functional nanostructured polymer - metal …mcd18:... · 2014. 1. 28. · july 23, 2008 1 demirel...

58
July 23, 2008 1 Demirel Lab 2008 FUNCTIONAL NANOSTRUCTURED POLYMER FUNCTIONAL NANOSTRUCTURED POLYMER - - METAL INTERFACES METAL INTERFACES Melik C. Demirel, PhD Pearce Assistant Professor of Engineering Materials Research Institute & Huck Life Institute of Sciences Pennsylvania State University

Upload: others

Post on 27-Jan-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

  • July 23, 2008

    1

    Demirel Lab 2008

    FUNCTIONAL NANOSTRUCTURED POLYMERFUNCTIONAL NANOSTRUCTURED POLYMER--

    METAL INTERFACESMETAL INTERFACES

    Melik C. Demirel, PhDPearce Assistant Professor of Engineering

    Materials Research Institute & Huck Life Institute of Sciences

    Pennsylvania State University

  • 2

    Demirel Lab 2008

    Funding �Young Investigator Award, Department of Defense

    �Office of Naval Research

    �Penn State University

    �Institute for Complex Adaptive Matter (ICAM)

    �Johnson and Johnson (USA)

    �Kisco International (Japan)

    �BD International (USA)

    Acknowledgement

    ICAM

    ICAM

  • 3

    Demirel Lab 2008

    Polymer / Boeing

    Polymers are needed in

    energy, sustainability,

    clean water, health care,

    informatics, defense

    and security.

    Boeing 787:

    This new plane is 50%

    by weight and 80% by

    volume polymer-based

    compositeBoeing 787

  • 4

    Demirel Lab 2008

    Nanofiber Polymers

    J. A. Matthews, et al.

    Biomacromolecules 2002, 3, 232 –

    238.

    ELECTROSPINNINGELECTROSPINNING

    M. Steinhart,et al., Adv.

    Mater. 2003, 15, 706.

    TEMPLATE BASED WETTING

    rotate

    OBLIQUE ANGLE

    POLYMERIZATION

    Bottom-up Top-Down

    Demirel et al, Langmuir,

    2007

  • 5

    Demirel Lab 2008

    Similar Architectures in Nature

    Cicada orni wings

    Gecko footpad

    Structured Structured

    PolymersPolymers

    100100--200nm structures with high aspect ratio (micron scale length)200nm structures with high aspect ratio (micron scale length)

    Duck FeatherButterfly wings

  • 6

    Demirel Lab 2008

    OBJECTIVE

    We are creating nanostructured polymers with controlled physicochemical properties, such as mechanical properties, structure (morphology) and chemistry for applications in the area of nanostructured surface coatings

  • 7

    Demirel Lab 2008

    TECHNICAL APPROACH

    Our method is a bottom-up process based on oblique angle polymerization developed by our group.

    In this process, monomer vapors produced by pyrolysis of chemically functionalized precurcors are directed at an oblique angle towards a surface to initiate structured polymer growth.

    Radical

    Monomer

    Radical

    Monomer

  • 8

    Demirel Lab 2008

    Metallic, ceramic, and organic nanostructured films

    Helical Si helical Au helical Alq3 parylene-PPX

    Lu, RPI Zhao, U. Georgia Brett, U. Alberta Demirel, Penn State

    Short history of oblique angle deposition

    Kundt 1876—first columnar film

    Hansma 1950—first study of morphology

    Messier, Lu, Brett ~1990—metallic / ceramic films

    Demirel 2005—polymeric films

  • 9

    Demirel Lab 2008

    Parylene (PPX) deposition

    Gorham

    1960

    Gorham WF.

    J Polym Sci Part A-

    1, 4(1966), 3027.

