fritz dellsperger 5.2010 / 10.2016 / 1 smith/examples v4.1.pdfsmith project file:...

39
Bern University of Applied Sciences Engineering and Information Technology Division of Electrical and Communication Technology Smith Chart Examples Smith V4.1 Fritz Dellsperger 5.2010 / 10.2016 / 1.2018

Upload: others

Post on 22-Jan-2020

11 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

Bern University of Applied Sciences

Engineering and Information Technology Division of Electrical and Communication Technology

Smith Chart

Examples

Smith V4.1

Fritz Dellsperger 5.2010 / 10.2016 / 1.2018

Page 2: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

Content

Impedance Matching 1 Impedance, Admittance, Reflection Coefficient, VSWR and Return Loss 1 Matching arbitrary impedances to 50 Ohm 2

Example 1: Use 2 reactance elements, Highpass 2 Example 2: Use 2 reactance elements, Highpass 3 Example 3: Use 2 reactance elements, Lowpass 4 Example 4: Use 2 reactance elements, Lowpass 5 Example 5: Antenna Match with 3 or more reactance elements, Low Q, Highpass 6 Example 6: Antenna Match with 3 or more reactance elements, Low Q, Lowpass 7 Example 7: Match Ceramic Filter to 50 Ohm 8 Example 8: Antenna match using reactance and serie line element 10 Example 9: Antenna match using serie line and open stub 11 Example 10: Antenna match using serie line and shorted stub 12 Example 11: Antenna match using double stub tuner 13 Example 12: Nonsynchronous Transformer 15

Low Noise Amplifier Design 18 Example 13: Low Noise Amplifier, 2.0 GHz 18

Conjugate Matching 28 Example 14: Conjugate Match 28

Serial Transmission Line with Attenuation 31 Example 15: Match using transmission line with loss 31

Sweeps 32 Example 16: Input impedance of a Chebyshev lowpass filter 32 Example 17: Broadband load match 33

Tune element values 34 Example 18: Match an Antenna with Lowpass network and fixed L-values 34

Page 3: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

1

Impedance Matching

Impedance, Admittance, Reflection Coefficient, VSWR and Return Loss

Impedance: Z R jX R: Resistance X: Reactance

0

1Z Z

1

Admittance: Y G jB G: Conductance B: Susceptance

1

ZY

1

YZ

Reflection Coefficient: 0 0

0 0

Z Z Y Y

Z Z Y Y

0Z : Reference Impedance

RL

020

0

Z ZVSWR 110

VSWR 1 Z Z

Voltage Standing Wave Ratio:

0 0

RL

200

RL

020 Z Z Z Z

1 Z Z1 10VSWR

1 Z Z1 10

Return Loss: 0

0

Z ZVSWR 1RL 20 log 20 log 20 log

VSWR 1 Z Z

All values for cursor position in Smith-Chart are displayed in window “Cursor”.

Page 4: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

2

Matching arbitrary impedances to 50 Ohm

Example 1: Use 2 reactance elements, Highpass

Problem: Match an impedance of 10 j7 to 50 . Use 2 reactance (L,C) in a circuit topology

with highpass characteristic. Frequency: 150 MHz. Smith project file: Example1.xmlsc

Page 5: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

3

Example 2: Use 2 reactance elements, Highpass

Problem: Match an impedance of 100 j50 to 50 . Use 2 reactance (L,C) in a circuit

topology with highpass characteristic. Frequency: 500 MHz. Smith project file: Example2.xmlsc

Page 6: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

4

Example 3: Use 2 reactance elements, Lowpass

Problem: Match an impedance of 10 j7 to 50 . Use 2 reactance (L,C) in a circuit topology

with lowpass characteristic. Frequency: 150 MHz. Smith project file: Example3.xmlsc

Page 7: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

5

Example 4: Use 2 reactance elements, Lowpass

Problem: Match an impedance of 100 j50 to 50 . Use 2 reactance (L,C) in a circuit

topology with lowpass characteristic. Frequency: 500 MHz. Smith project file: Example4.xmlsc

Page 8: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

6

Example 5: Antenna Match with 3 or more reactance elements, Low Q, Highpass

Problem: Match an antenna impedance of 20 j12 to 50 . Use L and C in a circuit topology

with highpass characteristic and do not exceed a max

X 12Q 0.6

R 20 (for maximum bandwidth).

