functional materials : preparation, processing and ......1.5.6 polymer gels 26 1.5.7 theories...

13
Functional Materials Preparation, Processing and Applications S. Banerjee Department of Atomic Energy, Mumbai, India A. K. Tyagi Chemistry Division, Bhabha Atomic Research Centre, Mumbai, India AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD ELSEVIER PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO

Upload: others

Post on 10-Oct-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Functional Materials

Preparation, Processing and

Applications

S. BanerjeeDepartment ofAtomic Energy,Mumbai,

India

A. K. TyagiChemistry Division,

Bhabha Atomic Research Centre,

Mumbai,

India

AMSTERDAM • BOSTON • HEIDELBERG • LONDON • NEW YORK • OXFORD

ELSEVIER PARIS • SAN DIEGO • SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Page 2: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents

Preface xvii

About the Editors xix

Contributors xxi

1 Soft Materials - Properties and Applications 1

P. A. Hassan, Gunjan Verma and R. Ganguly

1.1 Introduction to Soft Matter 1

1.1.1 Introduction 1

1.1.2 Soft Matter: A Viscoelastic Fluid 2

1.1.3 Shear Modulus and the Energy Density 4

1.2 Intermolecular Interactions in Soft Materials 6

1.2.1 Charge-Charge Interaction 6

1.2.2 Ion—Dipole Interactions 7

1.2.3 Dipole-Dipole Interactions 7

1.2.4 Ion-Induced Dipole Interactions 8

1.2.5 Dipole-Induced Dipole Interaction 8

1.2.6 Induced Dipole—Induced Dipole Interactions 9

1.2.7 Hydrogen Bonds 9

1.2.8 Hydrophobic Interactions 9

1.2.9 Depletion Interactions 10

1.3 Colloids 11

1.3.1 Interactions Between Colloidal Particles 11

1.3.2 DLVO Theory of Colloid Stability 13

1.4 Surfactant Assemblies 14

1.4.1 Surface Tension and Surface Activity 14

1.4.2 Surfactant Aggregation and Hydrophobic Effect 16

1.4.3 Thermodynamics of Micelle Formation 17

1.4.4 Dynamics of Micelle Formation 18

1.4.5 Phase Behaviour of Surfactants 19

1.4.6 Packing Parameter and Bending Rigidity 20

1.5 Polymer Solutions 22

1.5.1 Introduction 22

1.5.2 Conformations of Polymer Chains 23

1.5.3 Size of a Freely Jointed Chain 24

1.5.4 Size of an Ideal Chain with Fixed Bond Angle 25

1.5.5 Flexibility of a Polymer Chain 26

Page 3: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

vi Contents

1.5.6 Polymer Gels 26

1.5.7 Theories of Gelation 27

1.5.8 Polyelectrolytes and Counterion Condensation 29

1.6 Experimental Techniques in Soft Matter 32

1.6.1 Scattering Techniques 33

1.6.2 Microscopy 43

1.6.3 Rheology 44

1.7 Applications of Soft Matter 46

1.7.1 Stimuli Responsive Materials 47

1.7.2 Soft Materials in Drug Delivery 49

1.7.3 Nanotechnology Using Soft Materials 52

1.7.4 Oil Field Applications 53

References 54

2 Conducting Polymer Sensors, Actuators and Field-Effect Transistors 61

J.V. Yakhmi, Vibha Saxena and D.K. Aswal

2.1 Introduction 61

2.2 Synthesis of Conducting Polymers 63

2.2.1 Synthesis of Bulk and Fibre Polyindole 64

2.2.2 Synthesis of Crystalline Polyaniline 69

2.2.3 Films of Conducting Polymers 72

2.3 Conducting Polymer Gas Sensors 73

2.3.1 Configuration of Chemiresistor Sensors 73

2.3.2 Polycarbazole Langmuir—Blodgett Film-Based Sensors 75

2.3.3 Polyaniline Nanofibre Sensors 78

2.3.4 Composite Poly(3-hexylthiophene):ZnO-Nanowire-BasedN02 Sensors 81

2.3.5 Composite Polypyrrole:ZnO-Nanowire-Based Chlorine Sensor 86

2.4 Electrochemical Actuators 91

2.4.1 Fabrication of PPy-DBS/Au Free-standing Film 92

2.4.2 PPy-DBS/Au Free-standing Film as Actuator 92

2.5 Conducting Polymer FETs 94

2.5.1 Fabrication of Top-Contact FET 96

2.5.2 Characteristics of P3HT Active Layer 97

2.5.3 Transistor Characteristics of P3HT Active Layer 99

2.6 Summary 101

Acknowledgements 102

References 102

3 Functional Magnetic Materials: Fundamental and

Technological Aspects 111

S. M. Yusuf3.1 Introduction 111

3.2 Magnetocaloric Effect 113

3.2.1 Fundamentals of Magnetic Cooling and Heating 113

Page 4: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents vii

3.2.2 Magnetic Transition and Magnetocaloric Effect 115

3.2.3 Relative Cooling Power 115

3.2.4 Magnetocaloric Materials 116

3.2.5 Challenges in Using GMCE Materials in Magnetic

Refrigerators 118

3.3 Molecular Magnetic Materials 119

3.3.1 Purely Organic Molecular Magnets 119

3.3.2 Organic-Inorganic Molecular Magnets 119

3.3.3 Inorganic Molecular Magnets 120

3.3.4 Molecular Magnetic Clusters 121

3.3.5 Functionalities in Molecular Magnets 121

3.3.6 Controlling the Magnetic Hardness by Co Substitution in

the (Co;cNi1_.t)1.5[Fe(CN)5] • zH20 (x = 0, 0.25, 0.5, 0.75

and 1) PBAs 121

3.3.7 Implications of the Magnetic Pole Reversal Phenomenon

in the Cuo.73Mn0.77[Fe(CN)6] • zH20 Molecular Magnetic

Compound 124

3.3.8 Thickness- and Stoichiometry-Dependent Magnetic

Properties of Electrochemically Prepared CrystallineThin Films of PBAs KjFenk[Crni(CN)6]i • mH20 127