    Demirel

    2007

    Langmuir, 23

    (11), 5861 -

    5863, 2007

  • 10

    Demirel Lab 2008

    Polymer composition doesn’t change

    Structured Film

    Planar Film

    Demirel, M.C., et al. Langmuir, 23 (11), 5861 -5863, 2007

    Structured Film

    FTIR TGA

  • 11

    Demirel Lab 2008

    10 100 1000 10000

    100

    PPX-Cl

    PPX-COCF3

    PPX-Br

    Column diameter (nm)

    Column height (nm)

    2000 3000 4000 500050

    100

    150

    200

    250

    300

    Column diameter (nm)

    Column height (nm)

    Evolution and GrowthScaling: d ~ hp

    PPX-C ----- p= 0.12

    PPX-Br ----- p= 0.17

    PPX-COCF3 ---- p= 0.20

    n

    ClCl

    n

    F3C

    O

    0

  • 12

    Demirel Lab 2008

    Growth Model

    Roughness is destabilized due to oblique angle

    Cetinkaya, M., Malvadkar, N., Demirel, M.C., JOURNAL OF POLYMER

    SCIENCE PART B: POLYMER PHYSICS, Vol. 46, pg 640-648, 2008.

    Ballistic Monte Carlo Method

  • 13

    Demirel Lab 2008

    Chemistry: Polyimide and PPV

    deposition

    4,4'-DIAMINODIPHENYL ETHER

    PYROMELLITIC DIANHYDRIDE

    Co-polymerization (300 ºC,

    0.1 Torr) at oblique angle

    Polyimide

    poly(phenylene vinylene) (PPV)

    Polymerization (60 ºC, 0.1

    Torr) at oblique angle

    PPV

  • 14

    Demirel Lab 2008Demirel, M.C., et al. Langmuir, 23 (11), 5861 -5863, 2007

    Morphology Control

    0

    500

    1000

    1500

    2000

    2500

    0 100 200 300 400 500 600 700

    Series1

    Series2D

    A

    Porosity is measured by

    BET/QCM

  • 15

    Demirel Lab 2008

    DC

    BA

    Controlling: Topology

    Si Substrate PDMS Substrate

    After

    deposition

    Before

    deposition

  • 16

    Demirel Lab 2008

    Functional Polymer-Metal Interfaces OBLIQUE ANGLE POLYMERIZED

    FILMS

    (developed by Prof. Demirel)

    1. Liquid Phase Electroless

    Metallization2. Vapor Phase Metallization

    Applications: Catalyst, nanoparticleassembly, Biosensors, thermal

    barriers, neural interfaces

    Parameters

    • Surface crystal structure• Surface area• Ligand and colloid binding

    Parameters• Confinement• Surface crystallinity

    Ions →metal nano-clusters Vapor →metal nano-clusters

    Surface enhancement: increasing surface area,

    introducing porosity, controlled dispersity

    Controlled chemical and physical properties:

    different monomer chemistry, different film

    morphology.

    Industrial scale production: relatively

    inexpensive, no clean rooms, no lithography or

    masks.

  • 17

    Demirel Lab 2008

    Liquid Phase: Metal Membranes

    Demirel, et al. Advanced Materials, 2007

  • 18

    Demirel Lab 2008

    c

    Reduction to Practice

    D

    500 nm

    250 nm

    500 nm

    0 nm

    C

    15 µµµµm

    Parylene

    (helical nanostructure)

    Electroless NiParylene

    Ni

    1 µµµµm

    E

    Pore

    Pore

    Ni

    Nanostructured parylene films after Ni metallization: (C) SEM (cross-section); (D) AFM (Ni

    film top); (E) SEM (Ni film top). Film regions shown in parts (A) and (B) are not the same

    as those shown in parts (C), (D), and (E).

