frequency response of amplifiers and 3-db bandwidth

Upload: jameelahmad

Post on 01-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    1/75

    Ching-Yuan Yang

    National Chung-Hsing UniversityDepartment of Electrical Engineering

    Frequency Response of Amplifiers

     類比電路設計(3349) - 2004

    6-1 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Overview

    Reading

    B. Razavi Chapter 6.

    Introduction

    In this lecture, we study the response of single-stage and differential

    amplifiers in the frequency domain. Following a review of basic concepts, we

    analyze the high-frequency behavior of common-source and common-gate

    stages and source followers. Next, we deal with cascode and differential

    amplifiers. Finally, we consider the effect of active current mirrors on the

    frequency response of differential pairs.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    2/75

    6-2 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Miller effect

     Application of Miller effect to a floating impedance

    =−

    =−

    2

    1

    V V 

    V V 

    Y X Y 

    X Y X 

    That is,

    =

    −=

    Z Z 

    Z Z 

    1

    1

    2

    1

    6-3 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    The overall transfer function can be written as

    We may say “each node in the circuit contributes one pole to the transfer function.”

    The pole is determined by the total capacitance seen from each node to ground

    multiplied by the total resistance seen at the node to ground.

    In general, the transfer function is given as

    where each pole with one node of the circuit, i.e., , where τ  j is the productof the capacitance and resistance seen at node j to ground.

    Association of poles with nodes

    ( )s C R s C R 

    A s C R 

    A s V V 

    P N in S in 

    out 

    21

    21

    11

    11   +⋅

    +⋅

    +=

    ( )

     j 

     j v 

     j 

     j 

     j in 

    out 

    s A 

    A s 

    ω ω +

    ∏=+

    ∏=1

    1

    1

    1−=   j  j    τ ω 

    Cascade of amplifiers

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    3/75

    6-4 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-source stage

    High-frequency model of a CS stage

    ( Miller multiplication)

    (Assume λ = 0 and M 1 operates in saturation)

     At the input node, the total capacitance seen

    from X to ground is equal to

    C in = C GS + (1 − A v )C GD ,

    where A v = − g m R D .

    The input pole is( )[ ]GD D m GS S 

    in C R g C R    ++

    =1

    1ω 

     At the output node, the total capacitance seen to ground is equal to

    C out = C DB + (1 − A v −1)C GD  ≈ C DB + C GD 

    The input pole is

    ( )GD DB D out  C C R    +=

    1

    ω 

    6-5 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-source stage (cont’d)

    Model for calculation of output impedance

    (If R S is relative large, the effect of R S is neglected.)

    The output pole:

    where

    Thus, the output pole is roughly equal to

    Finally, we surmise that the transfer function is

     

      

     ⋅

    +=

    1

    1||

    1

    m GD 

    GS GD 

    eq 

    X g C 

    C C 

    s C Z 

    GS GD 

    GS GD eq 

    C C 

    C C C 

    +=

    ( )DB eq m GD 

    GS GD D 

    out 

    C C g C 

    C C R    +

     

      

     ⋅

    +=

    1

    1

    1ω 

    ( )

     

      

     +

     

      

     +

    −=

    out in 

    D m 

    in 

    out 

    s s 

    R g s 

    ω ω 11

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    4/75

    6-6 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-source stage (cont’d)

    Equivalent circuit of CS stage

    ( )  ( )

    ( ) ( )[ ] 112 ++++++−

    =⇒s C C R C R C R g R s R R 

    R g s C s 

    DB GD D GS S GD D m S D S 

    D m GD 

    in 

    out 

    ξ 

    where ξ = C GS C GD + C GS C DB + C GD C DB .

    Note the transfer function is of second order even through the circuit contains three

    capacitors. While the denominator appears rather complicated, it can yield intuitive

    expressions for the two poles, ω  p 1 and ω  p 2, if we assume |ω  p 1| (1 + g m R D )C GD + R D (C GD + C DB )/R S ,

    then ( ) ( )   out DB GD D DB GS GD GS D S GS S 

     p C C R C C C C R R 

    C R ω ω    =

    +=

    +≈

    12

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    5/75

    6-8 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-source stage (cont’d)

    Feedforward path through C GD 

    The transfer function exhibits a zero given by ω z = +g m /C GD . Located in

    the right half plane, the zero arises from direct coupling of the input to the

    output through C GD at very high frequency. Note that a zero in the righthalf plane introduces stability issues in feedback amplifiers

    6-9 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-source stage (cont’d)

    Calculation of the zero in a CS stage

    Zero:

    For a finite V in , this means that V out (s z ) = 0 and hence the output can

    be shorted to ground at the frequency with no current. Therefore, the

    currents through C GD and M 1 are equal and opposite:

    V 1C GD s z = g m V 1.

    That is ,   s z = +g m /C GD .

