from tddft to molecular dynamics

109
From time-dependent density functional theory to molecular dynamics Xavier Andrade †* in collaboration with J. L. Alonso , F. Falceto , D. Prada , P. Echenique and A. Rubio ETSF and Universidad del Pa´ ıs Vasco Universidad de Zaragoza Benasque, September 2008 * [email protected] X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 1 / 18

Upload: others

Post on 11-Sep-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: From TDDFT to Molecular Dynamics

From time-dependent density functional theoryto molecular dynamics

Xavier Andrade†∗

in collaboration with

J. L. Alonso‡, F. Falceto‡, D. Prada‡, P. Echenique‡ and A. Rubio†

†ETSF and Universidad del Paıs Vasco‡Universidad de Zaragoza

Benasque, September 2008

[email protected]. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 1 / 18

Page 2: From TDDFT to Molecular Dynamics

Outline

1 Introduction: Molecular dynamics2 New method for molecular dynamics.3 Results and comparisons.4 Conclusions.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 2 / 18

Page 3: From TDDFT to Molecular Dynamics

Outline

1 Introduction: Molecular dynamics2 New method for molecular dynamics.3 Results and comparisons.4 Conclusions.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 2 / 18

Page 4: From TDDFT to Molecular Dynamics

Outline

1 Introduction: Molecular dynamics2 New method for molecular dynamics.3 Results and comparisons.4 Conclusions.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 2 / 18

Page 5: From TDDFT to Molecular Dynamics

Outline

1 Introduction: Molecular dynamics2 New method for molecular dynamics.3 Results and comparisons.4 Conclusions.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 2 / 18

Page 6: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 7: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 8: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 9: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 10: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 11: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 12: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 13: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 14: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 15: From TDDFT to Molecular Dynamics

Introduction

Molecular dynamics (MD): Simulate the movement of the ions of asystem.Describe many properties.Classical MD:

Ions interact by classical forces.Parametrized force fields.Treat large systems.

Ab-initio MD:More precise.Access to electronic properties, including excited states.Limited system size and simulation times.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 3 / 18

Page 16: From TDDFT to Molecular Dynamics

Born-Oppenheimer molecular dynamics

Ions move in the Born-Oppenheimer surface (following classicalforces).Solve Kohn-Sham equations for each ionic configuration.Cubic scaling with system size.Time steps limited by ionic motion.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 4 / 18

Page 17: From TDDFT to Molecular Dynamics

Born-Oppenheimer molecular dynamics

Ions move in the Born-Oppenheimer surface (following classicalforces).Solve Kohn-Sham equations for each ionic configuration.Cubic scaling with system size.Time steps limited by ionic motion.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 4 / 18

Page 18: From TDDFT to Molecular Dynamics

Born-Oppenheimer molecular dynamics

Ions move in the Born-Oppenheimer surface (following classicalforces).Solve Kohn-Sham equations for each ionic configuration.Cubic scaling with system size.Time steps limited by ionic motion.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 4 / 18

Page 19: From TDDFT to Molecular Dynamics

Born-Oppenheimer molecular dynamics

Ions move in the Born-Oppenheimer surface (following classicalforces).Solve Kohn-Sham equations for each ionic configuration.Cubic scaling with system size.Time steps limited by ionic motion.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 4 / 18

Page 20: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 21: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 22: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 23: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 24: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 25: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 26: From TDDFT to Molecular Dynamics

Car-Parrinello molecular dynamics†

A more efficient way: propagate wave functions.

Lagrangian

L =N∑

j=1

∫12µcp φ

2j dr +

12

∑I

R2I − E[φ,R]

µcp controls adiabaticity.Fictitious “newton like” electron dynamics.Wave function orthogonality has to be imposed.Cubic scaling with system size.Widely used method.

†Car and Parrinello, Phys. Rev. Lett. 55 2471 (1985)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 5 / 18

Page 27: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 28: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 29: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 30: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 31: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 32: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 33: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 34: From TDDFT to Molecular Dynamics

Ehrenfest dynamics

Ehrenfest equations of motion

i φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

Electrons propagated by real-time TDDFT.Ions follow Hellmann-Feynman forces.Non-adiabatic dynamics, adiabatic for large gap systems.Some nice properties for molecular dynamics:

Propagative scheme.Conservation of the energy.Conservation of wave function orthogonality.