    Nanostructured parylene films before metallization: (A) SEM (cross-section); (B) AFM (film top)

    B

    1000 nm

    2000 nm

    0 nm

    500 nm10 µµµµm

    A

    Parylene

    (helical nanostructure)

  • 19

    Demirel Lab 2008

    Porous

    Nickel

    Top surface

    (SEM)

    EDX spectra

    Cross Section

    (FIB)

    Characterization

    Demirel, et al. Advanced Materials, 2007

    3030--50nm thin porous membrane metal50nm thin porous membrane metal

    Selective, covalent binding of Sn-free

    Pd(II) nanoparticles at the adsorbed

    ligand sites on the nanostructured PPX

    surface.

    Treatment of the Pd(II)-catalyzed

    surface with an electroless Ni bath,

    leading to reduction of Pd(II) to Pd(0)

    and catalysis of electroless Ni

    deposition templated by the

    nanostructured PPX surface.

  • 20

    Demirel Lab 2008

    Functional Polymer-Metal InterfacesOBLIQUE ANGLE POLYMERIZED

    FILMS

    (developed by Prof. Demirel)

    1. Liquid Phase Electroless

    Metallization2. Vapor Phase Metallization

    Applications: Catalyst, nanoparticleassembly, Biosensors, thermal

    barriers, neural interfaces

    Parameters

    • Surface crystal structure• Surface area• Ligand and colloid binding

    Parameters• Confinement• Surface crystallinity

    Ions →metal nano-clusters Vapor →metal nano-clusters

    Surface enhancement: increasing surface area,

    introducing porosity, controlled dispersity

    Controlled chemical and physical properties:

    different monomer chemistry, different film

    morphology.

    Industrial scale production: relatively

    inexpensive, no clean rooms, no lithography or

    masks.

  • 21

    Demirel Lab 2008

    Vapor Phase: Metal Membranes

    Au, Ag, Co, Cu, etc…

    metalized

  • 22

    Demirel Lab 2008

    Vapor Phase: Metal Membranes

    AFM SEM

    248.0748.72 cm2Deposit Ag

    on top

    391.9676.98 cm2Only polymer

    film

    Multiple of

    electrode area

    (0.1964cm2)

    Surface areaSample

    QCM /

    BET

    Results

  • 23

    Demirel Lab 2008

    Why do we need these type of

    nanostructured polymer surfaces?

  • 24

    Demirel Lab 2008

    Applications

    • Mechanical Properties

    • Self cleaning

    • Biosensor

    • Energy / Catalyst

  • 25

    Demirel Lab 2008

    Microtribology of Nanostructured

    Materials

    N

    Do material anisotropies

    influence friction, deformation

    processes?

  • 26

    Demirel Lab 2008

    Tribology of Nanostructured

    Materials

    - Films of Molecules or FibersFriction Anisotropy Collective Buckling

    Sliding direction

    Liley et al., Science 280 (1998) 273-275

    Thiolipid monolayer on mica

    Cao et al., Science 310 (2005) 1307

  • 27

    Demirel Lab 2008

    Microtribometry Protocol

    •17 ± 4 μm Conospherical

    Diamond Tip

    •8 μm Wear Track

    •40 Sliding Cycles

    Increasing Load TestConstant Load Test

    Load and displacement profiles

    • 100 μN Constant Load

    • 300 μN Ramped LoadK. Wahl, E. So, M. Demirel

  • 28

    Demirel Lab 2008

    Contact Depths During Sliding

    300

    250

    200

    150

    100

    50

    0

    -4 -3 -2 -1 0 1 2 3 4

    Test 118, 100 uN load, 0-degree orientation

    Lateral Position (um)Depth (nm)

    Against columns

    With columns

    Sliding Direction

    300

    250

    200

    150

    100

    50

    0

    -4 -3 -2 -1 0 1 2 3 4

    Test 118, 100 uN load, 0-degree orientation

    Lateral Position (um)Depth (nm)

    Against columnsAgainst columns

    With columnsWith columns

    Sliding Direction

    300

    250

    200

    150

    100

    50

    0

    -4 -3 -2 -1 0 1 2 3 4

    Test 122, 100 uN load, 180-degree orientation

    Lateral Position (um)