3.4 Magnetic Nanoparticles 130

3.4.1 Spintronics Materials 130

3.4.2 Nanoparticles for High-Density Magnetic Recording 132

3.4.3 Possible Application in Radionuclide Separation 135

3.4.4 Scope in Biomedical Science 137

3.5 CMR Manganites 142

3.5.1 Study of Ionic Size Effect in Dy-Substituted

Lao.7Cao.3Mn03 CMR Perovskite 143

3.6 Summary and Conclusion 150

Acknowledgements 151

References 151

4 Multiferroic Materials 155

S. N. Achary, O. D. Jayakumar and A. K. Tyagi4.1 Introduction 155

4.2 Origin of Ferro- and Antiferromagnetism 160

4.3 Origin of Ferroelectricity 162

4.4 Mutually Exclusive Reason for Multiferroicity 166

4.5 Types of Multiferroic Materials 167

4.6 Observation of Multiferroic Properties 168

4.7 Examples 168

4.7.1 Perovskite-Type Materials 170

4.7.2 Composites of Perovskites 173

4.7.3 Bismuth-Based Perovskites 175

4.8 Applications 183

Page 5: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

viii Contents

4.9 Summary 185

References 185

5 Spintronic Materials, Synthesis, Processing and Applications 193

O. D. Jayakumar and A. K. Tyagi5.1 Introduction 193

5.2 Ferromagnetic Semiconductors or Dilute MagneticSemiconductors 194

5.3 Spintronics 195

5.3.1 Physics Aspects 196

5.4 Overview of some Major Spintronic Materials 198

5.4.1 (Ga,Mn)As 198

5.4.2 (Ga,Mn)N 199

5.5 Oxide Semiconductors 200

5.5.1 Ti02-Based DMS 200

5.5.2 Sn02-Based DMS 202

5.5.3 Co-doped ZnO 202

5.5.4 Mn-DopedZnO 204

5.6 Material Synthesis, Processing and Characterization 206

5.6.1 Low-Temperature Solid-State Synthesis 206

5.6.2 Sol—gel and Xerogel Pyrolysis 206

5.6.3 Gel-Combustion 206

5.6.4 Refluxing Method 207

5.6.5 PLD 207

5.6.6 Ink Formulation and Piezoelectric Drop on Demand

(DOD) Inkjet Printing 207

5.7 Characterization 208

5.8 Recent Results 208

5.8.1 Bulk and Nanoparticles of Mn-based ZnO System 208

5.8.2 Nanoparticles of Co-Based ZnO System 208

5.8.3 Mn-Based ZnO Nanostructure 209

5.8.4 Mn-Based ZnO Films by PLD 210

5.8.5 Mn- or Co-Doped ZnO Film and Patterns Developed by

Inkjet Printing 211

5.9 One-Dimensional Structures of ZnO-Based Materials 214

5.9.1 Co-Doped ZnO with Li Co-Doping 214

5.9.2 Ni-Doped ZnO with Li Co-Doping 217

5.9.3 Fe-Doped ln203 Nanoparticles 218

5.10 Applications (Spintronic Devices) 220

5.10.1 GMR/Spin Valve 220

5.10.2 MTJs and MRAM 221

5.10.3 Spin-FET 222

Acknowledgements 223

References 223

Page 6: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents ix

6 Functionalized Magnetic Nanoparticles: Concepts, Synthesis and

Application in Cancer Hyperthermia 229

R. S. Ningthoujam, R. K. Vatsa, Amit Kumar and B.N. Pandey

6.1 Introduction 231

6.2 Methods of Preparation of Nanoaparticles 235

6.2.1 The Top-Down Approach 235

6.2.2 Bottom-Up Approach 237

6.3 Characterization of Magnetic Nanoparticles 239

6.3.1 Size and Crystallinity of Nanoparticles 239

