fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfmeasurablesubsets...

123
Fractals and geometric measure theory 2012 Károly Simon Department of Stochastics Institute of Mathematics Technical University of Budapest www.math.bme.hu/~simonk 2nd week Basic definitions and methods Károly Simon (TU Budapest) Fractals 2012 second talk 1 / 36

Upload: others

Post on 27-Jul-2020

7 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Fractals and geometric measure theory2012

Károly Simon

Department of StochasticsInstitute of Mathematics

Technical University of Budapestwww.math.bme.hu/~simonk

2nd weekBasic definitions and methods

Károly Simon (TU Budapest) Fractals 2012 second talk 1 / 36

Page 2: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Outline

1 Notation

2 Box- Hausdorff dimension

3 Geometric measure theory

4 Self-similar sets with OSC

5 Overlapping

6 Refrences

Károly Simon (TU Budapest) Fractals 2012 second talk 2 / 36

Page 3: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

asd

Károly Simon (TU Budapest) Fractals 2012 second talk 3 / 36

Page 4: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

IFS

Let Ai be d × d non-singular matrices with ‖Ai‖ < 1 andti ∈ Rd for i = 1, . . . ,m. Let

F := {fi}mi=1 = {Ai · x + ti}m

i=1 , (1)

where we always assume that

‖Ai‖ < 1.

We study the attractor Λ of the IFS F .

Károly Simon (TU Budapest) Fractals 2012 second talk 4 / 36

Page 5: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

IFS

Let Ai be d × d non-singular matrices with ‖Ai‖ < 1 andti ∈ Rd for i = 1, . . . ,m. Let

F := {fi}mi=1 = {Ai · x + ti}m

i=1 , (1)

where we always assume that

‖Ai‖ < 1.

We study the attractor Λ of the IFS F .

Károly Simon (TU Budapest) Fractals 2012 second talk 4 / 36

Page 6: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

The attractor Λ (definition I)Let B = B(0, r) be any closed ball centered at the originwith radius r such that

r > max1≤i≤m

‖ti‖1− max

1≤i≤m‖Ai‖

then∀i = 1, . . . ,m : fi(B) ⊂ B. (2)

Thus⋃

i1...in+1

fi1...in+1(B) =⋃

i1...infi1...in

m⋃in+1=1

fin+1(B)

⋃i1...in

fi1...in(B) (3)

Károly Simon (TU Budapest) Fractals 2012 second talk 5 / 36

Page 7: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

The attractor Λ (definition I)Let B = B(0, r) be any closed ball centered at the originwith radius r such that

r > max1≤i≤m

‖ti‖1− max

1≤i≤m‖Ai‖

then∀i = 1, . . . ,m : fi(B) ⊂ B. (2)

Thus⋃

i1...in+1

fi1...in+1(B) =⋃

i1...infi1...in

m⋃in+1=1

fin+1(B)

⋃i1...in

fi1...in(B) (3)

Károly Simon (TU Budapest) Fractals 2012 second talk 5 / 36

Page 8: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

The attractor Λ (definition II)

So we can define the non-empty compact set

Λ :=∞⋂

n=1

⋃i1...in

fi1...in(B). (4)

The definition is independent of B. Then Λ is the onlynon-empty compact set satisfying

Λ =m⋃

i=1fi(Λ). (5)

Károly Simon (TU Budapest) Fractals 2012 second talk 6 / 36

Page 9: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

The attractor Λ (definition II)

So we can define the non-empty compact set

Λ :=∞⋂

n=1

⋃i1...in

fi1...in(B). (4)

The definition is independent of B. Then Λ is the onlynon-empty compact set satisfying

Λ =m⋃

i=1fi(Λ). (5)

Károly Simon (TU Budapest) Fractals 2012 second talk 6 / 36

Page 10: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Coding the points of ΛTo code the elements of Λ we use the symbolic space

Σ := {1, . . . ,m}N .

To code the elements of Λ with the infinite sequencesfrom Σ we choose a sufficiently big closed ball Bcentered at the origin. We have seen that fi(B) ⊂ B forall i = 1, . . . ,m. This follows that for all infinitesequence i := (i1, i2, . . . ) ∈ Σ the sequence of sets

{fi1...in(B)}∞n=1

converge to a single point as n→∞. We call this pointΠ(i).

Károly Simon (TU Budapest) Fractals 2012 second talk 7 / 36

Page 11: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Coding the points of ΛTo code the elements of Λ we use the symbolic space

Σ := {1, . . . ,m}N .

To code the elements of Λ with the infinite sequencesfrom Σ we choose a sufficiently big closed ball Bcentered at the origin. We have seen that fi(B) ⊂ B forall i = 1, . . . ,m. This follows that for all infinitesequence i := (i1, i2, . . . ) ∈ Σ the sequence of sets

{fi1...in(B)}∞n=1

converge to a single point as n→∞. We call this pointΠ(i).

Károly Simon (TU Budapest) Fractals 2012 second talk 7 / 36

Page 12: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Coding of the points of Λ (cont.)

For an i = (i1, i2, . . . ) ∈ Λ we have

��

σ // σiΠ

��

Π(i) Π(σi)fi1oo

(6)

Károly Simon (TU Budapest) Fractals 2012 second talk 8 / 36

Page 13: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Separation conditions

Strong separation Propertyfi(Λ) ∩ fj(Λ) = ∅ for all i 6= j (7)

Open Set Condition (OSC)There exists a non-empty open set V such that

1 fi(V ) ⊂ V holds for all i = 1, . . . ,m2 fi(V ) ∩ fj(V ) = ∅ for all i 6= j .

Károly Simon (TU Budapest) Fractals 2012 second talk 9 / 36

Page 14: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Separation conditions

Strong separation Propertyfi(Λ) ∩ fj(Λ) = ∅ for all i 6= j (7)

Open Set Condition (OSC)There exists a non-empty open set V such that

1 fi(V ) ⊂ V holds for all i = 1, . . . ,m2 fi(V ) ∩ fj(V ) = ∅ for all i 6= j .