    ( ) 0==   z in 

    out 

    s s s 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    6/75

    6-10 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-source stage (cont’d)

    Input impedance

     At high frequency, the effect of the output node must be

    taken into account.

    hence

    ( )

    ( )( )s C R R g s C 

    s C C R 

    V Z 

    V s C 

    s C R 

    R V g I 

    DB D D m GD 

    DB GD D 

    X X 

    GD 

    DB D 

    D X m X 

    ++++==⇒

    =++

    1

    1

    1

    s C Z Z 

    GS 

    X in 

    1=

     At frequencies where |R D (C GD + C DB )s |

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    7/75

    6-12 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Source followers (cont’d)

    Input impedance

    C GD is ignored, we have

    s C g s C g 

    s C I V Z 

    s C g s C 

    I g I 

    s C 

    I V 

    L mb GS 

    GS X 

    X in 

    L mb GS 

    X m X 

    GS 

    X X 

    +  

       ++==∴

     

      

      

      

     ++=

    111

    11

     At relative low frequencies, g mb >> |C L s | and

    indicating that the equivalent input capacitance is equal to C GS g mb / (g m + g mb ).

    By Miller approximation: The low-frequency gain A v = g m / (g m + g mb )

    Thus, C eq = C GS (1 − A v ) = C GS g mb / (g m + g mb ), and

    mb GS 

    mb m 

    mb mb mb 

    GS 

    in g 

    s C g g 

    g g g 

    s C Z 

    1111

    1+

     

      

     +

    =+ 

      

     +≈

    mb m 

    mb GS GD total in 

    g g 

    g C C C 

    ++=,

     At high-frequencies, g mb 1

    R g 

    <1

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    8/75

    6-14 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Source followers (cont’d)

    Equivalent output impedance of a source follower 

    If Z 1 = Z out , find R 1, R 2 and L :

    Take R 2 = 1/g m , R 1 = R S  − 1/g m , then

    That is, the dependence of L upon R S implies that if a source follower is driven by alarge resistance, then it exhibits substantial inductive behavior.

    s C g g 

    R s C 

    g Z 

    GS m 

    m S GS 

    out  + 

     

     

     −

    =−

    1

    1

     

      

     −=⇒

    +=

     

      

     −

    +−

    =−

    GS 

    GS 

    out 

    g R 

    C L 

    Ls R 

    g R 

    s C g 

    R g 

    1

    11

    1

    1

    1

    1

    1

    1

    1

    6-15 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-gate stage

    CG stage at high frequencies

    Input impedance , where

    Since Z in now depends on Z L , it is difficult to associate a pole with the input node.

    1

    1−

     

      

     

    +=

    mb m 

    S S in g g 

    R C ω  , where C S = C GS + C SB 

    ω out = ( R D C D  )−1, where C D = C DG + C DB 

     At low frequency,

    Thus,

     An important property of CG stage is that it exhibits no Miller multiplication of

    capacitances, potentially achieving a wide band.

    ( )( )   S mb m 

    D mb m v 

    R g g 

    R g g A 

    +++

    =1

    ( )   ( )( )

    ( )s C R s R g g 

    C R g g 

    R g g 

    s s A s 

    D D 

    S mb m 

    S S mb m 

    D mb m 

    out in 

    in 

    out 

      

     ++

    +++

    +=

     

      

     +

     

      

     +

    ⋅=

    − 11

    1

    111

    1

    1ω ω 

    ( )   mb m o mb m L 

    in g g r g g 

    Z Z 

    ++

    +≈

    1

    s C R Z 

    D L 

    1=

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    9/75

    6-16 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Common-gate stage (cont’d)

    CG stage

    Transfer function:

    The gain at low frequencies is equal to 1 + g m r o .

    Input impedance:

     As C L or s increases, Z in approaches

    1/(g m + g mb ) and hence the input pole

    can be defined as

    ( )

    ( )

    ( )( )[ ] 11

    12

    11

    11

    ++++++=⇒

    =−−−

    −=++−

    s R C r g R C C r s R C C r 

    r g s 

    V V V g s C V r 

    V V R s C V s C V 

    S L o m S in L o S in L o 

    o m 

    in 

    out 

    out m L out o 

    in S in L out 

    ( ) o mb m L mb m in 

    r g g s C g g Z 

    +⋅+

    +=

    111

    in 

    mb m 

    in  p 

    C g g 

    R    

      

    +

    =1

    1,ω 

    6-17 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Cascode stage

    High-frequency model of a cascode stage

    Cascode stage = CS stage (input impedance) + CG stage (suppressing the millereffect)

    Gain:

    Node A:

    Node X:

    Node Y:

    In actual design, ω  p ,X is typically chosen to be farther from the origin than the other

    two. This choice plays an important role in the stability of op amps.

    mb m 

    g g 

    +−≈

    2

    1

     

     

     

     +

    ++

    =

    1

    2

    11

    ,

    1

    1

    GD 

    mb m 

    m GS S 

    A  p 

    g g 

    g C R 

    ω 

    2211

    1

    22

    22,

    1 GS SB DB GD m 

    mb m 

    mb m X  p 

    C C C C g 

    g g 

    g g 

    +++ 

      