6.3.2 Chemical Bonding 244

6.3.3 Magnetic Behaviour 244

6.3.4 Induction Heating 245

6.4 Magnetic Properties of Nanoparticles 248

6.4.1 Ni Nanoparticles 248

6.4.2 Co Nanoparticles 248

6.4.3 FePd Particles 249

6.4.4 CoNi Particles 249

6.4.5 Li-doped CoFe204 Particles 250

6.4.6 Fe304 Particles 250

6.5 Induction Heating Behaviour of Particles 251

6.5.1 Fe304 Magnetic Nanoparticles Capped with OA and PEG

(Semiconductor/Insulator Magnetic) 251

6.5.2 Ni Particles (Metallic Magnetic) 252

6.5.3 Ag, Pt, Au, Ti, Al Particles (Metallic Non-Magnetic) 252

6.6 Therapeutic Efficacy of Magnetic Nanoparticles in Human Cancer

Cells 253

6.7 Future Perspectives 256

Acknowledgements 256

References 257

7 Functional Superconducting Materials 261

G. Ravikumar and J. V. Yakhmi

7.1 Background 261

7.2 Niobium Titanium (NbTi) 265

7.3 A15 Superconductors and Nb3Sn 267

7.4 Chevrel-Phase Superconductors 269

7.5 High-rc Superconductors 270

7.5.1 BiSrCaCuO or BSCCO 272

7.5.2 YBCO Coated Conductors 273

7.6 MgB2 274

7.7 Borocarbides 277

7.8 Iron Arsenide Superconductors 278

7.9 Conclusions 279

References 280

Page 7: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

X Contents

8 Optical Materials: Fundamentals and Applications 285

V. Sudarsan

8.1 Introduction 285

8.2 Origin of Different Types of Optical Materials and their Applications 285

8.3 Optical Parameters 287

8.3.1 Refractive Index (n) 287

8.3.2 Absorption Coefficient (a) 288

8.3.3 Reflectivity and Transmitivity 288

8.3.4 Intensity of Light 288

8.3.5 Specular and Diffused Reflections 289

8.4 Optical Properties of Metals 289

8.5 Optical Properties of Insulators 291

8.5.1 Luminescent Lead Silicate Glasses Containing Alkali Oxides 291

8.5.2 Optical Properties of ZnO-P205 Glasses 295

8.5.3 Optical Properties of Lanthanide-Ion-Doped Glasses 297

8.6 Optical Properties of Nanomaterials 300

8.6.1 Metal Nanoparticles 300

8.6.2 Host Emissions from Nanomaterials 302

8.6.3 Luminescence from ZnGa204 Nanoparticles 303

8.6.4 Luminescence from Sb203 Nanorods 304

8.6.5 Optical Properties of Lanthanide-Ion-Doped Nanomaterials 305

8.7 Nonlinear Optical Materials 310

8.7.1 Z-Scan Technique 311

8.7.2 Evaluation of n2 Values 312

8.7.3 Evaluation of (3 Values 313

8.7.4 Examples of Nonlinear Optical Processes 314

8.7.5 Glasses as Nonlinear Optical Materials 315

8.8 Organic Optical Materials 317

8.9 Photonic Band-Gap Materials 318

References 320

9 Glass and Glass-Ceramics 323

G.P. Kothiyal, Arvind Ananthanarayanan and G.K. Dey9.1 Introduction 323

9.2 Glasses 324

9.2.1 The Glass Transition 325

9.2.2 Time-Temperature Transformation Diagram 327

9.2.3 Nucleation and Growth of Crystals in Under-Cooled Melt

of Bulk Glass-Forming Alloys 328

9.3 Glass-Ceramics 331

9.4 Preparation of Glass and Glass-Ceramics 333

9.4.1 Techniques 333