    Depth (nm) Sliding Direction

    Against columns

    With columns

    300

    250

    200

    150

    100

    50

    0

    -4 -3 -2 -1 0 1 2 3 4

    Test 122, 100 uN load, 180-degree orientation

    Lateral Position (um)

    Depth (nm) Sliding Direction

    Against columnsAgainst columns

    With columnsWith columns

    Parallel Sliding

    180°

    Anisotropy? YES

    Tip penetrates

    deeper into film

    when sliding with

    column tilt

    Arrows indicate the

    sliding direction

    K. Wahl, E. So, M. Demirel

  • 29

    Demirel Lab 2008

    Depth Response w/ Load

    800

    700

    600

    500

    400

    300

    200

    100

    0

    -6 -4 -2 0 2 4 6

    Pre-scan Post-scan

    Increasing Load

    Lateral Displacement (um)

    Depth (nm)

    With Columns

    Against Columns

    800

    700

    600

    500

    400

    300

    200

    100

    0-6 -4 -2 0 2 4 6

    Increasing Load

    Lateral Displacement (um)

    Depth (nm)

    Pre-scan

    Post-scan

    Perpendicular to Columns

    Depth anisotropy observed for all ordered

    films over a wide range of conditions

    K. Wahl, E. So, M. Demirel

  • 30

    Demirel Lab 2008

    Penetration Depth vs. Load

    Highly confident statistics demonstrating

    depth anisotropy

    K. Wahl, E. So, M. Demirel

  • 31

    Demirel Lab 2008

    Mechanical Deformation Hysteresis

    H

    ?b

    ∑= xb FEd

    H4

    3

    3

    64

    πδ

    Beam Equation

    ω=÷÷

    ∂∂

    ∂∂

    2

    2

    2

    2

    x

    uEI

    x

    Solution

    ?c

    Hooke’s Law

    L

    LE

    A

    F ∆=

    ∑= yc FEd

    H2

    4

    πδ

    Solution

    +=+= ∑∑ )sin()cos(

    3

    164)sin()cos(

    2

    2

    2αα

    παδαδ

    yxcb FFd

    H

    Ed

    HDepth

    Sliding perpendicular to film results in no hysteresis, predicted depths between with/against

    • Variations in total penetration depth may be more strongly

    correlated to film density, modulus

    • Model does not include density, inter-column contact or

    friction

  • 32

    Demirel Lab 2008

    Applications

    • Mechanical Properties

    • Self cleaning

    • Biosensor

    • Energy / Catalyst

  • 33

    Demirel Lab 2008

    Wetting Behavior

    Young’s Model

    Cassie’s Model

    Wenzel’s Mode

    Transition Model

    + Gecko State ??? (adhesive + hydrophobic) J. Liang, et al., Adv. Mat, 2007

  • 34

    Demirel Lab 2008

    Adhesive and

    Hydrophobic

    Non-

    Adhesive and

    Hydrophobic

    Roll off angle

    < 5 degrees

    Boduroglu et al, Langmuir, 2007

    A B

    C D

    Surface Wetting

  • 35

    Demirel Lab 2008

    Possible explanation!!!

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

    r 2̂ r 3̂

    Gravity ~ mg ~ Vg ~ r^3

    Capillary ~ Surface Area ~ r^2

    Force Balance

    Note: Water drop is stable up to 40 microliter.