        ++

    +=ω 

    ( )22,

    1

    GD L DB D 

    Y  p C C C R    ++

    =ω 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    10/75

    6-18 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Cascode stage (cont’d)

    Simplified model of a cascode stage with a current source

    V X = −(V out C Y  s + I in ) / (C X  s )

    I D 2 = −g m V GS 2 = g m 2V X = − g m 2 (V out C Y  s + I in ) / (C X  s )

    for g m 2r o 2 >> 1 and g m 2r o 2C Y /C X >> 1 (i.e., C Y > C X ),

    hence

    We can find that the pole at node X is given by g m 2 / C X .Neglecting C GD 1 and C Y , we have Z out = (1 + g m r o 2)Z X + r o 2, where Z X = r o 1||(C X s )

    −1.

    ( ) ( )

    ( )   s r C C 

    C r g s C 

    r g 

    V s C I s C V s C V s C 

    I s C V r 

    o Y 

    Y o m 

    o m 

    in 

    out 

    out X 

    in Y out Y out X 

    in Y out o 

    222

    22

    2

    2

    11

    11 

    1

     

    +++⋅

    +−=⇒

    =+−

    ++−

    s C g C 

    C s C 

    Y m 

    Y X 

    in 

    out 

    +−≈

    2

    2 1

    s C g s C C 

    g g 

    X m X Y 

    m m 

    in 

    out 

    in 

    in 

    in 

    out 

    +−≈=

    /

    1

    2

    21

    6-19 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Differential pair 

    Differential pair 

    Equivalent circuit for common-mode input

    If the output pole is much farther from the origin than

    is the pole at node P , the common-mode rejection of

    the circuit degrades considerably at high frequencies.

    ( ) 11

    1

    321

    ,

     

     +

     

      

     ∆

    −=

    s C r g g 

    s C R g 

    o m m 

    D m 

    CM v 

    Half-circuit equivalent

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    11/75

    6-20 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Differential pair (cont’d)

    Effect of high-frequency supply noise in differential pair 

    If the supply voltage contains high-frequency noise and the circuit exhibits

    mismatches, the resulting common-mode distance at node P leads to a differential

    noise component at the output.

     A trade-off between voltage headroom and CMRR : To minimize the headroom

    consumed by M 3

    , its width is maximized, introducing substantial capacitance at the

    sources of M 1 and M 2 and degrading the high-frequency CMRR . The issue

    becomes more serious at low supply voltages.

    6-21 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Differential pair (cont’d)

    Differential pair with current-source loads

    Node G is an ac ground.

    The output pole is given by , the dominant pole.( )   L o o 

    out C r r  31

    1=ω 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    12/75

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    13/75

    6-24 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Differential pair (cont’d)

    In addition, there is a zero with a

    magnitude of in the left half

    plane. The appearance of such a zero

    is that the circuit consists of a “slowpath” (M 1, M 3 and M 4) in parallel witha “fast path” (M 1 and M 2).

    Representing the two paths, we have

    That is, the system exhibits a zero at

    2ω  p 2.

    ( )( )( )

    ( )( )2120

    1

    0

    21

    0

    /1/1

    /2

    /1/1/1

     p  p 

     p 

     p  p  p in 

    out 

    s s 

    s A 

    s s 

    ω ω 

    ω 

    ω ω ω 

    ++

    +=

    ++

    ++=

    mP 

    g 2

    6-25 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Differential pair (cont’d)

    Determine the zero (method)

    For zero frequency, I L = 0 and I D 4 = I X .

    We have

    I D 4 = −g mP V E I X = V E  (g mP + C E s )

    Thus, −g mP V E = V E  (g mP + C E s )

    mP z 

    g 2−=ω 

     I  L

     I  D4

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    14/75

    Small-signal analysis applies when transistors can be adequately characterized by their

    operating points and small linear changes about the points.

    The use of this technique has led to application of frequency-domain techniques to the

    analysis of the linear equivalent circuits derived from small-signal models.

    The transfer function of analog circuits to be discussed can be written in rational form

    with real-valued coefficients, that is as a ratio of polynomials in Laplace Transformvariable s,

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    15/75

    3

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    16/75

    4.1.2 First order circuits

    It is a first-order low-pass transfer function.

    It arises naturally when a resistance and capacitance are combined.

    It is often used as a simple model of more complex circuits, such as OpAmp.

    4

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    17/75

    Step response of first order circuitsAnother common means of characterizing linear circuits is to excite the with step inputs

    (such a square waveform).

    5

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    18/75

    6

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    19/75

    4.1.3 second order low-pass H(s) with real

    poles

    Here, w0 is the resonant or pole frequency and Q the quality factor, K the DC gain of H(s).

    Equating yields

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    20/75

    wp1, wp2 are widely-spaced real poles

    The step response consists of two first-order terms, and when wp1 1/wp2, the first term dominates.

