobulin with 20, 40 and 80 mol POCI:!mol protein in the presence of 6 mol butylamine/mol POCI3 (sam-pies 1, 2 and 3, respectively) or with 80 mol POCI:!mol protein in the presence of 5 and 4 mol but y-lamine/mol POCI3 (samples 4 and 5, respectively). Sam pie S is molecular weight marker kit.Profils électrophorétiques en présence d'urée (A) et de SOS (B) de la f3-lactoglobuline native (N) ou phos-phorylée avec 20, 40 ou 80 mol P0Cl:/mol protéine, en présence de 6 mol butylamine/mol POCI3(échantillons 1,2 et 3, respectivement) ou avec 80 mol POC'!mol protéine en présence de 5 et 4 molbutylamine/mol POCI3 (échantillons 4 et 5, respectivement). Échantillons S : marqueurs de poidsmoléculaires.

Page 5: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

I3-Lactoglobulin phosphorylation 507

S N [ 2 3 N ABC S N 4 5 6 N 7 8 9 S N 10 [[ N 13 [4 N

p.I

3.50 ,..4.55 :5.20 .... _ e

.. ...fi

e... ..+

••• ,I- ':5.85

6.55 ::-

6.857.35

A B cFig 2. Isofocusing electrophoretic patterns of 13-lactoglobulin phosphorylated with POCI3 in the presenceof ditferent aliphatic amines. (A) Butylamine; samples 1-3 prepared with 20, 40 and 80 mol P0Cl:/molprotein and 6 mol amine/mol POCI3, respectively, and samples A-C prepared with 80 mol POCI3/molprote in in the presence of 4, 5 and 6 mol amine/mol POCI3. (B) Triethylamine (samples 4-6) andhexylamine (samples 7-9) prepared with 20, 40 and 80 mol POCI3/mol protein, respectively. (C) Octy-lamine (samples 10 and 11, prepared with 40 and 80 mol POCI3/mol protein); decylamine (sample 13)and dodecylamine (sample 14) prepared with 80 mol POCI~mol protein. Samples N and S are native13-lactoglobulin and isofocusing marker, respectively.Électrofocalisation de la 13-lactoglobuline phosphorylée par POGI3 en présence de différentes aminesaliphatiques. (A) Butylamine .. échantillons 1 à 3 respectivement préparés avec 20, 40 et 80 molPOGI:/mol protéine et 6 mol amine/mol POGI3 .. échantillons A à G respectivement préparés avec80 mol POGI:/mol protéine en présence de 4, 5 et 6 mol amine/mol POGI3. (8) Triéthylamine (échan-tillons 4 à 6) et hexylamine (échantillons 7 à 9) préparés respectivement avec 20, 40 et 80 molPOGI:/mol protéine. (C) Octylamine (échantillons 10 et 11 préparés avec 40 et 80 mol POGI:/molprotéine) .. décylamine (échantillon 13) et dodécylamine (échantillon 14) préparés avec 80 molPOGI:/mol protéine. Échantillon N : {3-lactoglobuline native. Échantillon S :marqueurs de pl.

change in isoionic point from the native pro-tein, which may indicate high content ofphosphoamide bonds. lt is evident that longchain aliphatic amines confer considerablehydrophobicity to the product.

Surlacehydrophobwny

Surface hydrophobicity was reduced byphosphorylation in the presence of aliphaticamines (table Il) as a result of introducingan excess of phosphate groups. Phospho-rylation in the presence of triethylaminereduced the most /3-lactoglobulin surfacehydrophobicity in comparison with primary

aliphatic amines able to amidate phospho-rylated protein. This is due to higher phos-phorylation yields in the presence of TEAand amide formation between the primaryamines and the phosphoryl groups, as canbe seen on the isoelectrofocusing patterns ofthe modified proteins. This conclusion is con-firmed by the observation that a samplephosphorylated in the presence of TEAshows higher reduction in surface hydropho-bicity than a protein with the same extent ofphosphorylation (7 mol P/mol protein) in thepresence of hexylamine (tables l, Il). It can beconcluded that the aliphatic amine can con-siderably increase the hydrophobicity of thephosphorylated protein.

Page 6: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

508 M Sitohy et al

Table II. Surface hydrophobicity of ~-Iactoglobulin phosphorylated with POCI3 in the presenceof different amines (6 mol amine/mol POCI3).Hydrophobicité de surface de la [3-lactoglobuline phosphorylée par POCI3 en présencede différentes amines (6 mol amine/mol POGlsJ.

