fourier series notes corrected.pdf

Upload: proma-chakraborty

Post on 07-Aug-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/20/2019 Fourier Series notes corrected.pdf

    1/39

    Page 1 of 39 

    Fourier series

    Preliminaries

    Periodic functions:

    A function ( ) f t  is said to be periodic with period T if there exists a positive

    constant T such that ( ) ( ) f t T f t   for all .t   

    Note: If ( ) f t   is periodic with period T , then ( ) ( ) f t nT f t   for all integers.n  

    The smallest positive number T   satisfying this property is called the primitive

     period or simply the period of the function ( ). f t   The graph of a period function ( ) f t    with period T   periodically repeats in an

    interval of width .T   Hence it is sufficient to study the properties (nature) of thefunction in an interval of length T , in particular in the interval [0, ],T   which is

    called one period of the function.

    Example (1): The trigonometric functions  ( ) sin f x x   and ( ) cos f x x   are periodic with period 2 .T        

    Graph of  

  • 8/20/2019 Fourier Series notes corrected.pdf

    2/39

    Page 2 of 39 

    Graph of ( ) cos f x x  

    Example (2): The functions sin kt and coskt   have period2

    ,T k 

        since

    2 2sin ( sin( 2 ) sin . f t k t kt kt 

    k k 

      

     

    Let ( ) f t   be a periodic function of t  with the period .T   Define a new variable  x  

    as follows.

    2

     x t 

    T    or

    2 x t 

        i.e.,

    2

    T t x

       

    Then ( ) ( )2

    T  f t f x g x

     

     is a function of . x  

    Consider ( 2 ) ( 2 ) ) ( ) ( )2 2

    T T  g x f x f x T f t T f t   

     

     

    ( )2

    T  f x g x

     

     

    Therefore ( ) g x  is a periodic function of  x  with period 2 .   

  • 8/20/2019 Fourier Series notes corrected.pdf

    3/39

    Page 3 of 39 

    Note: If ( ) f x   and ( ) g x   are periodic functions of  x with period1T    and 2T   

    respectively, then 1 2( ) ( )c f x c g x  is also periodic with period 1 2( , ).T lcm T T    

    Even an Odd functions:

    A function ( ) f t   is said to be even if ( ) ( ) f t f t   and odd if ( ) ( ). f t f t   

     Note that the graph of an even function is symmetric about  y axis, whereas thegraph of an odd function is symmetric about the origin.

    Exmple (1):2( ) , f x x   ( ) f x x  and ( ) cos f x x are all even functions of

    . x  

    Graph of2( ) f x x   Graph of ( ) f x x   Graph of ( ) cos f x x  

    Example (2): ( ) , sin , f x x x   3( ) , f x x   ( ) sin , f x x   ( ) tan f x x  are allodd functions of . x  

    Graph of ( ) f x x   Graph of ( ) sin f x x  

     x

  • 8/20/2019 Fourier Series notes corrected.pdf

    4/39

    Page 4 of 39 

    Products of two even and two odd functions are even and the product of an even

    function with an odd function is odd.

    Also, 0

    2 ( ) , if ( ) is even

    ( )0, if ( ) is odd

    a

    a

    a

     f t dt f t 

     f t dt  f t 

     

    .

    Generalized formula for integration by parts

    If u  and v are functions of , x  then

    1 2 3 4' '' ''' ...uvdx uv u v u v u v  

    where ' ''' , '' , ''' ,...du du duu u udx dx dx

     and

    1 2 1 3 2, , ,...v vdx v v dx v v dx  

    Example:2 2 cos 2 sin 2 cos 2sin 2 2 2

    2 4 8

     x x x x x dx x x

     

    Orthogonality of trigonometric functions:

    0, 02cos

    , 0

    c T 

    c

    nnt dt 

    T nT 

     

     

     

    2sin 0 for all

    c T 

    c

    nt dt n

     

     

    2 2cos sin 0 for all and

    c T 

    c

    m nt t dt m n

    T T 

     

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    5/39

    Page 5 of 39 

    0, m2 2

    cos cos, m

    2

    c T 

    c

    nm n

    t t dt    T T T    n

       

     

     

    0, m2 2

    sin sin, m

    2

    c T 

    c

    nm n

    t t dt    T T T    n

       

     

     

    Also,

    cos 1 ,n

    n    for all n   , sin 0,n    for all n  

    2

    0, oddcos

    2 1 , evenn

    nn

       

      ,

    1

    2

    0, evensin

    2 1 , oddn

    nn

     

     

    Definition:  A function ( ) f t    is said to be piecewise continuous in an interval

    [ , ]a b  if it is discontinuous at finite number of points in the interval and wherever

    it is discontinuous, it has finite left and right hand limits.