9.5 Characterization 338

9.5.1 Thermal Analysis 338

Page 8: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents xi

9.5.2 Differential Thermal Analysis 338

9.5.3 Differential Scanning Calorimetry 340

9.5.4 Thermo-Mechanical Analysis (TMA) 3419.6 Mechanical Properties 342

9.6.1 Microhardness 342

9.7 Wetting Property 344

9.7.1 Structural Properties 349

9.7.2 X-Ray Diffraction 349

9.7.3 Optical Transmission 351

9.7.4 Fourier Transform Infrared Spectroscopy (FTIR) 352

9.7.5 Raman Spectroscopy 354

9.7.6 Solid-State NMR Spectroscopy 355

9.7.7 Scanning Electron Microscopy 3579.8 Some Useful Properties 358

9.9 Some Important Functionalities 360

9.10 Transparency 360

9.10.1 Optical Fibres 360

9.10.2 Window Panes: Architectural Materials 361

9.10.3 Optical Components 361

9.10.4 Host for Laser Emitters 363

9.10.5 Windshields 364

9.10.6 Machinability 364

9.10.7 Sealants 364

9.10.8 Biomedical Uses 368

9.10.9 Matrices to Contain Radioactive Waste 372

9.10.10 Bulk Metallic Glasses 373

9.10.11 Thermal Stability of Zr-Based Metallic Glass 374

9.11 Conclusion 375

References 376

10 Nuclear Fuels 387

S. Banerjee and T.R. Govindan Kutty10.1 Introduction 387

10.2 Types of Fuel Material 390

10.2.1 Fuel Designs 394

10.2.2 Metallic Fuels 396

10.2.3 Ceramic Fuels 397

10.2.4 Dispersion Fuels 399

10.2.5 Fuels for Organic Cooled Reactors 399

10.2.6 Fuels for Fast Reactors 400

10.2.7 Fuel for High-Temperature Gas-Cooled Reactors 400

10.2.8 Hydride Fuel with a Liquid-Metal Bond 402

10.2.9 Fuels for Homogeneous Reactors 403

10.2.10 Transmutation Fuels 403

Page 9: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

xii Contents

10.3 Phase Diagrams 404

10.3.1 Actinide-Oxygen System 404

10.3.2 Defect Structure in Non-Stoichiometric Oxides 412

10.3.3 Oxygen Potential 413

10.4 Fission Gas Release 415

10.4.1 Fission Gases 415

10.4.2 Athermal Mechanisms 418

10.4.3 Recoil Mechanism 418

10.4.4 Knock Out Mechanism 418

10.4.5 Thermal Mechanism 419

10.4.6 FGR from MOX Fuels 421

10.4.7 FGR from Fast-Reactor Fuels 422

10.4.8 Fast-Reactor Metal Fuels 422

10.4.9 Advanced Fuels 423

10.5 Vapourisation of the Fuel 427

10.5.1 Actinide Distribution 428

10.5.2 Oxide Distribution 429

10.6 Swelling Due to Gas Bubbles 431

10.6.1 Nucleation of Fission Gas Bubbles 431

10.6.2 Growth of Stationary Bubbles 432

10.6.3 Migration Mechanisms 433

10.6.4 Pinning of Bubbles by Dislocations and Grain

Boundaries 434

10.6.5 Resolution 435

10.7 Swelling Due to Solid Fission Products 436

10.7.1 Physical State of FPs 436

10.7.2 Chemical State of FPs 437

10.7.3 Fission Product Migration 438

10.7.4 Fuel-Clad Interactions 439

10.8 Pore Migration 441

10.8.1 Pore Migration by Vapour Transport Mechanism 441

10.8.2 Porosity Distribution 442

10.9 Restructuring 443

10.9.1 Columnar Grain Growth 444