Molarratio Maximum fluorescencePOG'!protein

Triethylamine Butylamine Hexylamine

0 0.73 0.73 0.7320 0040 0.52 0.6740 0.31 0048 0.6280 0.31 0045 0.55

Protein solubility

The solubility curves of various preparationsof ~-Iactoglobulin phosphorylated in thepresence of aliphatic primary aminesshowed a consequent shift of the isoelec-tric points towards the acidic pHs (fig 3).The extent of this shift relates weil with thephosphorylation yield (table 1).The minimalsolubility of the modified proteins wasreduced considerably when compared tothe native ~-Iactoglobulin. The conforma-tional changes due to the denaturation andadditional negative charges of grafted phos-phates may account for this phenomenon(Sitohy et al, 1995). In addition, the pH rangeof the minimal solubility was larger for thephosphorylated ~-Iactoglobulins. The sam-pies phosphoamidated with 80 mol

Fig 3. Protein pH solubility curves for native (e)and phosphorylated ~-Iactoglobulin with 20 (_), 40(A) and 80 (T) mol POCI3/mol protein, respec-tively, in the presence of butylamine (1) or hexy-lamine (II) added as 6 mol amine/mol POCI3.Profils de solubilité en fonction du pH de la [3-lac-toglobuline native (e) et phosphorylée respec-tivement par 20 (_), 40 (....) et 80 (Y') molPOGI;/mol protéine, en présence de butylamine(1) ou d'hexylamine (II) à raison de 6 molamine/mol POGI3.

POCI3/mol protein in the presence of but y-lamine showed broad solubility minimum inthe pH range of 2.5--5.5. This may be due tosignificant heterogeneity induced by lowphosphorylation yield (4 mol P/mol protein)

.---------------,1100 -

t".80 -

~:.ë;:l

'0'"=so..~

60 -

40 -

20 -

2 3 4 5 678

r--------------, II100

t"..è 80:=:.ë;:l 60'0'"= 40]8~ 20

2 3 4 5 6 7 8 9

pH

Page 7: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

p-Lactoglobulin phosphorylation 509

and several possible modes of substitutionof 8 remaining reactive mixed anhydridegroups by primary amines (4 x -NH-POCI2).

However, ~-Iactoglobulins phosphorylatedin the presence of butylamine were solubleat neutral pHs (6-7), while those phospho-rylated in the presence of hexylamineshowed 15-20% reduction in solubility dueto higher polymerization visible in the SOS-PAGE electrophoregrams of these proteins.The use of higher aliphatic amines (8-12C) in the phosphorylation and amidation of~-Iactoglobulin resulted in higher reductionsin solubility (60-80%) at the neutral pHs(data not shown) as a result of the graftingof long aliphatic chains.

Emulsifying properties

As expected, the pH curves of the emulsi-fying activity index (EAI) of ~-Iactoglobulinphosphorylated in the presence of TEA (fig4 III) was characterized by a displacement ofthe minimal EAI towards the acidic pHs fol-lowing the displacement of the isoionicpoints (fig 28). Consequently, EAI wasimproved in the pH range of 4-5.5, whilethe samples phosphorylated in the pres-ence of either butylamine or hexylamineshowed EAI enhancement at ail pHs andthe most in the pH range of 6-7. This dis-tinction in EAI may be due to different sub-stitutions of phosphoryls either hydrated tomono-dihydro-phospho-monoamides or sub-ject to secondary amidation with primaryaliphatic amines. The short chain primaryamines modify slightly the charges of thephosphates forming phosphoamide bonds.This decreases the negative charges of theprotein phosphates enough to enhance theirinterfacial properties. The electrostaticcharges should not be too high, since theymight delay oil-protein interaction. Thephospho-amidation of ~-Iactoglobulin withamines (8-12 C) leads to considerable dete-rioration in the EAI due to the reduced sol-

200 ...,------------,

160

120

80

200 ...,----------,------,

~ 160""el)

g- 120i:i

II

80

200 ...,---------------,

160

III

120

80

2 3 4 5 678

pH

Fig 4. Emulsifying activity index (EAI) profiles ofnative (e) and phosphorylated p-Iactoglobulinwith 20 (_), 40 (A) and 80 (T) mol POCVmolprotein, respectively, in the presence of but y-lamine (1), hexylamine (II) or triethylamine (III)added as 6 mol amine/mol POCI3. Mean of 4determinations.Index d'activité émulsifiante de la [3-lactoglobu-fine native (e) et phosphorylée respectivementpar 20 (_), 40 (Â.) et 80 (Y') mol POCI:/mol pro-téine, en présence de butylamine (1), d'hexy-lamine (II) ou de triéthylamine (1/1) à raison de 6mol amine/mol POCI3. Moyenne de 4 détermi-nations.

