front-end electronics for f uture l inear c ollider w-si calorimeter physics prototype

15
Front-End electronics for Future Linear Collider W-Si calorimeter physics prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay http::/www.lal.in2p3.fr/technique/se/flc

Upload: caia

Post on 23-Jan-2016

25 views

Category:

Documents


0 download

DESCRIPTION

Front-End electronics for F uture L inear C ollider W-Si calorimeter physics prototype. B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard LAL Orsay http::/www.lal.in2p3.fr/technique/se/flc. Introduction : FLC challenges for electronics. CALICE = W-Si Calorimeter - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

Front-End electronics for Future Linear

Collider W-Si calorimeter physics

prototype B. Bouquet, J. Fleury, C. de La Taille, G. Martin-Chassard

LAL Orsay

http::/www.lal.in2p3.fr/technique/se/flc

Page 2: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 2

Introduction : FLC challenges for electronics

CALICE = W-Si Calorimeter Precision measurements : ~10%/√E

• good linearity (‰ level)

• Good inter-calibration (% level)

• Low crosstalk (‰ level)

Large dynamic range• 0.1 MIP -> 2 500 MIPS = 15 bits

Low noise• Auto-trigger on MIP (40, 000 e-)

Hermeticity : no room for electronics !

• High level of integration : « SoC »• Ultra-low power : ( << mW/ch)

30 Mchannels « Tracker electronics with

calorimetric performance »

ATLAS LAr FEB 128ch 400*500mm 100 WFLC 128ch 30*20mm 1 W ?

Page 3: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 3

Physics prototype overview

Multi-layer (30) W-Si prototype Active area : 18x18 cm2 ,depth : 24

X0

30 detector slabs slid into alveolar structure

See talk by J.C Brient

Detector slab (30)

Structure 1.4(1.4mm of W plates)

Structure 2.8 (2×1.4mm of W plates)

Structure 4.6(3×1.4mm of W plates)

ACTIVE ZONE(18×18 cm2)

Metal inserts(interface)

62

mm

20 cm

VME/PCI ? HCAL

Movable tableSilicon wafers

Beam monitoring

BEAM

ECAL

Si wafer6x6 diodes

Page 4: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 4

Dead zone w

idth is

only 1mm

4” High resistive wafer : 5 4” High resistive wafer : 5 KKcmcm

Thickness : 525 microns Thickness : 525 microns 3 % 3 %

Tile side : Tile side : 62.0 62.0 +0+0-0.1-0.1mmmm

Guard ringGuard ring

In Silicone ~80 e-h pairs / In Silicone ~80 e-h pairs / micron micron 42000 e42000 e-- /MiP /MiP

Capacitance : Capacitance : ~25 pF~25 pF

Leakage current : Leakage current : 1 – 5 nA1 – 5 nA

Full depletion bias : ~150 VFull depletion bias : ~150 V

Nominal operating bias : 200 VNominal operating bias : 200 V

Silicon wafer description [JC Vanel LLR lab]

Matrix of 6x6 pixels of 1 cm2

Low cost => simple process 2 manufacturers :

• INP Moscow• Institute of Physics Prague

AC coupling on PCB

0

1

2

3

4

5

6

7

8

00,

40,

81,

21,

6 22,

42,

83,

23,

6

Nu

mb

er

of

pa

ds

,00%

20,00%

40,00%

60,00%

80,00%

100,00%

120,00%

Fréquence % cumulé

Page 5: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 5

6 active wafersMade of 36 silicon PIN diodes 216 channels per boardEach diode is a 1cm² square

12 FLCPHY3 front-end chip18 channels per chip13 bit dynamic range

2 calibration switches chips6 calibration channels per chip18 diodes per calibration

channelSee talk on ATLAS calibration

Line buffersTo DAQ partDifferential

14 layers2.1 mm thickMade in korea

Front-end board

Page 6: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 6

Track&

Hold

ShaperPreamplifierBiasDetector

200V

T&H

- PIN diode- 10mm cells

10

10

-Variable gain- High dyn. Range- Low noise

- dual gain- 200 ns peaking time- high linearity

Front-end electronics synoptic

FLCPHY3 chip

FLCPHY3• BiCMOS 0.8µm• 18 channels• Area : 6 mm2 • VSS = - 5V• Pd = 250 mW• TQFP64 packg

Page 7: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 7

FLCPHY chip architecture

AmpOPA

OPA

G1

G10

1 channel Chip architecture Variable gain preamp (Cf = 0.2 -> 3

pF) adapt to several detectors Dual gain shaper (G1-G10) -> possible

studies with larger (16bit) dynamic range

Differential shaper and Track&Hold => better pedestal stability and dispersion

Multiplexed output : 5 MHz Synoptic of 1 channel of FLCPHY3Output waveforms for various PA gain

