fractional calculus and anomalous diffusion · fractional calculus examples and applications...

27
Fractional calculus and anomalous diffusion Alfredo Fiorentino Universit` a di Trieste Horizon seminars, 3-27-2019

Upload: others

Post on 04-Aug-2020

7 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Fractional calculus and anomalous diffusion

Alfredo Fiorentino

Universita di Trieste

Horizon seminars, 3-27-2019

Page 2: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Outline

Introduction: physical phenomena and F. Calculus

Anomalous diffusion

Fractional Calculus

Examples and applications

Alfredo Fiorentino Fractional calculus and anomalous diffusion 2 / 21

Page 3: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Outline

Introduction: physical phenomena and F. Calculus

Anomalous diffusion

Fractional Calculus

Examples and applications

Alfredo Fiorentino Fractional calculus and anomalous diffusion 2 / 21

Page 4: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Outline

Introduction: physical phenomena and F. Calculus

Anomalous diffusion

Fractional Calculus

Examples and applications

Alfredo Fiorentino Fractional calculus and anomalous diffusion 2 / 21

Page 5: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Outline

Introduction: physical phenomena and F. Calculus

Anomalous diffusion

Fractional Calculus

Examples and applications

Alfredo Fiorentino Fractional calculus and anomalous diffusion 2 / 21

Page 6: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

What’s the link?

Between physical phenomena like:

Anomalous diffusion

Fluid dynamics

Nuclear physics

and this kind of differential operator of order m − 1 < α < m:

Dαf (t) =1

Γ(m − α)

∫ t

0

f (m)(τ)

(t − τ)α+1−m dτ +initial conditions terms.

(1)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 3 / 21

Page 7: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

On September 30th,1695, Guillaume del’Hopital wrote to Leibnizasking him about a particular notation he had used for the n-thderivative

dnf

dtn

His question was: ”What would be the result if n = 1/2?”Leibniz’s response followed:”An apparent paradox, from whichone day useful consequence will be drawn.”

Alfredo Fiorentino Fractional calculus and anomalous diffusion 4 / 21

Page 8: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Brownian diffusion

Figure: Left: a drop of ink in the water. Right: multiple scattering oflight in the foam

Alfredo Fiorentino Fractional calculus and anomalous diffusion 5 / 21

Page 9: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Brownian diffusion

Diffusion is a process resulting from particle random motion,inducing a net flow of the diffusive substance from a region of highconcentration to a region of low concentration.Examples:

perfume in a room

neutrons triggering a nuclear reaction

heat diffusion

Second Fick’s law and consequences

∂W (x , t)

∂t= D

∂2W (x , t)

∂x2(2)

〈x2〉 = 2Dt (3)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 6 / 21

Page 10: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Anomalous diffusion

It has been observed in many phenomena, such as

diffusion through percolation and fractal mediacellular transportelectron transport in amorphous media

Anomalous diffusion has a different behaviour of 〈x2(t)〉

Alfredo Fiorentino Fractional calculus and anomalous diffusion 7 / 21

Page 11: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Anomalous diffusive medium

Alfredo Fiorentino Fractional calculus and anomalous diffusion 8 / 21

Page 12: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Microscopic explanation: Continuous Time Random Walk

Figure: Left: 2D Brownian random walk; Right: 1D CTRW. (Sokolov etal., 2012).

Alfredo Fiorentino Fractional calculus and anomalous diffusion 9 / 21

Page 13: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Brownian diffusion: a brief recap

Figure: 1D brownian diffusion

Master equation:

W (xi , t + ∆t) =1

2W (xi+1, t) +

1

2W (xi−1, t) (4)

For ∆x , ∆t → 0

∂W (x , t)

∂t=

∆x2

2∆t

∂2W (x , t)

∂x2(5)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 10 / 21

Page 14: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Brownian diffusion: a brief recap

By a Laplace-Fourier transform (time and space) with initialcondition W (x , 0) = δ(x):

sW (k, s)− 1 = −k2DW (k , s) (6)

Therefore:

W (x , t) =1√

4πDtexp

(− x2

2Dt

)(7)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 11 / 21

Page 15: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Microscopic explanation: Continuous time random model