Károly Simon (TU Budapest) Fractals 2012 second talk 9 / 36

Page 15: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Separation conditions

Strong separation Propertyfi(Λ) ∩ fj(Λ) = ∅ for all i 6= j (7)

Open Set Condition (OSC)There exists a non-empty open set V such that

1 fi(V ) ⊂ V holds for all i = 1, . . . ,m2 fi(V ) ∩ fj(V ) = ∅ for all i 6= j .

Károly Simon (TU Budapest) Fractals 2012 second talk 9 / 36

Page 16: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Separation conditions

Strong separation Propertyfi(Λ) ∩ fj(Λ) = ∅ for all i 6= j (7)

Open Set Condition (OSC)There exists a non-empty open set V such that

1 fi(V ) ⊂ V holds for all i = 1, . . . ,m2 fi(V ) ∩ fj(V ) = ∅ for all i 6= j .

Károly Simon (TU Budapest) Fractals 2012 second talk 9 / 36

Page 17: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Box dimensionLet E ⊂ Rd , E 6= ∅, bounded. Nδ(E ) be the smallestnumber of sets of diameter δ which can cover E . Thenthe lower and upper box dimensions of E :

dimB(E ) := lim infr→0

logNδ(E )

− log δ , (8)

dimB(E ) := lim supr→0

logNδ(E )

− log δ . (9)

If the limit exists then we call it the box dimension of E .

Károly Simon (TU Budapest) Fractals 2012 second talk 10 / 36

Page 18: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Equivalent definitions I.

The definition of the box dimension does not change ifwe define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ thatcover E ,

2 the smallest number of cubes of side δ that cover E ,3 the number of δ-mesh cubes that intersect E4 the smallest number of sets of diameter at most δ

that cover E ,5 the largest number of disjoint balls of radius δ with

centers in E .

Károly Simon (TU Budapest) Fractals 2012 second talk 11 / 36

Page 19: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Equivalent definitions I.

The definition of the box dimension does not change ifwe define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ thatcover E ,

2 the smallest number of cubes of side δ that cover E ,3 the number of δ-mesh cubes that intersect E4 the smallest number of sets of diameter at most δ

that cover E ,5 the largest number of disjoint balls of radius δ with

centers in E .

Károly Simon (TU Budapest) Fractals 2012 second talk 11 / 36

Page 20: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Equivalent definitions I.

The definition of the box dimension does not change ifwe define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ thatcover E ,

2 the smallest number of cubes of side δ that cover E ,3 the number of δ-mesh cubes that intersect E4 the smallest number of sets of diameter at most δ

that cover E ,5 the largest number of disjoint balls of radius δ with

centers in E .

Károly Simon (TU Budapest) Fractals 2012 second talk 11 / 36

Page 21: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Equivalent definitions I.

The definition of the box dimension does not change ifwe define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ thatcover E ,

2 the smallest number of cubes of side δ that cover E ,3 the number of δ-mesh cubes that intersect E4 the smallest number of sets of diameter at most δ

that cover E ,5 the largest number of disjoint balls of radius δ with

centers in E .

Károly Simon (TU Budapest) Fractals 2012 second talk 11 / 36

Page 22: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Equivalent definitions I.

The definition of the box dimension does not change ifwe define Nδ(E ) in any of the following ways:

1 the smallest number of closed balls of radius δ thatcover E ,

2 the smallest number of cubes of side δ that cover E ,3 the number of δ-mesh cubes that intersect E4 the smallest number of sets of diameter at most δ

that cover E ,5 the largest number of disjoint balls of radius δ with

centers in E .

Károly Simon (TU Budapest) Fractals 2012 second talk 11 / 36

Page 23: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Equivalent definitions II.

dimB(E ) := d − lim supr→0

log voln([E ]δ)

− log δ , (10)

dimB(E ) := d − lim infr→0

log voln([E ]δ)

− log δ , (11)

where [E ]δ is the δ parallel body of E .

Károly Simon (TU Budapest) Fractals 2012 second talk 12 / 36

Page 24: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Basic Measure TheoryLet S be a σ-field of a given set X . We say that afunction µ : S → [0,∞] is a measure if

µ(∅) = 0µ (∪∞i=1Ei) =

∞∑i=1

µ(Ei) for every disjoint sequence ofsets {Ei}∞i=1 in S.

An outer measure ν on X is defined on all subsets of Xtakes values from [0,∞] such that

ν(∅) = 0,ν(A) ≤ ν(B) if A ⊂ B,ν(∪∞i=1Ei) ≤

∞∑i=1

ν(Ei) for all sequence of sets{Ei}∞i=1.

Károly Simon (TU Budapest) Fractals 2012 second talk 13 / 36

Page 25: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Basic Measure TheoryLet S be a σ-field of a given set X . We say that afunction µ : S → [0,∞] is a measure if

µ(∅) = 0µ (∪∞i=1Ei) =

∞∑i=1

µ(Ei) for every disjoint sequence ofsets {Ei}∞i=1 in S.

An outer measure ν on X is defined on all subsets of Xtakes values from [0,∞] such that

ν(∅) = 0,ν(A) ≤ ν(B) if A ⊂ B,ν(∪∞i=1Ei) ≤

∞∑i=1

ν(Ei) for all sequence of sets{Ei}∞i=1.

Károly Simon (TU Budapest) Fractals 2012 second talk 13 / 36

Page 26: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Basic Measure TheoryLet S be a σ-field of a given set X . We say that afunction µ : S → [0,∞] is a measure if

µ(∅) = 0µ (∪∞i=1Ei) =

∞∑i=1

µ(Ei) for every disjoint sequence ofsets {Ei}∞i=1 in S.

An outer measure ν on X is defined on all subsets of Xtakes values from [0,∞] such that

ν(∅) = 0,ν(A) ≤ ν(B) if A ⊂ B,ν(∪∞i=1Ei) ≤

∞∑i=1

ν(Ei) for all sequence of sets{Ei}∞i=1.

Károly Simon (TU Budapest) Fractals 2012 second talk 13 / 36

Page 27: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Basic Measure TheoryLet S be a σ-field of a given set X . We say that afunction µ : S → [0,∞] is a measure if

µ(∅) = 0µ (∪∞i=1Ei) =

∞∑i=1

µ(Ei) for every disjoint sequence ofsets {Ei}∞i=1 in S.