    8

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    21/75

    Chapter 4 Figure 04

    4.1.4 Bode plot

    9

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    22/75

    4.1.5 Second-order low-pass H(s) with

    complex poles

    Recall

    Subt. In

    10

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    23/75

    4.1.5 Second-order low-pass H(s) with

    complex poles1. The step response in this case has sinusoidal term whose envelope

    exponentially decays with a time constant equal to the inverse of real parts of

    poles, 1/wr=2Q/w0.

    2. A system with high Q factor will have oscillation and ringing for some time. The

    oscillation frequency is determined by the imaginary parts of the poles.3. In summary, when Q0,5,

    there are overshoot and ringing.

    Chapter 4 Figure 09

    Chapter 4 Figure 10

    t

    11

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    24/75

    4.2. Frequency response of elementary

    circuitsSmall-signal analysis is implicitly assumed as only linear circuits can have well-defined

    frequency response.

    The procedure for small-signal analysis remains the same as that in Chapter 3 for

    single-stage amplifiers, however parasitic capacitance are now included.

    12

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    25/75

    Chapter 4 Figure 12

    Chapter 4 Figure 11

    4.2.1 High frequency small-signal model

    13

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    26/75

    Chapter 4 Figure 13

    4.2.2 Common-source amplfier

    Chapter 4 Figure 14

    Note: assumed that Q1, Q2 are in active mode.

    14

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    27/75

    If

    15

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    28/75

     

    One more reason why analog design is tough.

    16

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    29/75

    Chapter 4 Figure 15

    4.2.3 Miller effect

    17

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    30/75

    Chapter 4 Figure 17

    18

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    31/75

    Chapter 4 Figure 18

    Miller effect applied to CS amplifier

    Chapter 4 Figure 14

    19

    Miller effect allows one to quickly estimate the 3dB bandwidth in many cases.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    32/75

    4.2.4 Zero-value time constant methodExcept Miller effect, the most common and powerful technique for frequency response

    analysis of complex circuits is the zero-value time constant analysis method.

    It is very powerful in estimating a circuit’s 3dB bandwidth with minimal complication and

    also in determine which nodes are most important.

    Generally, the approach is to calculate a time-constant for each capacitor in the circuit by

    assuming all other capacitors are zero, then sum all time constants to estimate the 3dB

    bandwidth.

    Detailed procedure:

    20

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    33/75

    Example 4.9 (page 174)

    The same as obtained previously21

    Chapter 4 Figure 14

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    34/75

    Chapter 4 Figure 13

    Design example 4.11 (page 177)

    In this example, the load capacitance is modest and source resistance is high, so C gd1 may

    become a major limitation of the bandwidth. This means that W1 should be small.

      So, given a current, Veff1 has to be relatively large: choose Veff1 to be 0.3V

      Then suppose L1rds1 so R2=rds1 and A0=-gm1rds1

    22

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    35/75

    Design example 4.11 (page 177)

    Then solve L1 to be

    Then note that increasing drain current of Q1 while keeping Veff1=0.3V will increase gm1 

    and reduce rds1 roughly in proportion, which results in about the same gain, but a smaller

    R2 is achieved which increase 3db bandwidth. So, bandwidth is maximized by maximizing

    he drain current of Q1.

    Then, we can compute the required gate width

    To ensure L2>>L1, we can take L2=3L1=0.72μm

    Then, we can arbitrarily and conveniently set W2=3W1

    Finally, Q3 is sized to provide the desired current mirror ratio

    Then, need to make sure that all transistors are in active region 23

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    36/75

    Chapter 4 Figure 13

    Design example 4.12 (page 178)

    In this example, the load capacitance is very large and source resistance is small, so C 2 

    may become a major limitation of the bandwidth, so

    24

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    37/75

    Chapter 4 Figure 13

    Design example 4.12 (page 178)

    25

    rds=2rds1

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    38/75

    The above two design examples illustrate the manual analysis to provide an initial design

    solution, which thereafter needs to be refined iteratively using simulation. A number of

    challenges here:

    1. there is no guarantee that the initial solution is valid or good;2. the refinement may take many many iterations until a good design is achieved;

    3. at each iteration, what are not working or good in the circuit, what parameters to

    modify, and how to modify them requires in depth understanding of analog circuits.

    What about those cases when it is hard to decide which capacitance dominates?

    Experience counts here, after you had many designs and were aware of the biasing

    conditions, capacitance conditions?

    The time domain response of common-source amplifier? (two widely spaced poles)

    26

    Comments

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    39/75

    Chapter 4 Figure 20

    4.2.6 Common-gate amplifier

    Chapter 3 Figure 09

    27

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    40/75

    Chapter 4 Figure 21

    We estimate the time constant associated with Cgs (note that Cgs is connected between

    source and ground therefore may need to include Csb).

    Superior 3dB bandwidth, but input impedance is too small.

    28

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    41/75

    Compared to CS amplifier, CG amplifier has much better 3dB bandwidth, but much

    smaller input impedance.

    To achieve a good tradeoff, we can combine a CG amplifier with a CS amplifier.