  • 36

    Demirel Lab 2008

    Applications

    • Mechanical Properties

    • Self cleaning

    • Biosensor

    • Energy / Catalyst

  • 37

    Demirel Lab 2008

    The Biosensor TreeBIOSENSORS

    Electrochemical Optical Mechanical

    AMporemetirc Potentiometric Impedimetric Vibrational LuminescenceIntegrated

    Optics

    Surface Aqustic

    Wave

    (SAW)

    Quartz Crystal

    Microbalance

    (QCM)

    IR

    Raman

    Fluorescence

    Chemi-

    fluorescence

    SPR

    Interferometer

    T. Cass, C. Toumazou, Biosensors and Biomarkers, Foresight Project Review

  • 38

    Demirel Lab 2008

    Raman for Biological Detection

    ADVANTAGES

    • Reagentless method: No reagent but provides chemical structure information (specificity)

    • Single Cell Detection: No amplification of DNA (PRC) or Laboratory growth techniques.

    • Applications includes identification of characteristic spectra from viruses, bacteria, or protozoa for biomedical, homeland security (CBW agents), aerospace (aerosols) areas.

    • Substrate Preparation: High-throughput technique (advantage of vapor deposition), relatively inexpensive

    PITFALLS

    • Requires creation of database for infectious agents (Raman database)

    • Requires bioinformatics tools for analyzing the database (deconvolution and pattern detection)

    E.Coli

    B.Cere

    us

    Demirel et al, Adv. Materials, 2008,

    in press

  • 39

    Demirel Lab 2008

    Raman v.s. SERS

    Escherichia coli Raman spectrum and the SERS spectrum

    Kneipp, Acc. Chem. Res. 2006, 39, 443-450

    --Raman, 1920 (Nobel Prize--1930)

    --SERS (1977), Van Duyne and Jeanmaire and, independently, Albrecht and Creighton

    HOT-SPOTS

    SERS phenomena of silver

    nanoparticles

  • 40

    Demirel Lab 2008

    SERS: Viral and Bacterial Detection

    Representative SERS spectra of a) Adenovirus,

    b)Rhinovirus, c) HIV Zhao, Nano Lett., Vol. 6, No.

    11, 2006

    Representative SERS spectra of Gram-negative species: a) E.

    coli; b) S. Tennessee; c) K. pneumoniae; d) E. aerogenes;, e) P.

    mirabilis; f) P. aeruginosa.

    T. Pineda, M.S. Thesis, University of Puerto Rico, 2006

    Representative SERS spectra of Gram-positive species: a)B.

    subtilis; b) B. cereus; c) B. thuringiensis; d) S. epidermidis; and

    e) S. aureus.

  • 41

    Demirel Lab 2008

    SERS: Strain Identification

    Rosch et al. , Analytical Chemistry, Vol. 78, No. 7, April 1, 2006

  • 42

    Demirel Lab 2008

    SERS Substrates

    • Several methods have been implemented for microorganism detection using SERS such as gold nanoparticle coated SiO2, electrochemically roughened metal surfaces, and colloidal metal particles.

    Lu.J et.al. Nanotechnology 17 (2006) 5792–5797

    Shanmukh et. al. Nano Letters 2006,

    6, 2630.

    He H. et. al. Langmuir 16,

    3846-3851 (2000).

    Gunnarsson, L. et al. Applied Physics Letters 78, 802-804

    (2001).

    Dick. L et. al. J. Phys. Chem. B 2002, 106, 853-860

  • 43

    Demirel Lab 2008

    SERS DetectionThe lack of reproducibility of these techniques and uniform signal

    detection make it difficult to get consistent SERS results.

    Example: Influence

    of gold nanoparticle

    size on SERS

    spectrum of

    B.megaterium.

    Culha et al., Journal of

    Biomedical Optics 125,

    054015

  • 44

    Demirel Lab 2008

    Metal layer (Ag, Au)

    Infectious agent Raman Laser

    Single cell

    Nano SERS substrate

    0

    500

    1000

    1500

    2000

    600800

    10001200

    14001600

    18002000

    5

    10

    15

    20

    Counts

    Wave number (cm -1)

    Data set

    Database

    Non-lithography based Polymer/Metal

    SERS substrate

    Demirel et al, Advanced Materials, in press, 2008

  • 45

    Demirel Lab 2008

    SERS: Metal Layer Thickness

    500 1000 1500 2000

    0

    10000

    20000

    30000

    40000

    50000

    1592

    1491

    1157

    1076

    817624

    SERS, t=60nm

    SERS, t=90nm

    Raman, BulkCount [a.u.]