An outer measure ν on X is defined on all subsets of Xtakes values from [0,∞] such that

ν(∅) = 0,ν(A) ≤ ν(B) if A ⊂ B,ν(∪∞i=1Ei) ≤

∞∑i=1

ν(Ei) for all sequence of sets{Ei}∞i=1.

Károly Simon (TU Budapest) Fractals 2012 second talk 13 / 36

Page 28: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Basic Measure TheoryLet S be a σ-field of a given set X . We say that afunction µ : S → [0,∞] is a measure if

µ(∅) = 0µ (∪∞i=1Ei) =

∞∑i=1

µ(Ei) for every disjoint sequence ofsets {Ei}∞i=1 in S.

An outer measure ν on X is defined on all subsets of Xtakes values from [0,∞] such that

ν(∅) = 0,ν(A) ≤ ν(B) if A ⊂ B,ν(∪∞i=1Ei) ≤

∞∑i=1

ν(Ei) for all sequence of sets{Ei}∞i=1.

Károly Simon (TU Budapest) Fractals 2012 second talk 13 / 36

Page 29: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Basic Measure TheoryLet S be a σ-field of a given set X . We say that afunction µ : S → [0,∞] is a measure if

µ(∅) = 0µ (∪∞i=1Ei) =

∞∑i=1

µ(Ei) for every disjoint sequence ofsets {Ei}∞i=1 in S.

An outer measure ν on X is defined on all subsets of Xtakes values from [0,∞] such that

ν(∅) = 0,ν(A) ≤ ν(B) if A ⊂ B,ν(∪∞i=1Ei) ≤

∞∑i=1

ν(Ei) for all sequence of sets{Ei}∞i=1.

Károly Simon (TU Budapest) Fractals 2012 second talk 13 / 36

Page 30: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Measurable subsetsA set E is measurable with respect to the outer measureν if for every A ⊂ X we haveν(A) = ν(A ∩ E ) + ν(A \ E ).LetM be the collection of all measurable set for anouter measure ν. ThenM is a σ-field and the restrictionof ν toM is a measure.Further, assume that (X , d) is a metric space. We saythat the outer measure ν is a metric outer measure ifν(A ∪ B) = ν(A) + ν(B) holds for all A,B ⊂ X withinf {d(a, b) : a ∈ A, b ∈ B} > 0.In this case the restriction of ν to the σ-field of themeasurable setsM is a Borel measure.

Károly Simon (TU Budapest) Fractals 2012 second talk 14 / 36

Page 31: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Measurable subsetsA set E is measurable with respect to the outer measureν if for every A ⊂ X we haveν(A) = ν(A ∩ E ) + ν(A \ E ).LetM be the collection of all measurable set for anouter measure ν. ThenM is a σ-field and the restrictionof ν toM is a measure.Further, assume that (X , d) is a metric space. We saythat the outer measure ν is a metric outer measure ifν(A ∪ B) = ν(A) + ν(B) holds for all A,B ⊂ X withinf {d(a, b) : a ∈ A, b ∈ B} > 0.In this case the restriction of ν to the σ-field of themeasurable setsM is a Borel measure.

Károly Simon (TU Budapest) Fractals 2012 second talk 14 / 36

Page 32: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Measurable subsetsA set E is measurable with respect to the outer measureν if for every A ⊂ X we haveν(A) = ν(A ∩ E ) + ν(A \ E ).LetM be the collection of all measurable set for anouter measure ν. ThenM is a σ-field and the restrictionof ν toM is a measure.Further, assume that (X , d) is a metric space. We saythat the outer measure ν is a metric outer measure ifν(A ∪ B) = ν(A) + ν(B) holds for all A,B ⊂ X withinf {d(a, b) : a ∈ A, b ∈ B} > 0.In this case the restriction of ν to the σ-field of themeasurable setsM is a Borel measure.

Károly Simon (TU Budapest) Fractals 2012 second talk 14 / 36

Page 33: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Measurable subsetsA set E is measurable with respect to the outer measureν if for every A ⊂ X we haveν(A) = ν(A ∩ E ) + ν(A \ E ).LetM be the collection of all measurable set for anouter measure ν. ThenM is a σ-field and the restrictionof ν toM is a measure.Further, assume that (X , d) is a metric space. We saythat the outer measure ν is a metric outer measure ifν(A ∪ B) = ν(A) + ν(B) holds for all A,B ⊂ X withinf {d(a, b) : a ∈ A, b ∈ B} > 0.In this case the restriction of ν to the σ-field of themeasurable setsM is a Borel measure.

Károly Simon (TU Budapest) Fractals 2012 second talk 14 / 36

Page 34: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff measure on Rd

Let Λ ⊂ Rd and let t ≥ 0. We define

Ht(Λ) = limδ→0

inf

∞∑i=1|Ai |t : Λ ⊂

∞⋃i=1

Ai ; |Ai | < δ

︸ ︷︷ ︸Ht

δ(Λ)

(12)

Then Ht is a metric outer measure. The t-dimensionalHausdorff measure is the restriction of Ht to the σ-fieldof Ht-measurable sets which include the Borel sets.

Károly Simon (TU Budapest) Fractals 2012 second talk 15 / 36

Page 35: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff measure on Rd

Let Λ ⊂ Rd and let t ≥ 0. We define

Ht(Λ) = limδ→0

inf

∞∑i=1|Ai |t : Λ ⊂

∞⋃i=1

Ai ; |Ai | < δ

︸ ︷︷ ︸Ht

δ(Λ)

(12)

Then Ht is a metric outer measure. The t-dimensionalHausdorff measure is the restriction of Ht to the σ-fieldof Ht-measurable sets which include the Borel sets.

Károly Simon (TU Budapest) Fractals 2012 second talk 15 / 36

Page 36: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff measure on Rd

Let Λ ⊂ Rd and let t ≥ 0. We define

Ht(Λ) = limδ→0

inf

∞∑i=1|Ai |t : Λ ⊂

∞⋃i=1

Ai ; |Ai | < δ

︸ ︷︷ ︸Ht

δ(Λ)

(12)

Then Ht is a metric outer measure. The t-dimensionalHausdorff measure is the restriction of Ht to the σ-fieldof Ht-measurable sets which include the Borel sets.