Measured gain vs set gain

Page 8: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 8

Preamp performance : noise

Charge preamp Folded cascode, negative output « mirror multiplied » feedback

resistor, equivalent to 25 MΩ 3000/0.8µm PMOS input transistor ID=600 µA bias current, 4mW total ENC = 1000e- + 40 e-/pF @

tp=200ns

50

50

1

1

0.2pF

0.4pF0.8pF1.6pF

1pF

2pF

4pF

IN

IDLE

OUT

Noise Series : en = 1.6nV/√Hz

gm= 8 mA/V

CPA = 10pF + 15pF test board

1/f noise : 25e-/pF Parallel : in = 40 fA/√Hz

ENC measurement of the FLCPHY3 preamp

Page 9: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 9

Signal uniformity (G1)

Signal (Gain 1, Cf=1.6pF) Amplitude = 696 mV/pC ± 18 mV

= 4.66 mV/ MIP ± 2.5% rms Peaking time = 189 ns ± 2 ns rms Pedestals = -3.7 V ± 4.8 mV rms

Noise Cd = 0 pF : Vn = 200 µV Cd = 68pF : Vn = 410 µV

Crosstalk : < 0.1%

Gain 1 uniformity vs channel number

Peaking time uniformity Pedestal uniformity

Page 10: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 10

Signal uniformity (G10)

Signal (Gain 10, Cf=1.6pF) Amplitude = 3147 mV/pC ± 94 Peaking time = 174 ns ± 2 ns Pedestals = -3.74 V ± 8.3 mV rms

Noise Cd = 0 pF : Vn = 500 µV Cd = 68pF : Vn = 1.6 mV

Crosstalk < 0.2%

Pedestal uniformity Peaking time uniformity

Gain 10 uniformity vs channel number

Page 11: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 11

Linearity

Measured on all preamp gains Cf = 0.2, 0.4, 0.8, 1.6, 3 pF Well within ± 0.2 %

Dynamic range (G1, Cf=1.6pF) Max output : 3 V linear (0.1%) range : 2.5V

= 500 MIPS @ Cf = 1.6 pF

Noise : • 200 µV (Cd = 0)• 410 µV (Cd = 68pF)

• = 0.1 MIP @ Cd = 68 pF

Dynamic range : > 12 bits• 13 000 (14 bits) @ Cd = 0• 6500 (12 bits) @ Cd = 68

pF Can be easily extended by

using the bi-gain outputs

Page 12: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 12

Results with detector

Cosmic test bench at LLR 1 MIP injected in channel 9 Calculation : 4.97 mV Measurement : 5.05 mV Well visible above the noise

MIP signal with 90Sr source See talk by J.C. Brient

Readout boards Developed by UK group

[P. Dauncey Imperial college]

MIP signal injected on cosmic test bench

Page 13: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 13

Dig

ital

mem

ory

Ou

t

Power control

Ch.1 1

10

100

Ch.2

Ch.36

3BCID 10

ADC Energy

BCIDGain

Channel ID

Chan.6

Next steps

R&D on technological protoptype Larger dynamic range : 3000 MIPS (16 bits) Lower power : ~ 100 µW/ch, Autotrigger mode See also talk by D. Strom et al.

Page 14: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 14

Next steps : technological prototype

Pending questions What technology to target for 2010-

2020? What about signal integrity on a 16bit

mixed-signal chip ? When to digitize ? Can we have 1

ADC /channel ? What (low) power level can be reached ?

Embedded readout ASIC

Evolution of technology feature size

Signal integrity on mixed-signal ASICs

Page 15: Front-End electronics for F uture  L inear  C ollider   W-Si calorimeter  physics prototype

30 march 2004 C. de La Taille FLCPHY chip for FLC W-Si calorimeter CALOR 2004 Perugia 15

Conclusion

FLCPHY3 chip fulfills FLC Wsi testbeam prototype Low Noise : 4000e- = 0.1 MIP Maximum signal : 600 MIPs Linearity : 0.1%, crosstalk 0.1% Low pedestal dispersion : 4.8mV rms = 1 MIP Can fit other detectors (variable gain 0.2-3pF, bi-

gain G1-G10 shaper)

1000 chips have been produced for 2004-2005 testbeam

Next steps Low power developments for technological

prototype New chip in SiGe 0.35µm with Idle mode Trying to integrate the ADC…