Fast electrons: not practical for molecular dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 6 / 18

Page 35: From TDDFT to Molecular Dynamics

Modified Ehrenfest dynamics‡

Given a positive parameter µ.

Lagrangian

L = iµ

2

N∑j=1

∫ (φ∗j φj − φ∗jφj

)dr +

12

∑I

R2I − E[φ,R]

If µ→ 0 then L → Lbo

Equations of motion

i µ φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

‡Alonso, Andrade et al, Phys. Rev. Lett. 101 096403 (2008)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 7 / 18

Page 36: From TDDFT to Molecular Dynamics

Modified Ehrenfest dynamics‡

Given a positive parameter µ.

Lagrangian

L = iµ

2

N∑j=1

∫ (φ∗j φj − φ∗jφj

)dr +

12

∑I

R2I − E[φ,R]

If µ→ 0 then L → Lbo

Equations of motion

i µ φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

‡Alonso, Andrade et al, Phys. Rev. Lett. 101 096403 (2008)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 7 / 18

Page 37: From TDDFT to Molecular Dynamics

Modified Ehrenfest dynamics‡

Given a positive parameter µ.

Lagrangian

L = iµ

2

N∑j=1

∫ (φ∗j φj − φ∗jφj

)dr +

12

∑I

R2I − E[φ,R]

If µ→ 0 then L → Lbo

Equations of motion

i µ φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

‡Alonso, Andrade et al, Phys. Rev. Lett. 101 096403 (2008)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 7 / 18

Page 38: From TDDFT to Molecular Dynamics

Modified Ehrenfest dynamics‡

Given a positive parameter µ.

Lagrangian

L = iµ

2

N∑j=1

∫ (φ∗j φj − φ∗jφj

)dr +

12

∑I

R2I − E[φ,R]

If µ→ 0 then L → Lbo

Equations of motion

i µ φj =[−1

2∇2 + veff(r, t; R)

]φj

MIRI = −N∑

j=1

〈φj |∂veff

∂RI|φj〉

‡Alonso, Andrade et al, Phys. Rev. Lett. 101 096403 (2008)X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 7 / 18

Page 39: From TDDFT to Molecular Dynamics

Physical interpretation

Electronic time

µd

dt=

d

d (t/µ)

Two time scales: real for ions and fictitious for electrons.

Maximum time step

∆tmax(µ) = µ∆tmax(µ = 1)

Scaling of electronic excitation energies

ωi(µ) =1µωi(µ = 1)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 8 / 18

Page 40: From TDDFT to Molecular Dynamics

Physical interpretation

Electronic time

µd

dt=

d

d (t/µ)

Two time scales: real for ions and fictitious for electrons.

Maximum time step

∆tmax(µ) = µ∆tmax(µ = 1)

Scaling of electronic excitation energies

ωi(µ) =1µωi(µ = 1)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 8 / 18

Page 41: From TDDFT to Molecular Dynamics

Physical interpretation

Electronic time

µd

dt=

d

d (t/µ)

Two time scales: real for ions and fictitious for electrons.

Maximum time step

∆tmax(µ) = µ∆tmax(µ = 1)

Scaling of electronic excitation energies

ωi(µ) =1µωi(µ = 1)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 8 / 18

Page 42: From TDDFT to Molecular Dynamics

Physical interpretation

Electronic time

µd

dt=

d

d (t/µ)

Two time scales: real for ions and fictitious for electrons.

Maximum time step

∆tmax(µ) = µ∆tmax(µ = 1)

Scaling of electronic excitation energies

ωi(µ) =1µωi(µ = 1)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 8 / 18

Page 43: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 44: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 45: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 46: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 47: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 48: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 49: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 50: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 51: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 52: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 53: From TDDFT to Molecular Dynamics

Properties

µ = 1Ehrenfest - TDDFTClose to Born-Oppenheimerfor large gap systems.

µ→ 0Excitation energies→ ∞Born-Oppenheimer

µ > 1µ times faster than TDDFT.Excitation energies get closer to vibrational modes.How close to the adiabatic regime?