Károly Simon (TU Budapest) Fractals 2012 second talk 15 / 36

Page 37: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension I.

Let Λ ⊂ Rd and 0 ≤ α < β. Then

Hβδ (Λ) ≤ δβ−αHα

δ (Λ).

Using that Ht(Λ) = limδ→0Htδ(Λ)

Hα(Λ) <∞⇒ Hβ(Λ) = 0 for all α < β.

0 < Hβ(Λ)⇒ Hα(Λ) =∞ for all α < β.

Károly Simon (TU Budapest) Fractals 2012 second talk 16 / 36

Page 38: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension I.

Let Λ ⊂ Rd and 0 ≤ α < β. Then

Hβδ (Λ) ≤ δβ−αHα

δ (Λ).

Using that Ht(Λ) = limδ→0Htδ(Λ)

Hα(Λ) <∞⇒ Hβ(Λ) = 0 for all α < β.

0 < Hβ(Λ)⇒ Hα(Λ) =∞ for all α < β.

Károly Simon (TU Budapest) Fractals 2012 second talk 16 / 36

Page 39: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension I.

Let Λ ⊂ Rd and 0 ≤ α < β. Then

Hβδ (Λ) ≤ δβ−αHα

δ (Λ).

Using that Ht(Λ) = limδ→0Htδ(Λ)

Hα(Λ) <∞⇒ Hβ(Λ) = 0 for all α < β.

0 < Hβ(Λ)⇒ Hα(Λ) =∞ for all α < β.

Károly Simon (TU Budapest) Fractals 2012 second talk 16 / 36

Page 40: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension II.

∞t → Ht(Λ)

dimH(Λ) t

The Hausdorff dimension of Λ

dimH(Λ) = inf{t : Ht(Λ) = 0

}= sup

{t : Ht(Λ) =∞

}.

Károly Simon (TU Budapest) Fractals 2012 second talk 17 / 36

Page 41: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension II.

∞t → Ht(Λ)

dimH(Λ) t

The Hausdorff dimension of Λ

dimH(Λ) = inf{t : Ht(Λ) = 0

}= sup

{t : Ht(Λ) =∞

}.

Károly Simon (TU Budapest) Fractals 2012 second talk 17 / 36

Page 42: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension II.

∞t → Ht(Λ)

dimH(Λ) t

The Hausdorff dimension of Λ

dimH(Λ) = inf{t : Ht(Λ) = 0

}= sup

{t : Ht(Λ) =∞

}.

Károly Simon (TU Budapest) Fractals 2012 second talk 17 / 36

Page 43: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

DefinitionsLet (X , d) be a separable metric space and let µ be ameasure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such thatµ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µmeasurable. (The family of Borel sets in X is thesmallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if(a) Borel measure and(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).

Károly Simon (TU Budapest) Fractals 2012 second talk 18 / 36

Page 44: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

DefinitionsLet (X , d) be a separable metric space and let µ be ameasure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such thatµ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µmeasurable. (The family of Borel sets in X is thesmallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if(a) Borel measure and(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).

Károly Simon (TU Budapest) Fractals 2012 second talk 18 / 36

Page 45: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

DefinitionsLet (X , d) be a separable metric space and let µ be ameasure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such thatµ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µmeasurable. (The family of Borel sets in X is thesmallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if(a) Borel measure and(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).

Károly Simon (TU Budapest) Fractals 2012 second talk 18 / 36

Page 46: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

DefinitionsLet (X , d) be a separable metric space and let µ be ameasure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such thatµ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µmeasurable. (The family of Borel sets in X is thesmallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if(a) Borel measure and(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).

Károly Simon (TU Budapest) Fractals 2012 second talk 18 / 36

Page 47: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

DefinitionsLet (X , d) be a separable metric space and let µ be ameasure on X .

1 µ is locally finite if ∀x ∈ X , ∃r > 0, such thatµ(B(x , r)) > 0.

2 µ is a Borel measure if all Borel sets are µmeasurable. (The family of Borel sets in X is thesmallest σ-algebra containing all open sets.)

3 The measure µ is Borel regular if(a) Borel measure and(b) ∀A ⊂ X , ∃A ⊂ B ⊂ X Borel set s.t.

µ(A) = µ(B).

Károly Simon (TU Budapest) Fractals 2012 second talk 18 / 36

Page 48: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure definitionµ is a Radon measure if

(a) Borel measure,(b) ∀K ⊂ X compact: µ(K ) <∞,(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.

TheoremA measure µ on Rd is a Radon measure if and only if itis locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].Károly Simon (TU Budapest) Fractals 2012 second talk 19 / 36

Page 49: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure definitionµ is a Radon measure if

(a) Borel measure,(b) ∀K ⊂ X compact: µ(K ) <∞,(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.

TheoremA measure µ on Rd is a Radon measure if and only if itis locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].Károly Simon (TU Budapest) Fractals 2012 second talk 19 / 36

Page 50: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure definitionµ is a Radon measure if

(a) Borel measure,(b) ∀K ⊂ X compact: µ(K ) <∞,(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.

TheoremA measure µ on Rd is a Radon measure if and only if itis locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].Károly Simon (TU Budapest) Fractals 2012 second talk 19 / 36

Page 51: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure definitionµ is a Radon measure if

(a) Borel measure,(b) ∀K ⊂ X compact: µ(K ) <∞,(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.

TheoremA measure µ on Rd is a Radon measure if and only if itis locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].Károly Simon (TU Budapest) Fractals 2012 second talk 19 / 36

Page 52: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure definitionµ is a Radon measure if

(a) Borel measure,(b) ∀K ⊂ X compact: µ(K ) <∞,(c) ∀V ⊂ X open:

µ(V ) = sup {µ(K ) : K ⊂ V is compact }(d) ∀A ⊂ X :

µ(A) = inf {µ(V ) : A ⊂ and V is open }.