    Raman Shift (cm-1)

    Demirel et al, Advanced Materials, in press, 2008

  • 46

    Demirel Lab 2008

    SERS: Laser Wavelength

    Wave number (cm-1)

    500 1000 1500 2000 2500 3000

    Counts

    Neat FBT by 633nm laser

    Au substrate by 633nm laser

    Ag substrate by 633nm laser

    Ag substrate by 514nm laser

  • 47

    Demirel Lab 2008

    Roughness control over 2 length scale

    100 1000

    1

    10

    100

    RMS roughness (nm)

    film thickness (nm)

    E.F. :1x105

    SERS Uniformity: %99

    E.F.: 2x105

    SERS Uniformity: %93

    Demirel et al, Advanced Materials, in press, 2008

  • 48

    Demirel Lab 2008

    SERS: Life time measurement

    .

    Not

    Measured

    1138083437Ag

    2369Not

    measured

    4612Au

    After two

    months

    After one

    month

    Fresh

    sample

    Enhancement factor for SERS substrate

  • 49

    Demirel Lab 2008

    500 1000 1500 2000

    600

    800

    1000

    1200

    1400

    1600

    652.50164

    724.3908

    958.02601

    1090.50001

    1241.86638

    1330.54659

    1372.10302

    1456.17654

    1547.12549

    1593.40894

    1710.14357

    E. Coli

    Counts

    Raman Shift (cm-1)

    500 1000 1500 2000

    0

    2000

    4000

    6000

    8000

    1649.88

    1611.121594.3

    1559.63

    1513.97

    1477.01

    1332.4

    1236.22

    1096.28

    1078.93

    1021.69

    937.321

    720.308

    655.602

    237.985

    B . Cereus

    Counts

    R am an Sh ift (cm-1)

    Fingerprint of Bacterial Samples: Single Cell

    Demirel et al, Advanced Materials, in press, 2008

  • 50

    Demirel Lab 2008

    400 600 800 1000 1200 1400 1600 1800 2000

    0.0002

    0.0004

    0.0006

    0.0008

    0.0010

    0.0012

    Norm

    alized C

    ount

    Raman Shift (cm-1)

    E.Coli SERS spectra collected from

    25 individual cells

    Reproducible Data: The peak at the 1372 cm-1 shows a relative deviation of 15%.

  • 51

    Demirel Lab 2008

    What is next: Detection of Viruses

    Human respiratory syncytial virus (RSV)

    Patterned SERS Substrate

    (PPX-Au)

    500 600 700 800 900 1000 1100 1200 1300 1400 1500

    Raman shift / cm-1

    0

    500

    1000

    1500

    Counts

    521.464

    889.242 954.426

    986.1521003.08

    1099.48

    1208.51

    1226.34

    1392.07

    1517.19

    SERS Spectra of RSV

    Cryo-negative stain images recorded at a

    magnification of x30,000

    MacLennan, J. Virol. 2007;81:9519-9524.

  • 52

    Demirel Lab 2008

    Applications

    • Mechanical Properties

    • Self cleaning

    • Biosensor

    • Energy / Catalyst

  • 53

    Demirel Lab 2008

    Catalysts activity of Polymer/ Metal

    surfaces: Cobalt for Hydrogen ReleaseNaBH4 + 2H2O -> 4H2 + NaBO2

    pH = 12

    Catalyst NaBH4 concentration (wt. %)

    NaOH concentration (wt. %)

    Hydrogen release rate (mL/min-g)