    Fourier series:

    In solving many boundary valued problems involving ordinary and partialdifferential equations it is required to represent some functions as a sum of

    trigonometric functions cosine and sine. Such a series representation of a function

    ( ) f t  (which may be discontinuous); if exists, is called the trigonometric series

    expansion of ( ) f t  .

    Fourier introduced such an expansion of periodic functions in terms of sine and

    cosine functions and hence it is called a Fourier series expansion. Many functions

    including some discontinuous periodic functions can be expanded in a Fourier

    series and hence are, in certain sense more universal than Taylor series expansions,which cannot be established for discontinuous functions. Fourier series solution

    method is a powerful tool in solving some ordinary and partial differential

    equations given with the initial or boundary conditions.

  • 8/20/2019 Fourier Series notes corrected.pdf

    6/39

    Page 6 of 39 

    Definition:

    Let ( ) f t   be a periodic function of t with period T , and is defined in an interval

    [ , ]c c T  . Then the expansion of the form

    0

    1

    2 2( ) cos sinn n

    n

    n n f t a a t b t 

    T T 

    , if exists called the Fourier series or

    Fourier expansion of ( ) f t  . Here 0, andn na a b  are called Fourier coefficients.

    Euler’s formulae: 

    Given a periodic function ( ) f t  with period T , represented in [ , ]c c T   by a Fourier

    series,

    0

    1

    2 2( ) cos sin (1)n n

    n

    n n f t a a t b t 

    T T 

    , to determine

    the coefficients0, andn na a b , we proceed as follows,

    Integrating (1) we get,

    0

    1

    0 1

    0

    2 2( ) cos sin

    2 2  cos sin

      0

    c T c T  

    n n

    nc c

    c T c T c T  

    n nnc c c

    n n f t dt a a t b t dt 

    T T 

    n na dt a t dt b t dt  

    T T 

    a T 

     

     

    0

    1( ) (2)

    c T 

    c

    a f t dt  T 

     

    Multiplying (1) by2

    cos  m

    t T 

    integrating, we get

    2( )cos

    c T 

    c

    m f t t dt 

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    7/39

    Page 7 of 39 

    0

    1

    2cos

    2 2 2 2  cos cos sin cos

      0 02

    c T 

    c

    c T c T  

    n n

    n   c c

    m

    ma t dt  

    n m n ma t t dt b t t dt  

    T T T T  T 

    a

     

    2 2( )cos (3)

    c T 

    n

    c

    na f t t dt  

    T T 

     

    Multiplying (1) by2

    sin  m

    t T 

    integrating, we get

    0

    1

    2 2( )sin sin

    2 2 2 2  cos sin sin sin

      0 0

    c T c T  

    c c

    c T c T  

    n n

    n   c c

    m m f t t dt a t dt T T 

    n m n ma t t dt b t t dt  

    T T T T  

     

    2m

    T b

    2 2( )sin (4)

    c T 

    n

    c

    nb f t t dt  

    T T 

     

    The Fourier coefficients 0, andn na a b  are given by the formulae (2), (3) and (4).

    These are called the Euler’s formulae for Fourier coefficients. 

    Note:

    (1) 

    For2

    T c

      , the formulae for the Fourier coefficients

    0, andn na a b  becomes 

    2

    20

    20

    0, if ( ) is odd

    1( )

    2( ) , if ( ) is even

     f t 

    a f t dt  T   f t dt f t 

     

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    8/39

  • 8/20/2019 Fourier Series notes corrected.pdf

    9/39

    Page 9 of 39 

    01

    2

    0

    2

    2

      ( ) cos sin

    1  where ( ) ,

    2

    1  ( )cos

    1  and ( )sin .

    n n

    n

    c

    cc

    n

    c

    c

    n

    c

     f t a a nt b nt 

    a f t dt  

    a f t ntdt  

    b f t ntdt  

     

    For2

    c   

     if f(t) is even function of t , then Fourier series expansion of f(t) is

    0

    1

    ( ) cosnn

     f t a a nt 

      where 0 0 0

    1 2( ) , ( )cos .na f t dt a f t nt dt  

     

       