    4.3 Cascode gain stage

    Chapter 4 Figure 22

    Telescopic Folded-cascode

    rin2

    29

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    42/75

    Chapter 4 Figure 23

    Small-signal model for the cascode

    Cout=Cgd2+Cdb2+ CL+Cbias

    Cs2=Cdb1+Csb2+Cgs2

    Please derive Rout 

    Using zero-value time constant method

    rin2

    The total resistance seen at the drain of Q1 is

    30

    See Slide 21

    See slides 30 (Ch3)

    Miller effect

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    43/75

    Chapter 4 Figure 24

    31

    On the Miller effect on Cgd1

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    44/75

    32

    Example 4.13, 4.14 (page 184-185)

    Recall that a large gain of the cascode amplifier requires the Ibias to have an

    output resistance on the order of In this case, and especially when

    there is also a large load capacitance CL, the output time constant

    would dominate.

    This approximation is valid since Rs is the same order as rds

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    45/75

    Chapter 4 Figure 26

    33

    4.3 Source follower amplifierThe SF amplifier may have complex poles and therefore ringing and overshoot may

    happen for a pulse input.

    Norton equivalent circuit

    Q1

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    46/75

    Chapter 4 Figure 27

    34

    Cs=CL+Csb1

    Chapter 4 Figure 28

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    47/75

    35

    Next we find the admittance Yg looking into the gate of Q1 (but not

    including Cgd1 as it is already combined into Cin’).

    Recall Q

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    48/75

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    49/75

    Chapter 4 Figure 32

    37

    4.5 Differential pairWhen using T model for differential pair, the analysis may be simpler compared to the

    hybird-pi model.

    CL

    Vs

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    50/75

    38

    4.5.2 Symmetric differential pairIn the small-signal model, half circuit is analyzed to allow simpler analysis.

    Also note that the Vs node is small-signal ground due to symmetry, so Csb1 and Csb2 can

    be neglected.

    The half circuit corresponds to that of a CS amplifier, so the 3dB bandwidth is either

    or 1/[R2 * (Cgd1 + Cdb1 + CL)]

    Which one is the 3dB bandwidth depends on the CL.

    Where R2 = RD||rds1

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    51/75

    39

    Active loaded differential pairAgain note that Vs is at small-signal ground, so half circuit can be used for analysis.

    Again the load capacitor will determine which one is the 3dB bandwidth.

    ]))//(1[(2

    1

    ])[//(2

    1

    11311

    2

    313131

    1

     gs gd oom s

    b

    dbdb gd  gd  Loo

    b

    C C r r  g  R f  

    C C C C C r r  f  

      

      

    Vs

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    52/75

    Chapter 3 Figure 19

    Capacitance at input node of the current mirror:

    Capacitance at the output node:

    Note that Q1 will conduct an current of gmVid/2

    flowing through Q3 (the parallel of 1/gm3 and Cm),

    where we neglected the effect of rds1 and rds2, so

    Va

    From Miller effect

    Current-mirror loaded differential pair

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    53/75

    41

    Capacitance at input node of the current mirror:

    Capacitance at the output node:

    CL

    Cm

    RL

    -Ix4

    -Ix4

    Va

    Va

    Io

    -Ix4-Ix3

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    54/75

    42

    Capacitance at input node of the current mirror:

    Capacitance at the output node:

    We can them multiply Gm with the total load

    impedance to obtain the voltage Vo

    CL

    Cm

    RL

    Io

    Compared to the fully differential version, the current-mirror differential amplifier

    adds one more pole to the transfer function, therefore may significantly affect the

    frequency response.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    55/75

    43

    Chapter 4 Figure 37

    If output load capacitance is dominated, then the following simple model can be used.

    Simplified small-signal model for

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    56/75

    Chapter 4 Figure 34

    44

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    57/75

    Chapter 4 Figure 35

    45

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    58/75

    Chapter 4 Figure 36

    46

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    59/75

    Ching-Yuan Yang

    National Chung-Hsing UniversityDepartment of Electrical Engineering

    Stability and Frequency Compensation

     類比電路設計(3349) - 2004

    10-1 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Overview

    Reading

    B. Razavi Chapter 10.

    Introduction

    In this lecture, we deal with the stability and frequency compensation of

    linear feedback systems to the extent necessary to understand design

    issues of analog feedback circuits. Beginning with a review of stability

    criteria and the concept of phase margin, we study frequency compensation,introducing various techniques suited to different op amp topologies. We

    also analyze the impact of frequency compensation on the slew rate of two-

    stage op amps.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    60/75

    10-2 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Basic negative-feedback system

    General considerations

    Close-loop transfer function:

    if  β H (s = j ω 1) = −1, the gain goes to infinity,

    and the circuit can amplify is own noise untilit eventually begins to oscillate at frequency

    ω 1.

    Barkhausen’s Criteria:

    | β H (s = j ω 1)| = 1∠ β H (s = j ω 1) = −180o .