Brownian case 1D

Wj(t + ∆t) =1

2Wj−1(t) +

1

2Wj+1(t) (8)

Anomalous case 1D. Fixed length and time step → jumpprobability density function ψ(x , t) = λ(x)w(t)

W (k , s) =1− w(s)

s

W0(k)

1− ψ(k , s)(9)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 12 / 21

Page 16: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Fractal time sub-diffusion

Jump length fixed. w(t) ∼ Aα(τ/t)α+1 for long times. 0 < α ≤ 1.By inverse Fourier-Laplace transform and Eq. 9,

1

Γ(1− α)

∫ t

0

1

(t − τ)α∂W

∂τdτ = (10)

Dαt W = Kα

∂2W

∂x2.

A straightforward consequence:

〈x2(t)〉 =2Kαt

α

Γ(α + 1)(11)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 13 / 21

Page 17: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Fractional Calculus: origins and remarkable features

Cauchy’s integral formula:

Jnf (t) =1

(n − 1)!

∫ t

0(t − τ)n−1f (τ)dτ, f (t) = 0 (12)

becomes:

Jαf (t) =1

Γ(α)

∫ t

0(t − τ)α−1f (τ)dτ. (13)

JαJβ = JβJα = Jα+β (14)

Under Laplace Transform

Dαf (t)÷ sαf (s)−m−1∑k=0

f (k)(0+)sα−1−k (15)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 14 / 21

Page 18: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Fractional Calculus

The Mittag-Leffler function

Eα(z) :=∞∑n=0

zn

Γ(αn + 1), α > 0, z ∈ C. (16)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 15 / 21

Page 19: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Basset’s Problem

Figure: A sphere falling in a fluid

F = FA − η(V −u) + FB

FB ∝ D12 (V − u)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 16 / 21

Page 20: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Photonic transport

Let us consider a multilayer generated by inflation rules that act ontwo consituent layers, say A and B, with different refractive indices.In the Fibonacci case: A→ AB and B → A.

Figure: Photonic transport in aperiodic multilayer (Dal Negro, 2017).

Alfredo Fiorentino Fractional calculus and anomalous diffusion 17 / 21

Page 21: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Half-thickness of beta decay

For the article here.

Figure: Geant simulations give result different from dIdx = −µI (Prof.Riggi

UniCt.)

Alfredo Fiorentino Fractional calculus and anomalous diffusion 18 / 21

Page 22: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Conclusions

time-space correlations (es. aperiodicity) can lead tounexpected physics

Processes concerning diffusion can be improved inducinganomalous diffusion

A new old trick: to describe this kind of interactions we mayrequire a change in the (order of) operators

Alfredo Fiorentino Fractional calculus and anomalous diffusion 19 / 21

Page 23: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Conclusions

time-space correlations (es. aperiodicity) can lead tounexpected physics

Processes concerning diffusion can be improved inducinganomalous diffusion

A new old trick: to describe this kind of interactions we mayrequire a change in the (order of) operators

Alfredo Fiorentino Fractional calculus and anomalous diffusion 19 / 21

Page 24: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

References

The Random’s walk guide to anomalous diffusion: a fractionaldynamics approach Ralf Metzler, Joseph Klafter

Fractional calculus: integral and differential equations offractional order. Gorenflo, R., Mainardi, F.

Fractional calculus: some basic problems in continuum andstatistical mechanics. Mainardi, F.

Alfredo Fiorentino Fractional calculus and anomalous diffusion 20 / 21

Page 25: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Introduction: physical phenomena and F. CalculusAnomalous diffusion

Fractional CalculusExamples and applications

Alfredo Fiorentino Fractional calculus and anomalous diffusion 21 / 21

Page 26: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Extra stuff

Electron waves: quantum dynamics in aperiodic 1Dsystems

Alfredo Fiorentino Fractional calculus and anomalous diffusion 22 / 21

Page 27: Fractional calculus and anomalous diffusion · Fractional Calculus Examples and applications Brownian di usion Di usion is a process resulting from particle random motion, inducing

Extra stuff

Classical wave transport in correlated disorder

Alfredo Fiorentino Fractional calculus and anomalous diffusion 23 / 21