10.9.2 Central Void Formation in Oxide Rods 445

10.9.3 Grain Growth 446

10.9.4 Rim Effect 447

10.10 Mechanical Phenomenon 448

10.10.1 Cracking 448

10.10.2 Fuel Plasticity 449

10.10.3 Crack Healing 450

10.10.4 Densification 450

10.10.5 Irradiation Induced Creep 451

10.11 Temperature Distribution 452

10.11.1 Temperatures in the Fuel Pellet 452

Page 10: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents xiii

10.12 Fuel Modelling 456

10.12.1 Importance of Fuel Performance Modelling 456

10.12.2 Challenges in Modelling 460

10.13 Conclusions 460

References 462

11 Super-Strong, Super-Modulus Materials 467

S. Banerjee, J.K. Chakravartty, J.B. Singh and R. Kapoor

11.1 Introduction 467

11.2 Origin of Modulus 467

11.2.1 Melting Temperature—Bond Energy Relation 469

11.2.2 Elastic Modulus—Bond Energy Relation 470

11.3 Strength of Materials 472

11.3.1 Strength-Modulus Relation 472

11.3.2 Strength-Ductility Relation 472

11.3.3 Limits of Strength 473

11.3.4 Conventional Methods to Achieve High Strength 474

11.3.5 Toughness 479

11.4 Ultra-strength 482

11.4.1 Strengthening by Refining Length Scales 484

11.4.2 Strengthening by Changing the Bonding Nature 495

11.5 Summary 501

References 503

12 Corrosion-Resistant Materials 507

Vivekanand Kain

12.1 Introduction 507

12.2 Materials Resistant to Uniform Corrosion 511

12.2.1 Additional Requirements from Corrosion-Resistant

Materials 512

12.3 Materials Resistant to Localized Corrosion 513

12.3.1 Materials Resistant to Crevice and Pitting Corrosion 513

12.3.2 Materials Resistant to Selective Leaching 520

12.3.3 Materials Resistant to IGC 521

12.3.4 Materials Resistant to SCC 527

12.3.5 Materials Resistant to Hydrogen Damage 530

12.3.6 Materials Resistant to FAC 532

12.3.7 Materials Resistant to Erosion Corrosion 534

12.3.8 Materials Resistant to Oxidation Corrosion 536

Acknowledgements 541

References 541

13 Nafion Perfluorosulphonate Membrane: Unique Properties and

Various Applications 549

Jayshree Ramkumar

13.1 Introduction 549

Page 11: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

xiv Contents

13.1.1 Separation 549

13.1.2 Membrane Separations 549

13.1.3 Solid Membranes 550

13.2 Synthesis and Characterization 553

13.2.1 Synthesis 553

13.2.2 Models of Morphology 554

13.2.3 Characterization Studies 557

13.3 Properties of Nafion Membranes 561

13.3.1 Mechanical Properties 561

13.3.2 Sorption Properties 562

13.3.3 Ion-Exchange Properties 565

13.4 Applications 567

13.4.1 Applications in the Chlor-Alkali Industries 567

13.4.2 Fuel Cell Applications 568

13.4.3 Catalytic Applications 571

13.5 Conclusions 572

Acknowledgements 573

References 573

14 Fundamentals and Applications of the Photocatalytic Water

Splitting Reaction 579

Mrinal R. Pai, A. M. Banerjee, A. K. Tripathi and S. R. Bharadwaj14.1 Introduction 579