    The total phase shift around the loop at ω 1 is 360o because negative

    feedback itself introduces 180o of phase shift. The 360o phase shift isnecessary for oscillation since the feedback must add in phase to theoriginal noise to allow oscillation buildup. By the same token, a loop

    gain of unity (or greater) is also required to enable growth of theoscillation amplitude.

    ( ))(1

    )(

     s H 

     s H  s

     X 

     β +=

    10-3 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Bode diagram of loop gain

     A negative feedback system may oscillate at ω 1 if

    (1) the phase shift around the loop at this frequency is so much that the

    feedback becomes positive.

    (2) the loop gain is still enough to allow signal buildup.

    Unstable system Stable system

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    61/75

    10-4 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Time-domain response

    Root locus: Pole frequency sP = j ω P + σ P 

    σ P > 0, unstable with growing

    amplitude

    σ P = 0, unstable with constant-

    amplitude oscillation

    σ P < 0, stable

     a

    b

    c

    10-5 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Bode plots of one-pole system

     Assuming H (s) = A0/(1 + s/ω 0),  β  is less than or equal to unity and doesnot depend on the frequency, we have

    Bode plots of loop gain: Root locus: sP = −ω 0(1 +  β  A0)

     A single pole cannot contribute a

    phase shift greater than 90o and

    the system is unconditionally

    stable for all non-negative

    valuesof  β .

    ( )

    ( )00

    0

    0

    11

    1

    )(1

    )(

     A

     s

     A

     A

     s H 

     s H  s

     X 

     β ω 

     β 

     β 

    ++

    +=

    +=

    20dB/dec

    10ω00.1ω0

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    62/75

    10-6 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Bodes plots of two-pole system

     Assuming the open-loop transfer function

    Bode plots of loop gain:

    The system is stable because | β H | drops to below

    unity at a frequency for which ∠ β H < −180o.To reduce the amount of feedback, we decrease

     β , obtaining the gray magnitude plot in the figure.

    For a logarithmic vertical axis, a change in  β 

    translates the magnitude plot vertically. Note that

    the phase plot does not change.

    The stability is obtained at the cost of weaker

    feedback.

     

      

     +

     

      

     +

    =

    21

    0

    11

    )(

     p p

     s s

     A s H 

    ω ω 

    10-7 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Bodes plots of three-pole system

     Assuming the open-loop transfer function

    Bode plots of loop gain:

    If the feedback factor  β decreases, the

    circuit becomes more stable because the

    gain crossover moves toward the origin

    while the phase crossover remains

    constant.

     

      

     +

     

      

     +

     

      

     +

    =

    321

    0

    111

    )(

     p p p

     s s s

     A s H 

    ω ω ω 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    63/75

    10-8 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Phase margin

    Close-loop frequency and time response

    Small margin Large margin

    10-9 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Phase margin (cont’d)

      Phase margin (PM) is defined as

    PM = 180o + ∠ β H (ω = ω 1)

    where ω 1 is the gain crossover frequency.

    Example

     A two-pole feedback system is designed such that | β H (ω = ω P 2)| = 1 and

    | ω P 1|

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    64/75

    10-10 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    How much phase margin is adequate?

    For PM = 45o, at the gain crossover frequency ∠ β H (ω 1) = −135o and

    | β H (ω 1)| = 1, yielding

    It follows that

    The frequency response of the feedback

    system suffers from a 30% peak at ω = ω 1.

    Close-loop frequency response for 45o

    phase margin:

    ( )   j j H 

     j

     j H 

     X 

    71.029.0

    )(

    135exp11

    )( 11

    −=

    °−⋅+=

      ω ω 

     β  β 

    3.1

    71.029.0

    11≈

    ⋅=

     j X 

    10-11 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    How much phase margin is adequate? (cont’d)

    Close-loop time response for 45o, 60o, and 90o phase margin:

    For PM = 60o, Y ( j ω 1)/ X ( j ω 1) = 1/ β , suggesting a negligible frequency peaking.

    This typically means that the step response of the feedback system exhibitslittle ringing, providing a fast settling. For greater phase margins, the systemis more stable but the time response slows down. Thus, PM = 60o is typicallyconsidered the optimum value.

    The concept of phase margin is well-suited to the design of circuits thatprocess small signals. In practice, the large-signal step response offeedback amplifiers does not follow the illustration of the above figure. Forlarge-signal applications, time-domain simulations of the close-loop systemprove more relevant and useful than small-signal ac computations of theopen-loop amplifier.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    65/75

    10-12 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    How much phase margin is adequate? (cont’d)

    Example:

    Unity-gain buffer: PM  ≈ 65o, unity-gain frequency = 150 MHz.However, the large-signal step response suffers from significant ringing.

    The large-signal step response of feedback amplifiers is not only due toslewing but also because of the nonlinear behavior resulting from largeexcursions in the bias voltages and currents of the amplifier. Suchexcursions in fact cause the pole and zero frequencies to vary during thetransient, leading to a complicated time response. Thus, for large-signalapplications, time-domain simulations of the close-loop system prove more

    relevant and useful than small-signal ac computations of the open-loopamplifier.