Page 8: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

510 M Sitohy et al

ubility of the modified proteins (data notshown). However, the emulsifying stabili-ties of the ~-Iactoglobulin phosphorylatedin the presence of TEA, butylamine andhexylamine were exceptionally improved(fig 5). The enhanced charge and hydrationof the phosphorylated proteins can give riseto negatively charged thick interfacial filmswhich are essential for good emulsifyingstability (Halling, 1981; Huang and Kinsella,1987).

Foaming properties

An improvement of the foaming capacity,as indicated by the maximal liquid content,can be observed when proteins are phos-phorylated in the presence of triethylamine,butylamine or hexylamine (table III). Thelargest effect is obtained with butylamineand for ail aliphatic amines with the lowestsubstitution yield. No further improvementis observed when molar ratio is higher than20.

Foam stability is principally estimatedfrom the evolution of the foam volume. Vol-ume stability is enhanced in the presenceof ~-Iactoglobulin phosphorylated or phos-phoamidated with butylamine. On the otherhand, the amidation of grafted on the proteinphosphoryl with hexylamine results in anintensive foam destabilization. For the high-est substitution yields, the foam is almostcompletely destroyed after 20 min. Thelargest decrease of the rate of liquiddrainage is also obtained for the lowest sub-stitution yields in the presence of phospho-rylated or phosphoamidates with butylamine~-Iactoglobulin. The best foaming proper-ties cou Id be obtained when protein phos-phorylation yield was relatively low (2-4 molP/mol protein) and short chain primaryamine (butylamine) was grafted during thereaction. The use of butylamine kept thephosphorylation relatively low and reducedthe charge of the phosphates, inducing good

foaming properties. The increase of thephosphorylation extent in the presence oftertiary amine gives rise to high negativecharges which deteriorate the foaming prop-erties because of strong electrostatic repul-sion. This was observed in the case of ~-lactoglobulin phosphorylated with 80 molPOClymol protein in the presence of TEA

200 .---------------,

160

120

80

40

160 II

~ 120I>J)

':s 80--<r.l

40

0

160 III

120

80

40

O+----,--,--,--,-.,..-----,-----j

2 3 4 5 678

pH

Fig 5. Emulsifying stability profiles for the samplesindicated in figure 4.Stabilité des émulsions caractérisées en figure 4.

Page 9: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

Table III. Foaming properties of ~-Iactoglobulin phosphorylated with POCI3 in the presence of different aliphatic amines (6 mol amine/mol POCI3).

Propriétés moussantes de la p-Iactoglobuline phosphorylée en présence de différentes amines aliphatiques (6 mol amine/mol POCI:;).

Molar ratio LVmax FV HD "t:O

POCI:/protein r-OlQ.0

A B C A B C A B C (Q

0"CTS.S'

0 2.24 ± 0.02 2.24 ± 0.02 2.24 ± 0.02 44.6 ± 0.11 44.6 ± 0.11 44.6 ± 0.11 422 ± 15 422 ± 15 422 ± 15 "0zr0CIl

20 4.85 ± 0.05 7.97 ± 0.09 6.16 ± 0.08 49.0 ± 0.15 47.6 ± 0.16 38.0 ± 0.12 640 ± 20 685 ± 25 450 ± 15 "0zr0-<

40 4.37 ± 0.04 7.85±0.11 6.06 ± 0.12 47.8 ± 0.22 47.0±0.18 15.0 ± 0.18 572 ± 11 647 ± 15 445 ± 11 ![z::J

80 4.29 ± 0.05 7.85 ± 0.14 4.44 ± 0.05 47.2 ± 0.30 43.6 ± 0.21 15.0±0.13 550 ± 12 560 ± 16 420 ± 10

A: triethylamine; B: butylamine; C: hexylamine; LV max: maximum Iiquid volume in loam (ml); FV: loam volume alter 20 min (ml); HD: hall-Iile 01 loam(s).Mean 01 4 determinations.

(JI............