Frequency: 450 MHz. Smith project file: Example5.xmlsc

Page 9: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

7

Example 6: Antenna Match with 3 or more reactance elements, Low Q, Lowpass

Problem: Match an antenna impedance of 20 j12 to 50 . Use L and C in a circuit topology

with lowpass characteristic and do not exceed a max

X 12Q 0.6

R 20 (for maximum bandwidth).

Frequency: 450 MHz. Smith project file: Example6.xmlsc

Page 10: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

8

Example 7: Match Ceramic Filter to 50 Ohm Problem: For measurement purposes match a 10.7 MHz 300 Ohm Ceramic filter to 50 Ohm using a parallel resonance circuit with capacitive voltage divider and L = 330 nH. Frequency: 10.7 MHz. Smith project file: Example7.xmlsc

Page 11: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

9

f0 10.7 MHz R1 300 L 390 nH

B2 L f0

2

R1

791.298 kHz

C2

C1

RL

Rres

For Q ≥ 10 following approximations can be used:

ofQ

B

res

1C

2 BR

2

o

1L

C

res

L

RN

R

p

QQ

N 2

1

CC

N 1

2C NC

Page 12: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

10

Example 8: Antenna match using reactance and serie line element

Problem: Match an antenna impedance of 30 j40 to 50 . Use one reactance and one

serie line. Frequency: 430 MHz. Smith project file: Example8.xmlsc

Page 13: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

11

Example 9: Antenna match using serie line and open stub

Problem: Match an antenna impedance of 30 j40 to 50 . Use one serie line and an open

stub. Frequency: 430 MHz. Smith project file: Example9.xmlsc

Page 14: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

12

Example 10: Antenna match using serie line and shorted stub

Problem: Match an antenna impedance of 30 j40 to 50 . Use one serie line and a shorted

stub. Frequency: 430 MHz. Smith project file: Example10.xmlsc

Page 15: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

13

Example 11: Antenna match using double stub tuner

Problem: Match an antenna impedance of 30 j40 to 50 . Use a double stub tuner with

serie line length of 80 mm with r 1 and Frequency: 430 MHz.

Smith project file: Example11.xmlsc

Page 16: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

14

Use Edit Element (doubleclick on element in schematic) to adjust for desired line length.

Change value

Click Draw and see on Smith-chart and

schematic how this affect transformation

OK when done

Or use tuning cockpit (Tune) to adjust for desired line length.

Page 17: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

15

Example 12: Nonsynchronous Transformer

Problem: Match an impedance of 10 j12 to 50 . Use an open stub and a nonsynchronous

transformer. Frequency: 2.4 GHz. Smith project file: Example12.xmlsc

Page 18: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

16

Use Edit Element (doubleclick on element in schematic) to adjust for desired line length.

Change value

Click Draw and see on Smith-chart and

schematic how this affect transformation

OK when done

Or use tuning cockpit (Tune) to adjust for desired line length.

Page 19: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

17

Properties of Nonsynchronous Trafo: It uses two pieces of line with the same length. One line must have the line impedance of the source and the other line the impedance of the load. The total length depends on impedance ratio and is much shorter than / 4 .

L L

Z1 Z1

Z2 Z2

Nonsynchronous Trafo

L = Length of one line section

1 2k Z / Z

1

2 11r

L a tan

kk

Nonsynchronous-Transformer

Ltot

0.1 1 100

0.05

0.1

0.15

0.2

k

Lin

elen

gth

in

Lam

bda

L

0.1 1 1015

20

25

30

35

k

Lin

ele

ngth

in D

eg

ree

L

Line length as function of impedance ratio k

Page 20: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

18

Low Noise Amplifier Design

Example 13: Low Noise Amplifier, 2.0 GHz

Problem: Design input and output matching network for a LNA using BFG33G. Frequency: 2 GHz Smith project file: Example13-input.xmlsc

Z0

Z0

Output

matching

network

Input

matching

network

11 12

21 22

S S

S S

Transistor

2

Z2

S

ZS

1

Z1

L = 2*

ZL = Z2*

Import S-Parameters for device BFG33G at 2.0 GHz.

Page 21: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

19

Draw circles for gain:

Specify Power gain of12.94 dB

12.50 dB

12.00 dB

and draw each circle

Draw stability circles:

Stability circle for Input

and Output Plane

Page 22: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

20

Draw Noise figure circles:

Specify Noise figure of

3.601 dB

3.7 dB

3.8 dB

3.9 dB

4.0 dB

and draw each circle

Input matching network: If we choose a source impedance of ZS = (50+j30)Ohm we get a gain of approx. 12 dB and a NF of approx. 3.85 dB with only a serie inductor as input matching network.