14.1.1 Background 579

14.1.2 Aim and Outline of This Chapter 581

14.2 Basis of Photocatalytic Water Splitting 581

14.2.1 Principle of Photocatalytic Water Splitting 582

14.2.2 Scheme of Photocatalytic Water Splitting Reaction 583

14.2.3 Stoichiometry of H2 and 02 Evolution 584

14.2.4 Band Bending at the Interface 585

14.2.5 Effect of Crystallinity and Surface Area on PhotocatalyticActivity 585

14.3 Experimental Method for Water Splitting 586

14.3.1 Experimental Setup 586

14.3.2 Time-Dependent Photocatalytic Activity 588

14.3.3 Quantum Yield 588

14.4 Some Heterogeneous Photocatalyst Materials Used for Water

Splitting 589

14.4.1 Oxide Photocatalyst Consisting of d° Metal Cation 590

14.4.2 Oxide Photocatalyst Consisting of d10 Metal Cations 592

14.4.3 Photocatalytic Activities of Ternary In2Ti05Nanoparticles 593

14.5 Conclusions 602

Acknowledgements 602

References 602

Page 12: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents xv

15 Hydrogen Storage Materials 607

K. Shashikala

15.1 Introduction 607

15.1.1 Classification of Materials for Hydrogen Storage 609

15.1.2 Metal Hydrides 609

15.1.3 Light-Metal-Based Hydrides 615

15.1.4 Chemical Hydrides (Complex Hydrides) 616

15.1.5 Hydrogen Adsorption in Nanostructured Materials 617

15.2 Experimental Techniques 618

15.2.1 Alloy Preparation 618

15.2.2 Ball Milling 619

15.2.3 Experimental Set-Up for Hydrogenation Studies 619

15.2.4 Electrochemical Charging 619

15.2.5 Activation Process 620

15.2.6 Surface Poisoning 621

15.2.7 Estimation of Hydrogen Content of Hydride Sample 621

15.3 Examples of Hydrogen Storage Materials and Their Properties 621

15.3.1 Effect of Hydrogen Absoiption on the Structure of CeNiAl 621

15.3.2 Hydrogen-Induced Amorphization 623

15.3.3 Structure and Magnetic Properties of UPdln Deuteride 624

15.3.4 Hydrogen Absorption Properties of Ti—V-Fe-Based

Systems 626

15.4 Applications 629

15.4.1 Charge 630

15.4.2 Discharge 630

15.5 Conclusions 632

Acknowledgements 632

References 632

16 Electroceramics for Fuel Cells, Batteries and Sensors 639

S.R. Bharadwaj, S. Varma and B. N, Wani

16.1 Introduction 639

16.2 Preparation and Processing of Electroceramics 644

16.2.1 Materials for Ceramic Fuel Cells 644

16.2.2 Materials for Batteries 654

16.2.3 Materials for Sensors 657

16.3 Electrochemical and Microstructural Characterization 660

16.3.1 Electrochemical Characterization of Materials for Ceramic

Fuel Cells 660

16.3.2 Electrochemical Characterization of Materials for Batteries 668

16.3.3 Electrochemical Characterization of Materials for Sensors 669

16.4 Applications 669

16.4.1 Fuel Cells 669

16.4.2 Batteries 670

16.4.3 Sensors 670

References 671

Page 13: Functional materials : preparation, processing and ......1.5.6 Polymer Gels 26 1.5.7 Theories ofGelation 27 1.5.8 Polyelectrolytes and CounterionCondensation 29 1.6 ExperimentalTechniquesin

Contents

17 Nanocrystalline and Disordered Carbon Materials 675

Mainak Roy17.1 Introduction 675

17.2 Fullerene 676

17.2.1 Synthesis 677

17.2.2 Mechanism of Fullerene Formation 677

17.2.3 Reaction of Fullerenes 678

17.2.4 Applications 678

17.3 CNTs 679

17.3.1 Different Types of CNT 679

17.3.2 Raman Spectroscopy of CNTs 681

17.3.3 Synthesis 681

17.3.4 Mechanism of CNT Deposition 683

17.3.5 Purification of CNT 684

17.3.6 Application 684

17.4 Graphene: The Slimmest Carbon 686

17.4.1 Characterization of Graphene 69017.5 Nano-Diamond 693

17.5.1 Characterization of Nano-Diamond 694

17.5.2 Functionalization of Nano-Diamond for BiologicalApplication 694

17.6 Carbon Nanofoam 694

17.7 Amorphous Carbon 695

17.7.1 Amorphous Carbon for Nuclear Applications 695

17.7.2 Thin Films of Amorphous Carbon 696

17.7.3 Characterization of Amorphous Carbon 700

References 700