friedhelm meyer auf der heide 1 heinz nixdorf institute university of paderborn algorithms and...

36
Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic Formations Friedhelm Meyer auf der Heide University of Paderborn Joint work with Bastian Degener, Barbara Kempkes, Peter Kling, Jaroslaw Kutylowski (Paderborn)

Upload: sean-reyes

Post on 26-Mar-2015

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 1

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Energy-Efficient Local Strategiesfor Robotic Formations

Friedhelm Meyer auf der Heide University of Paderborn

Joint work with

Bastian Degener, Barbara Kempkes,

Peter Kling, Jaroslaw Kutylowski

(Paderborn)

Page 2: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 2

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Gathering problem:Gather all robots in one point

Cycle formation problem: Form a cycle

Short chain problem:Minimize the length of a chain of robots between two stations

Robotic formation problems

Page 3: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 3

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Challenge: Consider robots with very limited capabilities

Our mobile robots: - can only see neighbors within a constant radius.

Thus, the decision on what to do next is solely based on relative positions of neighbors in the unit disk graph

Simple local rules are used for a global goal.

Page 4: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 4

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityA simple local rule: Go to the center

- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

Page 5: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 5

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityA simple local rule: Go to the center

- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

Page 6: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 6

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityA simple local rule: Go to the center

- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

Page 7: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 7

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity Discrete time models, efficiency measures

A round finishes as soon as each robot was active at least once. Asynchronous sense-compute-move model

If activation proceeds in random order: Asynchronous random order sense-compute-move model

If in a round, a (suitably chosen) subset of the robots becomes active Synchronous local activation model

Energy consumption: distance travelled, number of rounds

Trade Off: More rounds give more information about the system state, thereby shorter travel distances are possible.

Page 8: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 8

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityWhat I will talk about

- Local algorithms for Gathering and Short Chains- Discussion of energy-efficiency of discrete time

models- Algorithm for Short Chains in bounded-distance

and continuous time model

Page 9: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 9

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Gathering

Page 10: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 10

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGathering, simple local strategy

A simple strategy: Go-To-The-Center- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

Page 11: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 11

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGathering, simple local strategy

A simple strategy: Go-To-The-Center- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

Page 12: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 12

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGathering, simple local strategy

A simple strategy: Go-To-The-Center- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

- If its neighbors are connected,

it fuses with one of them

Page 13: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 13

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGathering, simple local strategy

A simple strategy: Go-To-The-Center- In a step, a robot walks to the center of its neighbors,

i.e. to the center of their smallest enclosing ball.

- If its neighbors are connected,

it fuses with one of them

Ando, Suzuki, Yamashita (95), Cohen, Peleg (06),

MadH, Kempkes (08)

Go-To-The-Center performs gathering

in finitely many rounds.

Page 14: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 14

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGathering with provable time bounds

Degener, Kempkes, MadH (SPAA2010)

Gathering can be done by a local algorithm in O(n²) rounds, in the asynchronous random order sense-compute-move model and in the synchronous local activation model. Each robot travels distance O(n2).

First algorithm with proven bound for number of rounds in a local model.

Page 15: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 15

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityThe algorithm

Algorithm for a robot r :

•Sense positions of robots within distance 2.

•If all detected robots are within distance 1, gather them at r’s position.

•Else compute the convex hull of these robots.

•If r is a vertex of the convex hull:

• If the angle of the convex hull at r is smaller then ¼/3, rearrange the robots such that some of them are moved to the same position (are “fused” ) , without destroying the connectivity of the UDG

• Else: see picture

r

2

Start situation:

•n robots have positions in the plane

•Their unit disk graph is connected

•One node is active at a time

Page 16: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 16

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Example 2: 1848 nodes, 24 rounds, random order

Page 17: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 17

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Forming short chains

Page 18: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 18

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityThe short chain problem

A winding chain of robots connects a base camp to an explorer. The chain is connected, i.e., neighboring nodes have distance at most 1.

Locality assumption: robots only see predecessor and successor in the chain.

How to transform the chain in a (close to) shortest one by local rules?

base campexplorer

Page 19: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 19

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Strategies for the short chain problem

- Go-To-The-Middle- Hopper

These strategies use a discrete round model.

- Move-On-Bisector

This strategy continuously senses and continuously adapts speed and direction.