Page 23: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

21

With a few calculations we get:

S-parameters at 2000 MHz: Source impedance at 2000 MHz:

ZS 50 j 30( )

S0.121 e

j 149 deg

3.756 ej 78.9 deg

0.108 ej 59.4 deg

0.41 ej 54.5 deg

Z0 50

S

ZS Z0

ZS Z00.083 0.275j S 0.287

arg S 73.301deg

2 S2 2

S1 2

S2 1

S

1 S1 1

S 0.136 0.392j

Z2 Z0

1 2

1 2 45.987 43.54j( )

For the output network we conjugately match Z2 (or

2 ) to 50 Ohm.

There are several possibilities to realize the output matching network.

Page 24: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

22

Problem: Output matching network 1 Smith project file: Example13-output1.xmlsc

Page 25: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

23

Simulation of LNA with Output matching network 1 versus Frequency in Agilent ADS:

m1freq=S(2,2)=0.015 / 119.981impedance = 49.220 + j1.312

2.000GHz

m2freq=S(1,1)=0.373 / 125.040impedance = 27.457 + j19.485

2.000GHz

m5freq=dB(S(1,1))=-8.564

2.000GHz

m6freq=dB(S(2,2))=-36.259

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

-35

-30

-25

-20

-15

-10

-5

-40

0

freq, GHz

dB

(S(1

,1))

Readout

m5

dB

(S(2

,2))

Readout

m6

Returnloss vs Freq

m5freq=dB(S(1,1))=-8.564

2.000GHz

m6freq=dB(S(2,2))=-36.259

2.000GHz

m4freq=nf(2)=3.852

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

3.7

3.8

3.9

3.6

4.0

freq, GHz

nf(

2)

Readout

m4

NF vs Freq

m4freq=nf(2)=3.852

2.000GHzm3freq=dB(S(2,1))=12.005

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

10

11

12

13

14

9

15

freq, GHz

dB

(S(2

,1))

Readout

m3

Gain vs Freq

m3freq=dB(S(2,1))=12.005

2.000GHz

freq (1.500GHz to 2.500GHz)

S(2

,2)

Readout

m1S

(1,1

)

Readout

m2

Output 1 Match

m1freq=S(2,2)=0.015 / 119.981impedance = 49.220 + j1.312

2.000GHz

m2freq=S(1,1)=0.373 / 125.040impedance = 27.457 + j19.485

2.000GHz

Page 26: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

24

Problem: Output matching network 2 Smith project file: Example13-output2.xmlsc

Page 27: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

25

Simulation of LNA with Output matching network 2 versus Frequency in Agilent ADS:

m1freq=S(2,2)=9.355E-4 / 17.504impedance = 50.089 + j0.028

2.000GHz

m2freq=S(1,1)=0.380 / 124.571impedance = 27.160 + j19.854

2.000GHz

freq (1.500GHz to 2.500GHz)

S(2

,2)

Readout

m1

S(1

,1)

Readout

m2

Output 2 Match

m1freq=S(2,2)=9.355E-4 / 17.504impedance = 50.089 + j0.028

2.000GHz

m2freq=S(1,1)=0.380 / 124.571impedance = 27.160 + j19.854

2.000GHzm5freq=dB(S(1,1))=-8.408

2.000GHz

m6freq=dB(S(2,2))=-60.579

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

-35

-30

-25

-20

-15

-10

-5

-40

0

freq, GHz

dB

(S(1

,1))

Readout

m5

dB

(S(2

,2))

Readout

m6

Returnloss vs Freq

m5freq=dB(S(1,1))=-8.408

2.000GHz

m6freq=dB(S(2,2))=-60.579

2.000GHz

m4freq=nf(2)=3.852

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

3.7

3.8

3.9

3.6

4.0

freq, GHz

nf(

2)

Readout

m4

NF vs Freq

m4freq=nf(2)=3.852

2.000GHzm3freq=dB(S(2,1))=12.006

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

10

11

12

13

14

9

15

freq, GHz

dB

(S(2

,1))

Readout

m3

Gain vs Freq

m3freq=dB(S(2,1))=12.006

2.000GHz

Page 28: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

26

Problem: Output matching network 3 Smith project file: Example13-output3.xmlsc

Page 29: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

27

Simulation of LNA with Output matching network 3 versus Frequency in Agilent ADS:

m1freq=S(2,2)=0.013 / -67.850impedance = 50.471 - j1.197

2.000GHz

m2freq=S(1,1)=0.385 / 124.358impedance = 26.904 + j20.082

2.000GHz

freq (1.500GHz to 2.500GHz)