    10-13 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Frequency compensation

    Typical op amp circuits contain many poles. For this reason, op amps must

    usually be “compensated,” that is, the open-loop transfer function must be

    modified such that the closed-loop circuit is stable and the time response is

    well-behaved.

    Stability can be achieved by minimizing the

    overall phase shift, thus pushing the phase

    crossover out .   Moving PX out 

     Discussion :

    This approach requires that we attempt

    to minimize the number of poles in the

    signal path by proper design.

    Since each additional stage contributes

    at least one pole, this means the number

    of stages must be minimized, a remedy

    that yields low voltage gain and/or limited

    output swings.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    66/75

    10-14 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Frequency compensation (cont’d)

    Stability can be achieved by dropping   Moving GX in

    the gain thereby pushing the gain

    crossover in.

    Discussion:

    This approach retains the low

    frequency gain and the output

    swings but it reduces the

    bandwidth by forcing the gain

    to fall at lower frequencies.

    10-15 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Telescopic op amp with single-ended output

    Determine the poles of the circuit:

    We identify a number of poles in the signal paths:

    path 1 contains a high-frequency pole at the source

    of M 3, a mirror pole at node A, and another

    high-frequency pole at the source of M 7, whereas

    path 2 contains a high-frequency pole at the source

    of M 4. The two paths share a pole at the output.

    Dominant pole: the closest to the origin.

    ω  p,out = 1/(R out C L), usually sets the open-loop3-dB bandwidth.

    Nondominant poles:

    ω  p, A = g m5/C  A, the closest pole to the origin after ω  p,out .   Pole locations:

    where C  A = C GS5 + C GS6 + C DB5 + 2C GD6 + C DB3 + C GD3.

    ω  p,N = g m7/C N , ω  p, X = g m3/C  X = g m4/C Y = ω  p,Y .

    Since g m = 2I D/|V GS − V TH |, if M 4 and M 7 aredesigned to have the same overdrive, they exhibit

    the same transconductance. From square-law characteristics, we have

    W 4/W 7 = µ  p/µ n ≈ 1/3. Thus, nodes N and X (Y ) see roughly equal small-signalresistances but node N suffers from much more capacitance.

    (mirror pole)

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    67/75

    10-16 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Telescopic op amp with single-ended output (cont’d)

    Bode plots of loop gain for op amp: using  β = 1 for the worst case.

    The mirror pole ω  p, A typically limits the phase margin because its phase

    contribution occurs at lower frequencies than that other nondominant

    poles.

    10-17 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Telescopic op amp with single-ended output (cont’d)

    Translating the dominant pole toward origin to compensate the op amp:

     Assuming ω  p, A > 10ω  p,out , we must force

    the loop gain crossover point moves

    toward the origin. We can simply lower

    the frequency of the dominant pole

    (ω  p,out ) by increasing the load capacitance.

    The key point is that the phase contributionof the dominant pole in the vicinity of the

    gain or phase crossover points is close to

    90o and relatively independent of the

    location of the pole. That is, translating

    the dominant pole toward the origin affects

    the magnitude plot but not the critical part

    of the phase plot.

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    68/75

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    69/75

    10-20 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Compensation of two-stage op amps

    We identify three poles at X (or Y ), E (or F ) and A(or B).

     A pole at X (or Y ) lies at relatively high frequencies. Since the small-signalresistance seen at E is quite high, even the capacitances of M 3, M 5 and M 9can create a pole relatively close to the origin. At node A, the small-signalresistance is lower but the value of C L may be quite high. Consequently, thecircuit exhibits two dominant poles.

    One of the dominant poles must be moved toward the origin so as to placethe gain crossover well below the phase crossover. If the magnitude of ω  p,E is to be reduced, the available bandwidth is limited to approximately ω  p, A, a

    low value. Furthermore, this required dominant pole translates to a verylarge compensation capacitor.

    10-21 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Miller compensation of a two-stage op amp

    In a two-stage amp as shown in Fig.(a), the first stage exhibits a high output

    impedance and the second stage provides a moderate gain, therebyproviding a suitable environment for Miller multiplication of capacitors.

    In Fig.(b), we create a large capacitance at E , the pole is

     As a result, a low-frequency pole can be established with a moderate

    capacitor value, saving considerable chip area.

    In addition to lowering the required capacitor value, Miller compensation

    entails a very important property: it moves the output pole away from the

    origin. ( pole splitting )

    ( )[ ]C v E out  E  p

    C  AC  R 21,

    1

    1

    ++=ω 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    70/75

    10-22 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Miller compensation of a two-stage op amp (cont’d)

    Pole splitting as a result of Miller compensation.

    Discussion

    Two poles: (based on the assumption |ω  p,1| > C E , ω  p,2 ≈ g m9/(C E + C L).

    Typically C E 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    71/75

    10-24 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Miller compensation of a two-stage op amp (cont’d)

     Addition of R z to move the right hand plane zero.

    The zero is given by .If , then ω z  ≤ 0.