TheoremA measure µ on Rd is a Radon measure if and only if itis locally finite and Borel regular

Proof: See Mattila’s book [2, p. 11-12].Károly Simon (TU Budapest) Fractals 2012 second talk 19 / 36

Page 53: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure examples

1 The Lebesgue measure Lebd on Rd is a Radonmeasure.

2 The Dirac measure δa(A) := 1 if a ∈ A andδa(A) = 0 if a 6∈ A is a Radon measure.

3 For every s ≥ 0 the Hausdorff measure is a Borelregular measure but it need not be locally finite. So,in general the Hausdorff measure is not a Radonmeasure. However, for an A ⊂ Rd , Hs(A) <∞ therestriction Hs |A is a Radon measure. (See Mattila’sbook: [2, p. 57].)

Károly Simon (TU Budapest) Fractals 2012 second talk 20 / 36

Page 54: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure examples

1 The Lebesgue measure Lebd on Rd is a Radonmeasure.

2 The Dirac measure δa(A) := 1 if a ∈ A andδa(A) = 0 if a 6∈ A is a Radon measure.

3 For every s ≥ 0 the Hausdorff measure is a Borelregular measure but it need not be locally finite. So,in general the Hausdorff measure is not a Radonmeasure. However, for an A ⊂ Rd , Hs(A) <∞ therestriction Hs |A is a Radon measure. (See Mattila’sbook: [2, p. 57].)

Károly Simon (TU Budapest) Fractals 2012 second talk 20 / 36

Page 55: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Radon measure examples

1 The Lebesgue measure Lebd on Rd is a Radonmeasure.

2 The Dirac measure δa(A) := 1 if a ∈ A andδa(A) = 0 if a 6∈ A is a Radon measure.

3 For every s ≥ 0 the Hausdorff measure is a Borelregular measure but it need not be locally finite. So,in general the Hausdorff measure is not a Radonmeasure. However, for an A ⊂ Rd , Hs(A) <∞ therestriction Hs |A is a Radon measure. (See Mattila’sbook: [2, p. 57].)

Károly Simon (TU Budapest) Fractals 2012 second talk 20 / 36

Page 56: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 57: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 58: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 59: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 60: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 61: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 62: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 63: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Mass Distribution PrincipleWe say that a Borel measure µ on the set X is a massdistribution if 0 < µ(X ) <∞.

Lemma (Mass Distribution Principle)If A ⊂ X supports a mass distribution µ such that for aconstant C and for every Borel set D we have

µ(D) ≤ const · |D|t

Then dimH(A) ≥ t.

Proof For all {Aj}∞j=1

A ⊂∞⋃

j=1Aj ⇒

∑j|Aj |t ≥ C−1 ∑

jµ(Aj) ≥

µ(A)

C .

Károly Simon (TU Budapest) Fractals 2012 second talk 21 / 36

Page 64: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Frostman’s Energy methodLet µ be a mass distribution on Rd . The t-energy of µis defined by

Et(µ) :=∫∫|x − y |−tdµ(x)dµ(y).

Lemma (Frostman (1935))For a Borel set Λ ⊂ Rd and for a mass distribution µsupported by Λ we have

Et(µ) <∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) =∞.Károly Simon (TU Budapest) Fractals 2012 second talk 22 / 36

Page 65: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Frostman’s Energy methodLet µ be a mass distribution on Rd . The t-energy of µis defined by

Et(µ) :=∫∫|x − y |−tdµ(x)dµ(y).

Lemma (Frostman (1935))For a Borel set Λ ⊂ Rd and for a mass distribution µsupported by Λ we have

Et(µ) <∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) =∞.Károly Simon (TU Budapest) Fractals 2012 second talk 22 / 36

Page 66: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Frostman’s Energy methodLet µ be a mass distribution on Rd . The t-energy of µis defined by

Et(µ) :=∫∫|x − y |−tdµ(x)dµ(y).

Lemma (Frostman (1935))For a Borel set Λ ⊂ Rd and for a mass distribution µsupported by Λ we have

Et(µ) <∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) =∞.Károly Simon (TU Budapest) Fractals 2012 second talk 22 / 36

Page 67: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Frostman’s Energy methodLet µ be a mass distribution on Rd . The t-energy of µis defined by

Et(µ) :=∫∫|x − y |−tdµ(x)dµ(y).

Lemma (Frostman (1935))For a Borel set Λ ⊂ Rd and for a mass distribution µsupported by Λ we have

Et(µ) <∞ =⇒ dimH(Λ) ≥ t.

In this case Ht(Λ) =∞.Károly Simon (TU Budapest) Fractals 2012 second talk 22 / 36

Page 68: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

Φt(µ, x) :=∫ dµ(y)

|x − y |t .

Then Et(µ) =∫

Φt(µ, x)dµ(x). Let

ΛM := {x ∈ Λ : Φt(µ, x) ≤ M} .

Since ∫Φt(µ, x)dµ(x) = Et(µ) <∞ we have M such

that µ(ΛM) > 0. Fix such an M.

Károly Simon (TU Budapest) Fractals 2012 second talk 23 / 36

Page 69: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

Φt(µ, x) :=∫ dµ(y)

|x − y |t .

Then Et(µ) =∫

Φt(µ, x)dµ(x). Let

ΛM := {x ∈ Λ : Φt(µ, x) ≤ M} .

Since ∫Φt(µ, x)dµ(x) = Et(µ) <∞ we have M such

that µ(ΛM) > 0. Fix such an M.

Károly Simon (TU Budapest) Fractals 2012 second talk 23 / 36

Page 70: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma I

This proof if due to Y. Peres. Let

Φt(µ, x) :=∫ dµ(y)

|x − y |t .

Then Et(µ) =∫

Φt(µ, x)dµ(x). Let

ΛM := {x ∈ Λ : Φt(µ, x) ≤ M} .

Since ∫Φt(µ, x)dµ(x) = Et(µ) <∞ we have M such

that µ(ΛM) > 0. Fix such an M.