S(2

,2)

Readout

m1

S(1

,1)

Readout

m2

Output 3 Match

m1freq=S(2,2)=0.013 / -67.850impedance = 50.471 - j1.197

2.000GHz

m2freq=S(1,1)=0.385 / 124.358impedance = 26.904 + j20.082

2.000GHzm5freq=dB(S(1,1))=-8.289

2.000GHz

m6freq=dB(S(2,2))=-37.854

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

-35

-30

-25

-20

-15

-10

-5

-40

0

freq, GHz

dB

(S(1

,1))

Readout

m5

dB

(S(2

,2))

Readout

m6

Returnloss vs Freq

m5freq=dB(S(1,1))=-8.289

2.000GHz

m6freq=dB(S(2,2))=-37.854

2.000GHz

m4freq=nf(2)=3.852

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

3.7

3.8

3.9

3.6

4.0

freq, GHz

nf(

2)

Readout

m4

NF vs Freq

m4freq=nf(2)=3.852

2.000GHzm3freq=dB(S(2,1))=12.005

2.000GHz

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.41.5 2.5

10

11

12

13

14

9

15

freq, GHz

dB

(S(2

,1))

Readout

m3

Gain vs Freq

m3freq=dB(S(2,1))=12.005

2.000GHz

Page 30: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

28

Conjugate Matching

Example 14: Conjugate Match

Problem: Conjugately match impedance Z1 (or Gamma 1 ) to 50 Ohm.

Method 1: Start at Z1 and transform with network to 50 Ohm. In this case Z1 is used as load impedance for the network and after transformation we would like to see 50 Ohm at the input of the network. Method 2: Start at 50 Ohm and transform with network to Z1* = conjugate Z1

In this case 50 Ohm is used as load impedance for the network and after transformation we would like to see Z1* into the input of the network. Both method result in the same network.

T1

L1

C1

50

Method 1 Method 2

1

1

Z*

1

*

1

Z

Page 31: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

29

Example: 1Z 10 j10

Method 1: Smith project file: Example14-1.xmlsc

Z1

50

Start here

Page 32: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

30

Method 2: Smith project file: Example14-2.xmlsc

Z1*

50

Start here

Page 33: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

31

Serial Transmission Line with Attenuation

Example 15: Match using transmission line with loss

Problem: Match an impedance of (23.7 + j 101) Ohm to 50 Ohm using a lossy transmission line with an electrical length of about 2 wavelength, attenuation of 2 dB/m and a serial reactance. Frequency: 500 MHz Smith project file: Example15.xmlsc

Page 34: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

32

Sweeps

Example 16: Input impedance of a Chebyshev lowpass filter

Problem: Plot input impedance of a 50 Ohm Chebyshev lowpass filter with n = 3, Ripple = 0.1 dB and cut-off frequency = 100 MHz Frequency: 10 MHz to 450 MHz Smith project file: Example16.xmlsc

Page 35: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

33

Example 17: Broadband load match

Problem: Given: Load impedance = (100.8+j24.2) Ohm @ 140 MHz, (106.9+j41.7) Ohm @ 145 MHz, (121.2+j60) Ohm @ 150 MHz Find LC-lowpass network to match within VSWR of 1.2. Use standard component values as possible. Frequency: 140 MHz to 150 MHz Smith project file: Example17.xmlsc

Page 36: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

34

Tune element values

Example 18: Match an Antenna with Lowpass network and fixed L-values

Problem: Match an antenna impedance of 61 j57 to 50 . Use L and C in a circuit topology

as shown below. Inductors are fixed to a value of 56 nH and capacitors should have a value between

10 and 20 pF. Do not exceed a max

X 60Q 1

R 61 .

Frequency: 145 MHz. Smith project file: Example18.xmlsc

10

– 2

0p

F

10

– 2

0p

F

10

– 2

0p

F

Page 37: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

35

Start with all capacitors 15pF. Tune capacitors to find a solution.

Page 38: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

36

Tune capacitors to find a solution.

Page 39: Fritz Dellsperger 5.2010 / 10.2016 / 1 Smith/Examples V4.1.pdfSmith project file: Example13-input.xmlsc Z 0 Z 0 Output matching network Input matching network 2 2 SS SS ªº «» «»¬¼

37

Many other solutions are possible.