Page 10: Functional properties of ~-Iactoglobulin phosphorylated ... Functional properties of ~-Iactoglobulin phosphorylated inthe presence of different aliphatic amines M Sitahy*,JM Chabert

512 M Sitohy et al

(9 mol P/mol protein). Contiguous foam bub-bles mutually repel each other at a criticaldistance due to the electrostatic repulsionbetween negative charged proteins on thesurface films, minimizing the coalescence(Graham and Philips, 1976; Kinselia, 1981).The charge increase may repel the proteinsin the surface films beyond the critical dis-tance and enhances foam coalescence. Asexpected, the use of longer primary aminesdu ring the phosphorylation of ~-Iactoglob-ulin resulted in bad foaming properties (datanot shown). This resulted fram their poorsolubility since only soluble prateins cancontribute to foaming (Halling, 1981).

REFERENCES

Bartlett GR (1959) Phosphorus assay in column chro-matography. J Biol Chem 234, 466-468

Chobert JM, Sitohy M, Whitaker JR (1989a) Covalentattachment 01 phosphate and amino acids to zein. SciAliments 9,749-761

Chobert JM, Touati A, Bertrand-Harb C, DalgalarrondoM, Nicolas MG (1989b) Solubility and emulsilyingproperties 01 kappa casein and its caseino-macropeptide. J Food Biochem 13, 457-473

Chobert JM, Touati A, Bertrand-Harb C, DalgalarrondoM, Nicolas MG, Haertlé T (1991) ln vitro proteolysisand lunctional properties 01 reductively alkylated [3-casein derivatives. J Dairy Res 58, 285-298

Graham DE, Philips MC (1976) The conlormation 01proteins at air-water interface and their role in sta-bilising loams. In: Foams (RJ Akers, ed) AcademiePress, London, UK, 237

Guillerme C, Loisel W, Bertrand D, Popineau Y (1993)Study 01 loam stability by video image analysis: rela-tionship with the quantity 01 liquid in the loam. J Tex-ture Stud24, 287-302

Halling PJ (1981) Protein stabilised loams and emul-sions. CRC Crit Rev Food Sci Nutr 15, 155-203

Halpin MI, Richardson T (1985) Selected lunctionalitychanges 01 [3-lactoglobulin upon esterilication 01 sidechain carboxyl groups. J DairySci68, 3189-3198

Hirotsuka M, Taniguchi H, Narita H, Kito M (1984) Func-tionality and digestibility 01 a highly phosphorylatedsoybean protein. Agric Biol Chem 48, 93-100

Huang YT, Kinsella JE (1987) Ellect 01 phosphorylationon emulsilying and loaming properties and digestibil-ity 01 yeast protein. J Food Sci 52, 1684-1688

Kinsella JE (1981) Functional properties 01 proteins:possible relation between structure and lunction inloams. Food Chem 7,273-279

Laemmli UK (1970) Cleavage 01 structural proteins dur-ing the assembly 01 the head 01 the bacteriophageT4. Nature 227,680-685

Loisel W, Guéguen J, Pop ineau Y (1993) A new appa-ratus lor analysing loaming properties 01 proteins.ln: Food proteins: structure and functionality (KDSchwenke, R Mothes, eds) VCH, Weinheim, 320-323

Mailliart P, Ribadeau Dumas B (1988) Preparation 01 [3-lactoglobulin and [3-lactoglobulin Iree proteins lromwhey retentate by NaCI salting out at low pH. J FoodSci53,343-347

Matheis G (1991) Phosphorylation 01 food proteins withphosphorus oxychloride: improvement 01 lunctionaland nutritional properties. Food Chem 39, 13-26

Medina AL, Colas B, Le Meste M, Renaudet l, Lorient D(1992) Physicochemical and dynamic properties 01caseins modilied by chemical phosphorylation.J Food Sci 57,617-620

Sitohy M, Chobert JM, Haertlé T (1994) Inlluence 01 thereaction conditions on the chemical phosphorylation01 milk proteins. Milchwissenschaft49, 610-615

Sitohy M, Chobert JM, Haertlé T (1995) Phosphoryla-tion 01 [3-lactoglobulin under mild conditions. J AgricFood Chem 43, 59-62

Yoshikawa M, Sasakai R, Chiba H (1981) Ellect olchem-ical phosphorylation of bovine case in componentson the properties related to casein micelle lorma-tion. Agric Biol Chem 45, 909-914