fully miscible solution

15
Fully Miscible Solution Crystal Structure electron eg r (nm) Ni FCC 1.9 0.124 6 Cu FCC 1.8 0.127 8 • Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility. imple solution system (e.g., Ni-Cu solution) and Cu are totally miscible at all mixture compositions – iso

Upload: trory

Post on 11-Jan-2016

57 views

Category:

Documents


0 download

DESCRIPTION

Fully Miscible Solution. Simple solution system (e.g., Ni-Cu solution). Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii ( W. Hume – Rothery rules ) suggesting high mutual solubility. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fully Miscible Solution

Fully Miscible Solution

CrystalStructure

electroneg r (nm)

Ni FCC 1.9 0.1246

Cu FCC 1.8 0.1278

• Both have the same crystal structure (FCC) and have similar electronegativities and atomic radii (W. Hume – Rothery rules) suggesting high mutual solubility.

Simple solution system (e.g., Ni-Cu solution)

• Ni and Cu are totally miscible at all mixture compositions – isomorphous

Page 2: Fully Miscible Solution

Copper-Nickel Binary Equilibrium Phase Diagram

• Solid solutions are typically designated by lower case Greek letters: etc.

• Liquidus line separates liquid from two phase field

• Solidus line separates two phase field from a solid solution

• Pure metals have melting points

• Alloys have melting ranges

What do we have? What’s the composition?

Page 3: Fully Miscible Solution

• Draw Tie line – connects the phases in equilibrium with each other - essentially an isotherm

The Lever Rule

L

L

LL

LL CC

CC

SR

RW

CC

CC

SR

S

MM

MW

00

wt% Ni

20

1200

1300

T(°C)

L (liquid)

(solid)L +

liquidus

solidus

30 40 50

L + B

TB

tie line

CoCL C

SR

Adapted from Fig. 9.3(b), Callister 7e.

Derived from Conservation of Mass:

(1) W + WL = 1

(2) WC + WLCL = Co

Let W = mass fraction (amount of phase)

Page 4: Fully Miscible Solution

Co = 35 wt% Ni

Example Calculation

wt% Ni

20

1200

1300

T(°C)

L (liquid)

(solid)L +

liquidus

solidus

3 0 4 0 5 0

L +

Cu-Ni system

35Co

32CL

BTB

tie line

4C3

R S

At TB: Both and L

% 733243

3543wt

= 27 wt%

WL S

R +S

W R

R +S

Page 5: Fully Miscible Solution

• Phase diagram: Cu-Ni system.

• System is: --binary i.e., 2 components: Cu and Ni. --isomorphous i.e., complete solubility of one component in another; phase field extends from 0 to 100 wt% Ni.

• Consider Co = 35 wt%Ni.

Equilibrium Cooling in a Cu-Ni Binary

Page 6: Fully Miscible Solution

• C changes as we solidify.• Cu-Ni case:

• Fast rate of cooling: Cored structure

• Slow rate of cooling: Equilibrium structure

First to solidify has C = 46 wt% Ni.

Last to solidify has C = 35 wt% Ni.

Cored vs Equilibrium Phases

First to solidify: 46 wt% Ni

Uniform C:

35 wt% Ni

Last to solidify: < 35 wt% Ni

Page 7: Fully Miscible Solution

Mechanical Properties: Cu-Ni System

• Effect of solid solution strengthening on:

--Tensile strength (TS) --Ductility (%EL,%AR)

--Peak as a function of Co --Min. as a function of Co

Te

nsile

Str

en

gth

(M

Pa

)

Composition, wt% NiCu Ni0 20 40 60 80 100

200

300

400

TS for pure Ni

TS for pure Cu

Elo

ng

atio

n (

%E

L)

Composition, wt% NiCu Ni0 20 40 60 80 10020

30

40

50

60

%EL for pure Ni

%EL for pure Cu

Page 8: Fully Miscible Solution

Consider Pb-Sn System

CrystalStructure

electroneg r (nm)

Pb FCC 1.8 0.175

Sn Tetragonal 1.8 0.151

W. Hume – Rothery Rules:• Atomic size is within 15%• Same electronegativity• Do not have same crystal structure

Simple solution system (e.g., Pb-Sn solution)

13.7%

Will have some miscibility, but will not have complete miscibility

Page 9: Fully Miscible Solution

From Greek eut ktos, easily melted

Binary-Eutectic System

Eutectic Reaction:

L(CE) (CE) + (CE)

Eutectic Point

Solidus

Liquidus

Solvus

Page 10: Fully Miscible Solution

Consider (1): Co < 2 wt% Sn Result: --at extreme ends --polycrystal of grains i.e., only one solid phase.

Microstructural Evolution in Eutectic

0

L + 200

T(°C)

Co , wt% Sn10

2

20Co

300

100

L

30

+

400

(room T solubility limit)

TE

(Pb-SnSystem)

L

L: Co wt% Sn

: Co wt% Sn

Page 11: Fully Miscible Solution

Consider (2):2 wt% Sn < Co < 18.3 wt% Sn

Result: Initially liquid + then alonefinally two phases

polycrystal fine -phase inclusions

Microstructural Evolution in Eutectic

Pb-Snsystem

L +

200

T(°C)

Co , wt% Sn10

18.3

200Co

300

100

L

30

+

400

(sol. limit at TE)

TE

2(sol. limit at Troom)

L

L: Co wt% Sn

: Co wt% Sn

Page 12: Fully Miscible Solution

Consider (3): Co = CE • Result: Eutectic microstructure (lamellar structure) --alternating layers (lamellae) of and crystals.

Microstructural Evolution in Eutectic

160 m

Micrograph of Pb-Sn eutectic microstructure

Pb-Snsystem

L

200

T(°C)

C, wt% Sn

20 60 80 1000

300

100

L

L+ 183°C

40

TE

18.3

: 18.3 wt%Sn

97.8

: 97.8 wt% Sn

CE61.9

L: Co wt% Sn

Page 13: Fully Miscible Solution

Lamellar Eutectic Structure

Page 14: Fully Miscible Solution

Consider (4): 18.3 wt% Sn < Co < 61.9 wt% Sn

Microstructural Evolution in Eutectic

18.3 61.9

SR

97.8

SR

primary eutectic

eutectic

Pb-Snsystem

L+200

T(°C)

Co, wt% Sn

20 60 80 1000

300

100

L

L+

40

+

TE

L: Co wt% Sn LL

Result: crystals and a eutectic microstructure

Page 15: Fully Miscible Solution

Hypoeutectic vs Hypereutectic

175 m

hypoeutectic: Co = 50 wt% Sn

L+L+

+

200

Co, wt% Sn20 60 80 1000

300

100

L

TE

40

(Pb-Sn System)

160 m

eutectic micro-constituent

hypereutectic: (illustration only)

T(°C)

61.9eutectic

eutectic: Co = 61.9 wt% Sn