Károly Simon (TU Budapest) Fractals 2012 second talk 23 / 36

Page 71: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IILet

ν := µ|ΛM

Then ν is a mass distribution supported by Λ. (That isν satisfies one of the assumptions of the MassDistribution Principle above.) Now we show that forevery bounded set D:

ν(D) < const · |D|t . (13)

If D ∩ ΛM = ∅ then (13) holds obviously. From now weassume that D is a bounded set such that D ⋃

Λm 6= ∅.

Károly Simon (TU Budapest) Fractals 2012 second talk 24 / 36

Page 72: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IILet

ν := µ|ΛM

Then ν is a mass distribution supported by Λ. (That isν satisfies one of the assumptions of the MassDistribution Principle above.) Now we show that forevery bounded set D:

ν(D) < const · |D|t . (13)

If D ∩ ΛM = ∅ then (13) holds obviously. From now weassume that D is a bounded set such that D ⋃

Λm 6= ∅.

Károly Simon (TU Budapest) Fractals 2012 second talk 24 / 36

Page 73: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IILet

ν := µ|ΛM

Then ν is a mass distribution supported by Λ. (That isν satisfies one of the assumptions of the MassDistribution Principle above.) Now we show that forevery bounded set D:

ν(D) < const · |D|t . (13)

If D ∩ ΛM = ∅ then (13) holds obviously. From now weassume that D is a bounded set such that D ⋃

Λm 6= ∅.

Károly Simon (TU Budapest) Fractals 2012 second talk 24 / 36

Page 74: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IILet

ν := µ|ΛM

Then ν is a mass distribution supported by Λ. (That isν satisfies one of the assumptions of the MassDistribution Principle above.) Now we show that forevery bounded set D:

ν(D) < const · |D|t . (13)

If D ∩ ΛM = ∅ then (13) holds obviously. From now weassume that D is a bounded set such that D ⋃

Λm 6= ∅.

Károly Simon (TU Budapest) Fractals 2012 second talk 24 / 36

Page 75: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma III

Pick an arbitrary x ∈ D ⋂ΛM . We define

m := max{k ∈ Z : B(x , 2−k) ⊃ D

}.

Then|D| ≥ 2−(m+1) and |D| < 2 · 2−m. (14)

Károly Simon (TU Budapest) Fractals 2012 second talk 25 / 36

Page 76: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma III

Pick an arbitrary x ∈ D ⋂ΛM . We define

m := max{k ∈ Z : B(x , 2−k) ⊃ D

}.

Then|D| ≥ 2−(m+1) and |D| < 2 · 2−m. (14)

Károly Simon (TU Budapest) Fractals 2012 second talk 25 / 36

Page 77: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IVObserve that from the right hand side of (14): y ∈ D wehave |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥∫ dν(y)

|x − y |t ≥∫D

dν(y)

|x − y |t ≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (14) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the assumptions ofthe Mass Distribution Principle which completes theproof of the Lemma.

Károly Simon (TU Budapest) Fractals 2012 second talk 26 / 36

Page 78: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IVObserve that from the right hand side of (14): y ∈ D wehave |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥∫ dν(y)

|x − y |t ≥∫D

dν(y)

|x − y |t ≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (14) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the assumptions ofthe Mass Distribution Principle which completes theproof of the Lemma.

Károly Simon (TU Budapest) Fractals 2012 second talk 26 / 36

Page 79: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IVObserve that from the right hand side of (14): y ∈ D wehave |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥∫ dν(y)

|x − y |t ≥∫D

dν(y)

|x − y |t ≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (14) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the assumptions ofthe Mass Distribution Principle which completes theproof of the Lemma.

Károly Simon (TU Budapest) Fractals 2012 second talk 26 / 36

Page 80: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Proof of Frostman Lemma IVObserve that from the right hand side of (14): y ∈ D wehave |x − y |−t ≥ |D|−t ≥ 2−t · 2mt . So,

M ≥∫ dν(y)

|x − y |t ≥∫D

dν(y)

|x − y |t ≥ ν(D) · 2−t · 2m·t .

Using this and the left hand side of (14) we obtain

ν(D) ≤ M · 2t · 2t · 2−(m+1)t ≤ M · 22t · |D|t .

So, the mass distribution ν satisfies the assumptions ofthe Mass Distribution Principle which completes theproof of the Lemma.

Károly Simon (TU Budapest) Fractals 2012 second talk 26 / 36

Page 81: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension of a measureLet µ be a mass distribution on Rd .

DefinitiondimH(µ) := inf

{dimH(A) : µ(Rd \ A) = 0

}.

LemmadimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))

log r .

Roughly speaking, dimH(µ) = δ if for a µ-typical x wehave

µ(B(x , r)) ≈ r δ

for small r > 0.Károly Simon (TU Budapest) Fractals 2012 second talk 27 / 36

Page 82: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension of a measureLet µ be a mass distribution on Rd .

DefinitiondimH(µ) := inf

{dimH(A) : µ(Rd \ A) = 0

}.

LemmadimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))

log r .

Roughly speaking, dimH(µ) = δ if for a µ-typical x wehave

µ(B(x , r)) ≈ r δ

for small r > 0.Károly Simon (TU Budapest) Fractals 2012 second talk 27 / 36

Page 83: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension of a measureLet µ be a mass distribution on Rd .

DefinitiondimH(µ) := inf

{dimH(A) : µ(Rd \ A) = 0

}.

LemmadimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))

log r .

Roughly speaking, dimH(µ) = δ if for a µ-typical x wehave

µ(B(x , r)) ≈ r δ

for small r > 0.Károly Simon (TU Budapest) Fractals 2012 second talk 27 / 36

Page 84: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension of a measureLet µ be a mass distribution on Rd .

DefinitiondimH(µ) := inf

{dimH(A) : µ(Rd \ A) = 0

}.

LemmadimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))

log r .

Roughly speaking, dimH(µ) = δ if for a µ-typical x wehave

µ(B(x , r)) ≈ r δ

for small r > 0.Károly Simon (TU Budapest) Fractals 2012 second talk 27 / 36

Page 85: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff dimension of a measureLet µ be a mass distribution on Rd .

DefinitiondimH(µ) := inf

{dimH(A) : µ(Rd \ A) = 0

}.