µmax ∼ lowest excitation energyhighest vibrational frequency

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 9 / 18

Page 54: From TDDFT to Molecular Dynamics

Numerical properties

Simple to implement.No orthogonalization:

Quadratic scaling with system size.Naturally parallelizable in states:Each processor handles a group of orbitals.

Preserves time reversibility.Complex wave functions required.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 10 / 18

Page 55: From TDDFT to Molecular Dynamics

Numerical properties

Simple to implement.No orthogonalization:

Quadratic scaling with system size.Naturally parallelizable in states:Each processor handles a group of orbitals.

Preserves time reversibility.Complex wave functions required.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 10 / 18

Page 56: From TDDFT to Molecular Dynamics

Numerical properties

Simple to implement.No orthogonalization:

Quadratic scaling with system size.Naturally parallelizable in states:Each processor handles a group of orbitals.

Preserves time reversibility.Complex wave functions required.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 10 / 18

Page 57: From TDDFT to Molecular Dynamics

Numerical properties

Simple to implement.No orthogonalization:

Quadratic scaling with system size.Naturally parallelizable in states:Each processor handles a group of orbitals.

Preserves time reversibility.Complex wave functions required.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 10 / 18

Page 58: From TDDFT to Molecular Dynamics

Numerical properties

Simple to implement.No orthogonalization:

Quadratic scaling with system size.Naturally parallelizable in states:Each processor handles a group of orbitals.

Preserves time reversibility.Complex wave functions required.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 10 / 18

Page 59: From TDDFT to Molecular Dynamics

Numerical properties

Simple to implement.No orthogonalization:

Quadratic scaling with system size.Naturally parallelizable in states:Each processor handles a group of orbitals.

Preserves time reversibility.Complex wave functions required.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 10 / 18

Page 60: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 61: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 62: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 63: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 64: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 65: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 66: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 67: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 68: From TDDFT to Molecular Dynamics

Our implementation

Octopus code§.Ehrenfest dynamics:

Propagators from real-time TDDFT¶.Approximated enforced time reversal symmetry.Taylor approximation for the exponential.

Car-Parrinello:Velocity Verlet/RATTLE propagation.

Velocity verlet for the ions.Parallelized in domains and states.

§http://www.tddft.org/programs/octopus¶Castro et al, J. Chem. Phys.121 3425 (2004)

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 11 / 18

Page 69: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBO

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 70: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 71: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 72: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 73: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 74: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 75: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 76: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 77: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10µ=20

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 78: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10µ=20µ=30

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 79: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10µ=20µ=30

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 80: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10µ=20µ=30

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 81: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10µ=20µ=30

µmax = 27

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 82: From TDDFT to Molecular Dynamics

Vibration of the N2 molecule

1.9 2 2.1 2.2 2.3Interatomic distance (b)

-541.4

-541.2

-541

-540.8

-540.6

Pote

ntia

l ene

rgy

(eV

)

gsBOµ=1µ=10µ=20µ=30

Vibrational frequencies (cm−1)Experimental 2331µ = 1 2352µ = 10 2332µ = 20 2274µ = 30 2194

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 12 / 18

Page 83: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 84: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 85: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 86: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 87: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 88: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 89: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 90: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 91: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 92: From TDDFT to Molecular Dynamics

Comparison with Car-Parrinello

µ: same role as fictitious electronic mass in CP.Numerical values are not directly comparable:

Different units.Car-Parrinello: ∆tmax ∝

õcp

Ehrenfest: ∆tmax ∝ µDeviation from BO:

Equivalence of µ and µcp.

Numerical cost per unit of simulated time:System size.Parallelizability.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 13 / 18

Page 93: From TDDFT to Molecular Dynamics

Infrared spectrum for benzene

Exp. [NIST Chemistry WebBook]

EhrenfestCar-Parrinello

Infr

ared

spe

ctru

m [

arbi

trar

y un

its]

0 1000 2000 3000

Frequency [cm-1

]

µ=1 µCP

=1

µ=5 µCP

=100

µ=10 µCP

=225

µ=15 µCP

=750

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 14 / 18

Page 94: From TDDFT to Molecular Dynamics

Computational cost comparison

Artificial system: array of Benzene moleculesµ = 15 and µcp = 750

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 15 / 18

Page 95: From TDDFT to Molecular Dynamics

Computational cost comparison

100 200 300 400 500 600Number of atoms

0

50

100

150C

ompu

tatio

nal t

ime

[s]