    Reference

    A-26 (Ru based) 20 10 4032 {Amendola, 2000 #12}

    IRA-400 (Ru based) 12.5 1 ~9600 {Amendola, 2000 #11}

    Pt/C 10 5 23,090 {Wu, 2004 #61}

    Co-B 2 5 ~3500 {Wu, 2005 #21}

    Pt-LiCoO2 5 5 ~24000 {Krishnan, 2005 #58}

    Ru-C 10 10 6250 {Dong, 2003 #62}

    Co-B 25 3 ~7500 {Lee, 2007 #18}

    Co-PPXC 2.5 10 ~1500-7000 This work

  • 54

    Demirel Lab 2008

    Cobalt Substrate Preparation

    A B

    0 20 40 60 80 100 120

    0

    20

    40

    60

    80

    100

    Co. Wt [%

    ]

    Co. Bath Time [min]

    C

    0 20 40 60 80 100 120

    30

    60

    90

    Surface Roughness [nm]

    Cobalt Bath Time [min]

    D

    Malvadkar N., Park, S., Macdonald, M., Wang, H., Demirel, M.C.,

    JOURNAL of POWER SOURCES, in press, 2008.

  • 55

    Demirel Lab 2008

    Cobalt Catalyst Results

    0 50 100 150 200 250

    0.0

    0.1

    0.2

    0.3

    0.4 Nanostructured PPX-Co

    Planar PPX-Co

    Hydrogen Release Rate [ml/(m

    in*cm

    2)]

    Cobalth Bath Time [min]

    0 5 10 15 20 25

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    Cobalt 100 min

    Hydrogen R

    elease Rate [mg/(min*cm

    2)]

    NaBH4 Concentration [%]

    11.5 12.0 12.5 13.0 13.5

    0.14

    0.16

    0.18

    0.20

    0.22

    0.24

    0.26

    0.28

    Cobalt 100 min

    Hydrogen R

    elease R

    ate [ml/(m

    in*cm

    2)]

    pH value

    Hydrogen formation from

    Sodiumborohydride (Cobalt as

    a catalyst)

    NaBH4 + 2H2O -> 4H2 + NaBO2pH = 12

    Concentration and

    pH dependence

    Malvadkar N., Park, S., Macdonald, M., Wang, H., Demirel,

    M.C., JOURNAL of POWER SOURCES, in press, 2008.

  • 56

    Demirel Lab 2008

    Conclusions1. Structured polymers are grown, for the first time, by an

    oblique angle polymerization method. Structured Polymer growth obeys a scaling law and the growth can be modeled with a ballistic Monte Carlo method.

    2. Structured Polymers offer the possibility of fabricating surfaces exhibiting tunable physical properties (i.e. modulus, hydrophobicity, toughness, porosity, etc..) by systematically varying and controlling the chemistry, morphology, and topology at the same time.

    3. Structured Polymer technology is a simple and inexpensive method for the functionalization of surfaces for industrial scale applications. Applications for structured polymers: Biomedical coatings, Self Decontaminating Surfaces, Biosensors, Catalyst supports, sensor platform, Enzyme Stability, etc…

  • 57

    Demirel Lab 2008

    Demirel Lab.

    Demirel Lab:

    •Post-doctoral Fellows: Dr. Serhan

    Boduroglu, Dr. Hui Wang

    •Graduate Students: Eric So, Ping Kao,

    Niranjan Malvadkar, Murat Cetinkaya, Rama

    Gullapalli, Sunyoung Park

    •Undergraduates: Ashlee Mangan, Tomas

    Marko, Brendon Purcell, Mike Anderson

    Outside (Active Collaborators):

    •Walter Dressick(NRL): Metallization

    •David Allara(Penn State): SERS

    •Kathy Wahl (NRL): Mechanical Properties

    •Mary Poss (Penn State): Infectious Diseases

    http://www.personal.psu.edu/mcd18/

  • 58

    Demirel Lab 2008

    Thank you

    More information and technical documents

    are available at our group web site:

    http://www.personal.psu.edu/mcd18/