Page 20: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 20

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityA chain of length 300

Page 21: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 21

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityAfter 25 rounds

Page 22: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 22

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityAfter 150 rounds

Page 23: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 23

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityAfter 270 rounds

Page 24: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 24

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGo-To-The-Middle

Go-To-The-Middle Strategy

In each round:• every robot moves to the middle position

between its neighbors

relay i

relay i+1

relay i+2

Page 25: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 25

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGo-To-The-Middle

. . .

explorer base camp

Page 26: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 26

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityGo-To-The-Middle Analysis

J. Kutylowski, MadH

Go-To-The-Middle needs (n2/²) and O(n2 log(n)/²) rounds for reaching the straight line up to distance ².

Page 27: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 27

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityThe Hopper strategy

The Hopper strategy is executed in sequential runs, starting at the explorer.

The Hop operation

Page 28: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 28

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityHopper

remove: dist < 1 shorten: (angle <90)

A run ends with a remove, a shorten, or, if only hops occur, at the base camp.

Page 29: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 29

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity Hopper

explorer base camp

2 runs

Page 30: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 30

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityHopper

Note:

Runs of the Hopper strategy can be pipelined,

m runs on a chain of length n need n+3m rounds.

A shortest chain is not reached in general, but a short one.

J. Kutylowski, MadH (TCS 2009)

The Hopper Strategy needs O(n) rounds, each robots travels distance O(n).

It reduce the chain length to at most 21/2 D, and the number of robots to less than 3D.

Page 31: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 31

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityTime models

We have looked at discrete round models:

In a round, robots can sense their neighborhood, compute, and move a distance of at most 1 (or 2).

But: The closer the final configuration is approached, the smaller the movements become. Rounds do not reflect distance travelled.

Alternative cost measures incorporate the travelled distance.

- Restrict a movement to distance ± per step

! ±-bounded model

- Assume continuous sensing, and continuous adaptation of speed of direction to positions of neighbors (assume speed limit 1)

! continuous model

Page 32: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 32

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Continuous and ±-bounded version of Go-To-The-Middle

Degener, Kempkes, Kling, MadH (2010)

±-bounded model ( ±2(0,1)):

(n2+n/±) = #rounds = O(n2log(n) + n/±)

Maximum distance travelled = £(±n2 + n)

± = 1/n : O(n2 log(n)) rounds, £(n) travel distance

Continuous model:

Maximum distance travelled = time = £(n)

Page 33: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 33

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityShort Chain: The Move-on-Bisector strategy

A robot continuously does the following:- As long as it has not reached the straight line between its neighbors, it

moves with speed 1 in direction of the bisector.

- As soon as it has reached this line, it continuously adapts speed and direction, so that it stays on the line and maintains the ratio between the distances to neighbors.

Page 34: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 34

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityShort Chain: The Move-on-Bisector strategy

Start ..\..\..\..\Program Files\Continuous Robot Simulator\bin\ContinuousRobotSimulator.exe

Degener, Kempkes, Kling, MadH (Sirocco 2010)

The Move-on-Bisector strategy needs time O(min{n,(Opt+d)log(n)}.

(d = distance between stations,

Opt = optimal time (= max. distance between robots and line.)

Page 35: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 35

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and ComplexityConclusions

• Designing and analysing local algorithms that modify the network in order to fulfil global tasks is a challenging problem

• Lots of open problems: Which capabilities of robots are necessary for a given

global task, which are suffcient, which are technically feasible?

Swarms: How can certain properties be maintained under dynamics?

Many more ……………..

Page 36: Friedhelm Meyer auf der Heide 1 HEINZ NIXDORF INSTITUTE University of Paderborn Algorithms and Complexity Energy-Efficient Local Strategies for Robotic

Friedhelm Meyer auf der Heide 36

HEINZ NIXDORF INSTITUTEUniversity of Paderborn

Algorithms and Complexity

Thank you for your attention!Thank you for your attention!

Friedhelm Meyer auf der HeideHeinz Nixdorf Institute & Computer Science

DepartmentUniversity of Paderborn

Fürstenallee 1133102 Paderborn, Germany

Tel.: +49 (0) 52 51/60 64 80Fax: +49 (0) 52 51/60 64 82

Mailto: [email protected]://wwwhni.upb.de/en/alg