    We may move the zero well into the left plane so as to cancel the firstnondominant pole. That is

    , because C E 

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    72/75

    10-26 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Miller compensation of a two-stage op amp (cont’d)

    Method of defining g m9 with respect to R S.

    Goal: ⋅⋅⋅⋅⋅⋅⋅⋅  (A)

    The technique incorporates M b1-M b4

    along with R S to generate

    Thus,

    Proper ratioing of R Z and R S therefore

    ensures (A) is valid even with temperature

    and process variations

    C m

    C  L z 

    C  g 

    C C  R

    9

    +=

    2−∝   S b   R I 

    11199

    −∝∝∝   S  D Dm   R I  I  g 

    10-27 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Effect of increased load capacitance on step response

    In one-stage op amps, a higher load capacitance brings the dominant polecloser to the origin, improving the phase margin (albeit making the feedback

    system more overdamped).

    In two-stage op amps, since Miller compensation establishes the dominant

    pole at the output of the first stage, a higher load capacitance presented to

    the second stage moves the second pole toward the origin, degrading the

    phase margin.

    Illustrated in the figure is the step response of a unity-gain feedback

    amplifier, suggesting that the response approaches an oscillatory behavior if

    the load capacitance seen by the two-stage op amp increases.

    One-stage op amps:   Two-stage op amps:

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    73/75

    10-28 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Slewing in two-stage op amps

    The positive slew rate equals I SS /C C . During slewing, M 5 must provide two

    currents: I SS and I 1. If M 5 is not wide enough to sustain I SS + I 1 in saturation,

    then V  X drops significantly, possibly driving M 1 into the triode region.

    During negative slew rate, I 1 must support both I SS and I D5. For example,

    if I 1 = I SS, then V  X rises so as to turn off M 5. If I 1 < I SS, then M 3 enters the

    triode region and the slew rate is given by I D3 /C C .

    Positive slewing:   negative slewing:

    10-29 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Compensation technique using a source follower 

    Two-stage op amp with right half plane zero due to C C :

     Addition of a source follower to remove zero:

    Since C GS of M 2 is typically much less than C C , we

    expect the right frequencies.

    and , then

     Assume ω  p 1 > 1,

    (1 + g m 1g m 2R L R S )C C >> g m 2R L C L , we have

    Equivalent circuit :

    Source follower 

    ( )   ( )s C R R g V 

    V s C R V V g  L L L m 

    out L L out m    +−

    =+=−   − 1 1

    1111  

    in 

    C m 

    out 

    V I 

    s C g 

    V V  1

    2

    1

    11  =+

    +

    [ ] 22212

    2

    21

    )1()1(

    )(

    m L L m C S L m m S m C L L 

    C m S L m 

    in 

    out 

    g s C R g C R R g g s R g C C R 

    s C g R R g 

    ++++++−

    =

    Zero in the left hand plane

     L

    m

     L L   C 

     g 

    C  R11 →

    C S L m 

     p C R R g  1

    1

    1≈ω 

    m  p 

    g  12  ≈ω and (Note ω  p 2: )

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    74/75

    10-30 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Compensation technique using a CG stage

    The primary issue is that the source follower limits the lower end of the

    output voltage to V GS 2 + V I 2. In the CG topology, C C and the CG stage M 2convert the output voltage swing to a current, returning the result to the

    gate of M 1.

    , and , we obtain

    Using approximations, and .

    222 V 

     sC 

    V  g V 

    mout    −=+   2211

    1V  g  sC 

     RV V  g  m L

     L

    out m   = 

      

     ++   22

    1 V  g  R

    V  I  m

    in   +=

    ( )( )[ ]   2221

    221

    1 m L LmC C  LmS mC  L L

    S m LS m

    in

    out 

     g  sC  R g C C  R g  R g  sC C  R

     sC  g  R R g 

     I 

    ++++++−

    =

    C S  Lm

     pC  R R g  1

    11≈ω 

     L

    mS m p

    C  g  R g  12

    2 ≈ω 

    Equivalent circuit :

    10-31 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Compensation technique using a CG stage (cont’d)

    For positive slewing, M 2 and I 1 must support I SS,

    requiring I 1 ≥ I SS + I D1. If I 1 is less, then V P drops,

    turning M 1 off, and if I 1 < I SS, M 0 and its tail

    current source must enter the triode region,

    yielding a slew rate equal to I 1/C C .

    For negative slewing, I 2 must support both I SS

    and I D2. As I SS flows into node P , V P tends to rise,increasing I 

    D1. Thus, M 

    1absorbs the current

    produced by I 3 through C C , tuning off M 2 and

    opposing the increase in V P . We can therefore

    consider P a virtual ground node.

    For equal positive and negative slew rates, I 3

    (and hence I 2) must be as large as I SS, raising the

    power dissipation.

    Positive slewing:

    Negative slewing:

  • 8/9/2019 Frequency Response of Amplifiers and 3-Db Bandwidth

    75/75

    10-32 Ching-Yuan Yang / EE, NCHU Analog-Circuit Design

    Alternative method of compensation two-stage op amps