Fast EhrenfestCar-Parrinello

Serial performance

0 500 1000 15000

500

1000

Extrapolation

Xeon E5345 processor.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 15 / 18

Page 96: From TDDFT to Molecular Dynamics

Computational cost comparison

250 500 750 1000Number of atoms

0

10

20

30

Com

puta

tiona

l tim

e [s

]

Fast EhrenfestCar-Parrinello

Parallel performance

SGI Altix 32 Itanium 2 processors.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 15 / 18

Page 97: From TDDFT to Molecular Dynamics

Computational cost comparison

0 20 40 60 80 100 120Number of processors

0

20

40

60

80

100

120Sp

eed

up

IdealFast EhrenfestCar-Parrinello

Parallel scalability

480 Benzene molecules, SGI Altix Itanium 2 processors.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 15 / 18

Page 98: From TDDFT to Molecular Dynamics

Conclusions

Simple and scalable method for ab-initio molecular dynamics.Adjustable parameter µ that controls adiabaticity.Retain good properties of Ehrenfest MD.Suitable for large scale simulations.Fictitious electron dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 16 / 18

Page 99: From TDDFT to Molecular Dynamics

Conclusions

Simple and scalable method for ab-initio molecular dynamics.Adjustable parameter µ that controls adiabaticity.Retain good properties of Ehrenfest MD.Suitable for large scale simulations.Fictitious electron dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 16 / 18

Page 100: From TDDFT to Molecular Dynamics

Conclusions

Simple and scalable method for ab-initio molecular dynamics.Adjustable parameter µ that controls adiabaticity.Retain good properties of Ehrenfest MD.Suitable for large scale simulations.Fictitious electron dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 16 / 18

Page 101: From TDDFT to Molecular Dynamics

Conclusions

Simple and scalable method for ab-initio molecular dynamics.Adjustable parameter µ that controls adiabaticity.Retain good properties of Ehrenfest MD.Suitable for large scale simulations.Fictitious electron dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 16 / 18

Page 102: From TDDFT to Molecular Dynamics

Conclusions

Simple and scalable method for ab-initio molecular dynamics.Adjustable parameter µ that controls adiabaticity.Retain good properties of Ehrenfest MD.Suitable for large scale simulations.Fictitious electron dynamics.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 16 / 18

Page 103: From TDDFT to Molecular Dynamics

Prospects

Small gap and metallic systems.Understand thermodynamical limit.Import technical improvements from CP.Non-adiabatic dynamicsExcited states dynamics.Massively parallel implementation.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 17 / 18

Page 104: From TDDFT to Molecular Dynamics

Prospects

Small gap and metallic systems.Understand thermodynamical limit.Import technical improvements from CP.Non-adiabatic dynamicsExcited states dynamics.Massively parallel implementation.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 17 / 18

Page 105: From TDDFT to Molecular Dynamics

Prospects

Small gap and metallic systems.Understand thermodynamical limit.Import technical improvements from CP.Non-adiabatic dynamicsExcited states dynamics.Massively parallel implementation.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 17 / 18

Page 106: From TDDFT to Molecular Dynamics

Prospects

Small gap and metallic systems.Understand thermodynamical limit.Import technical improvements from CP.Non-adiabatic dynamicsExcited states dynamics.Massively parallel implementation.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 17 / 18

Page 107: From TDDFT to Molecular Dynamics

Prospects

Small gap and metallic systems.Understand thermodynamical limit.Import technical improvements from CP.Non-adiabatic dynamicsExcited states dynamics.Massively parallel implementation.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 17 / 18

Page 108: From TDDFT to Molecular Dynamics

Prospects

Small gap and metallic systems.Understand thermodynamical limit.Import technical improvements from CP.Non-adiabatic dynamicsExcited states dynamics.Massively parallel implementation.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 17 / 18

Page 109: From TDDFT to Molecular Dynamics

Acknowledgements

European Theoretical Spectroscopy Facility.Nanoquanta Network of Excellence.Gobierno Vasco.Ministerio Educacion y Ciencia, Espana.Barcelona Supercomputing Center.

X. Andrade (UPV/EHU) From TDDFT to MD Benasque 2008 18 / 18