LemmadimH(µ) = ess supx lim inf

r→0

log µ(B(x , r))

log r .

Roughly speaking, dimH(µ) = δ if for a µ-typical x wehave

µ(B(x , r)) ≈ r δ

for small r > 0.Károly Simon (TU Budapest) Fractals 2012 second talk 27 / 36

Page 86: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Packing measureδ-packing of E ⊂ Rd is a finite or countable collection ofdisjoint balls {Bi}i of radii at most δ and with centers inE . For δ > 0

P sδ (E ) := sup

∞∑

i=1|Bi |s : {Bi} is a δ-packing of E

Since P s

0(E ) := limδ→0P sδ (E ) is NOT countably-sub

additive therefore we need one more step:

P s(E ) := inf∞∑

i=1P s

0(Ei) : E ⊂∞⋃

i=1Ei

Károly Simon (TU Budapest) Fractals 2012 second talk 28 / 36

Page 87: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Packing measureδ-packing of E ⊂ Rd is a finite or countable collection ofdisjoint balls {Bi}i of radii at most δ and with centers inE . For δ > 0

P sδ (E ) := sup

∞∑

i=1|Bi |s : {Bi} is a δ-packing of E

Since P s

0(E ) := limδ→0P sδ (E ) is NOT countably-sub

additive therefore we need one more step:

P s(E ) := inf∞∑

i=1P s

0(Ei) : E ⊂∞⋃

i=1Ei

Károly Simon (TU Budapest) Fractals 2012 second talk 28 / 36

Page 88: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Packing dimension

dimP(E ) := inf {s : P s(E ) = 0}= sup {s : P s(E ) =∞} .

dimP(E ) = infsupi dimBEi : E ⊂

∞⋃i=1

Ei

,where the sup is taken for all covers {Ei}∞i=1 of E .

dimH(E ) ≤ dimP(E ) ≤ dimBE .

Károly Simon (TU Budapest) Fractals 2012 second talk 29 / 36

Page 89: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Packing dimension

dimP(E ) := inf {s : P s(E ) = 0}= sup {s : P s(E ) =∞} .

dimP(E ) = infsupi dimBEi : E ⊂

∞⋃i=1

Ei

,where the sup is taken for all covers {Ei}∞i=1 of E .

dimH(E ) ≤ dimP(E ) ≤ dimBE .

Károly Simon (TU Budapest) Fractals 2012 second talk 29 / 36

Page 90: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Packing dimension

dimP(E ) := inf {s : P s(E ) = 0}= sup {s : P s(E ) =∞} .

dimP(E ) = infsupi dimBEi : E ⊂

∞⋃i=1

Ei

,where the sup is taken for all covers {Ei}∞i=1 of E .

dimH(E ) ≤ dimP(E ) ≤ dimBE .

Károly Simon (TU Budapest) Fractals 2012 second talk 29 / 36

Page 91: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Self-similar sets with OSC

Assume that F := {fi}mi=1 is a self-similar IFS on Rd .

The similarity dimension s = s(F) is defined as the onlypositive solution of the equation

r s1 + · · ·+ r s

m = 1, (15)

where ri is the similarity ratio for fi .

Károly Simon (TU Budapest) Fractals 2012 second talk 30 / 36

Page 92: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Self-similar sets with OSC

Assume that F := {fi}mi=1 is a self-similar IFS on Rd .

The similarity dimension s = s(F) is defined as the onlypositive solution of the equation

r s1 + · · ·+ r s

m = 1, (15)

where ri is the similarity ratio for fi .

Károly Simon (TU Budapest) Fractals 2012 second talk 30 / 36

Page 93: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hutchinson TheoremHutchinson (1981)

TheoremGiven a self similar IFS F which satisfies the OSC. Lets = s(F) be the similarity dimension. Then

0 < Hs(Λ) <∞. (16)

Further,dimH Λ = dimB = s.

For the proof see: [1].

Károly Simon (TU Budapest) Fractals 2012 second talk 31 / 36

Page 94: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hutchinson TheoremHutchinson (1981)

TheoremGiven a self similar IFS F which satisfies the OSC. Lets = s(F) be the similarity dimension. Then

0 < Hs(Λ) <∞. (16)

Further,dimH Λ = dimB = s.

For the proof see: [1].

Károly Simon (TU Budapest) Fractals 2012 second talk 31 / 36

Page 95: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hutchinson TheoremHutchinson (1981)

TheoremGiven a self similar IFS F which satisfies the OSC. Lets = s(F) be the similarity dimension. Then

0 < Hs(Λ) <∞. (16)

Further,dimH Λ = dimB = s.

For the proof see: [1].

Károly Simon (TU Budapest) Fractals 2012 second talk 31 / 36

Page 96: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff measure for self-similarattractorsWe cannot easily estimate the appropriate dimensionalHausdorff measure of a self similar-set in the plane orhigher dimension. If Λ is the Sierpinski triangle then thewe know that s = dimH Λ = log 3

log 2 . The best estimate fors-dimensional Hausdorff measure:

0.77 ≤ Hs(Λ) ≤ 0.81

The upper bound is old (proved in 1999) but the lowerbound is new. It was given By Peter Móra (PhDstudent).

Károly Simon (TU Budapest) Fractals 2012 second talk 32 / 36

Page 97: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Hausdorff measure for self-similarattractorsWe cannot easily estimate the appropriate dimensionalHausdorff measure of a self similar-set in the plane orhigher dimension. If Λ is the Sierpinski triangle then thewe know that s = dimH Λ = log 3

log 2 . The best estimate fors-dimensional Hausdorff measure:

0.77 ≤ Hs(Λ) ≤ 0.81

The upper bound is old (proved in 1999) but the lowerbound is new. It was given By Peter Móra (PhDstudent).

Károly Simon (TU Budapest) Fractals 2012 second talk 32 / 36

Page 98: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

M. Keane’s ” {0, 1, 3} ” problem:

For every λ ∈ (14 ,

25) consider the following self-similar

set:

Λλ :=

∞∑

i=0aiλ

i : ai ∈ {0, 1, 3} .

Then Λλ is the attractor of the one-parameter (λ) familyIFS:

{Sλi (x) := λ · x + i

}i=0,1,3

Károly Simon (TU Budapest) Fractals 2012 second talk 33 / 36

Page 99: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

M. Keane’s ” {0, 1, 3} ” problem:

For every λ ∈ (14 ,

25) consider the following self-similar

set:

Λλ :=

∞∑

i=0aiλ

i : ai ∈ {0, 1, 3} .

Then Λλ is the attractor of the one-parameter (λ) familyIFS:

{Sλi (x) := λ · x + i

}i=0,1,3

Károly Simon (TU Budapest) Fractals 2012 second talk 33 / 36

Page 100: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

M. Keane’s ” {0, 1, 3} ” problem:

For every λ ∈ (14 ,

25) consider the following self-similar

set:

Λλ :=

∞∑

i=0aiλ

i : ai ∈ {0, 1, 3} .

Then Λλ is the attractor of the one-parameter (λ) familyIFS:

{Sλi (x) := λ · x + i

}i=0,1,3

Károly Simon (TU Budapest) Fractals 2012 second talk 33 / 36

Page 101: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

0

3λ1−λ

31−λ

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 102: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

0

3λ1−λ

31−λ

I0

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 103: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3λ1−λ

31−λ

I0

I1

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 104: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ1−λ

31−λ

I0

I1

I3

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 105: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

31−λ

I0

I1

I3

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 106: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

λ3

1−λ

I0

I1

I3

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 107: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

λ3

1−λ

I0

I1

I3

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 108: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

λ3

1−λ

I0

I1

I3

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 109: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

λ3

1−λ

I0

I1

I3

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 110: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

λ3

1−λ

I0

I1

I3

I13

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 111: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

λ3

1−λ

I0

I1

I3

I13

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 112: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

3 + λ

λ3

1−λ

I0

I1

I3

I13 I31

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 113: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

3 + λ 3 + 3λ

λ3

1−λ

I0

I1

I3

I13 I31

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 114: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

3 + λ 3 + 3λ

λ3

1−λ

I0

I1

I3

I13 I31

Σ := {0, 1, 3}N , Πλ : Σ → Λλ,

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 115: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

3 + λ 3 + 3λ

λ3

1−λ

I0

I1

I3

I13 I31

Σ := {0, 1, 3}N , Πλ : Σ → Λλ,i = (i0, i1, i2, . . .) ∈ Σ :

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 116: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

3 + λ 3 + 3λ

λ3

1−λ

I0

I1

I3

I13 I31

Σ := {0, 1, 3}N , Πλ : Σ → Λλ,i = (i0, i1, i2, . . .) ∈ Σ :

Πλ(i) := i0 + i1 · λ+ i2λ2 + i3 · λ3 + · · ·

1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 117: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

{0, 1, 3} problem II.

01

3

3λ2

1−λ

3λ1−λ

1 + λ

3 + λ 3 + 3λ

λ3

1−λ

I0

I1

I3

I13 I31

Σ := {0, 1, 3}N , Πλ : Σ → Λλ,i = (i0, i1, i2, . . .) ∈ Σ :

Πλ(i) := i0 + i1 · λ+ i2λ2 + i3 · λ3 + · · ·

Πλ is the natural projection which is , NOT 1− 1

Károly Simon (TU Budapest) Fractals 2012 second talk 34 / 36

Page 118: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Πλ : {0, 1, 3}N 7→ Λλ

Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N︸ ︷︷ ︸Σ

.

Iλi0,...,ik := Sλi0◦ · · · ◦ Sλ

ik(Iλ) and Πλ(i) :=

∞⋂k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0

Iλ :=[0, 3

1−λ

]

Károly Simon (TU Budapest) Fractals 2012 second talk 35 / 36

Page 119: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Πλ : {0, 1, 3}N 7→ Λλ

Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N︸ ︷︷ ︸Σ

.

Iλi0,...,ik := Sλi0◦ · · · ◦ Sλ

ik(Iλ) and Πλ(i) :=

∞⋂k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0Iλ03

Iλ :=[0, 3

1−λ

]

Károly Simon (TU Budapest) Fractals 2012 second talk 35 / 36

Page 120: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Πλ : {0, 1, 3}N 7→ Λλ

Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N︸ ︷︷ ︸Σ

.

Iλi0,...,ik := Sλi0◦ · · · ◦ Sλ

ik(Iλ) and Πλ(i) :=

∞⋂k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0Iλ03Iλ031

Iλ :=[0, 3

1−λ

]

Károly Simon (TU Budapest) Fractals 2012 second talk 35 / 36

Page 121: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

Πλ : {0, 1, 3}N 7→ Λλ

Let k ∈ N and i = (i0, i1, . . .) ∈ {0, 1, 3}N︸ ︷︷ ︸Σ

.

Iλi0,...,ik := Sλi0◦ · · · ◦ Sλ

ik(Iλ) and Πλ(i) :=

∞⋂k=1

Iλi0,...,ik .

Example: Πλ(0, 3, 1, 0, . . .)

Iλ0Iλ03Iλ031

Iλ0310

Iλ :=[0, 3

1−λ

]

Károly Simon (TU Budapest) Fractals 2012 second talk 35 / 36

Page 122: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

J.E. HutchinsonFractals and self-similarityIndiana Univ. Math. J. 30 (1981), 713-747.

P. Mattila.Geometry of sets and measures in Euclidean SpacesCambridge Univ. Press 1995.

Károly Simon (TU Budapest) Fractals 2012 second talk 36 / 36

Page 123: Fractals and geometric measure theory 2012math.bme.hu/~simonk/vf/lecture_2.pdfMeasurablesubsets AsetE ismeasurablewithrespecttotheoutermeasure νifforeveryA⊂X wehave ν(A) = ν(A∩E)

J.E. HutchinsonFractals and self-similarityIndiana Univ. Math. J. 30 (1981), 713-747.

P. Mattila.Geometry of sets and measures in Euclidean SpacesCambridge Univ. Press 1995.

Károly Simon (TU Budapest) Fractals 2012 second talk 36 / 36