    If f (t) is odd function of t , then Fourier series expansion of f(t) is

    1

    ( ) sinnn

     f t b nt 

      where0

    2( )sin .nb f t nt dt  

     

       

    3) Let f(t) has Fourier series expansion 01

    2 2( ) cos sinn n

    n

    n t n t   f t a a b

    T T 

     

     

    Consider the terms2 2

    cos sinn nn t n t  

    a bT T 

        which is called the nth harmonic in

    the Fourier series expansion of f(t) for

    2 2 1cos , sin tan   nn n n n n n n n n n

    n

    ba r b r or r a b and  

    a  

         

      the nth  harmonic

     becomes2 2 2

    cos cos sin sin cosn n n n n nn t n t n t  

    r r r T T T 

       

    . Then

    2 2

    n n nr a b   is called the amplitude of the nth  harmonic and 1tan   nn

    n

    ba

           

      is

    called phase angle of the nth harmonic.

  • 8/20/2019 Fourier Series notes corrected.pdf

    10/39

    Page 10 of 39 

    Dirichlet’s condition for the convergence of the Fourier series 

    If a periodic function f (t) of period T, is piecewise continuous in the interval

    [c, c + T ] and has left and right hand derivative at each point of that interval then

    The Fourier series expansion 01

    2 2cos sin

    n n

    n

    n t n t  a a b

    T T 

     

     is convergent.

    Its sum is f(t) except at a point t0 at which f(t), is discontinuous and at t0, it

    converges to the average of left and right hand limit of f(t) at t0. i.e., to

    0 01

    f(t + 0) +f(t - 0) .2

     

    Parsevals identity:

    If a periodic function f (t) has Fourier series expansion

    0

    1

    2 2( ) cos sinn n

    n

    n t n t   f t a a bT T 

     

     which is uniformly convergent in

    [c, c + T ] then 2 2 201

    2( ) 2

    c T 

    n n

    nc

     f t dt a a bT 

     

     

    Proof : Let f(t) has a Fourier series expansion

    0

    1

    2 2( ) cos sinn n

    n

    n t n t   f t a a b

    T T 

     

     which is uniformly convergent.

    Consider 2

    0

    1

    2 2( ) ( ) cos sin

    c T c T  

    n n

    nc c

    n t n t   f t dt f t a a b dt 

    T T 

       

     

    f(t)

    f (t0 +0)

    f(t0 –0)

    tt0c c + T

  • 8/20/2019 Fourier Series notes corrected.pdf

    11/39

    Page 11 of 39 

    0

    1

    2 2( ) ( ) cos ( ) sin

    c T c T c T  

    n n

    nc c c

    n t n t  a f t dt a f t dt b f t dt  

    T T 

     

     since Fourier

    series is uniformly convergent

    0 0

    1 2 2n n n n

    n

    T T a T a a a b b

     

    2 2 201

    22

      n n

    n

    T a a b

     

    Therefore, 2 2 201

    2( ) 2

    c T 

    n n

    nc

     f t dt a a bT 

     

     which is called Parseval’s identity. 

    Problems:

    1. 

    Expand 2( ) , f x x x x    f(x+2π)=f(x) , as a Fourier series.

    Solution: Let0

    1

    ( ) ( cos sin )n nn

     f x a a nx b nx

    . Then

    2 2

    0

    0

    1 2( )

    2 2

    a x x dx x dx  

     

     

      since, x is odd and x

    2 is even function.

    3 3 2

    0

    1

    3 3 3

     x 

     

     

     

    2 20

    1 2cos cosna x x nx dx x nx dx

     

       

     

    2

    2 3

    0

    2 sin cos sin

    2 2

    nx nx nx

     x xn   n n

     

     

     

     

    =   2 2 2 32 sin sin 0 cos cos0 2

    0 2 0 sin sin 0n n n

    n nn n n n n

       

     

     

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    12/39

    Page 12 of 39 

    2 3

    12 20 0 2 0 .0

    n

    n n 

     

     

    1

    2 2

    4 1 41

    n

    n

    n n

    .

    20

    1 2sin sin

    nb x x nxdx x nxdx

     

       

     

    =

    0

    2

    2

    cos sin1

    nx

    n

    nx x

    n

     

     

         

    =  2

    2 cos 10 sin sin

    nn no

    n n

       

     

     

    =   12 2 2

    cos 1 1n n

    nn n n

      

    .

    2

    1 1

    21

    4 21 cos 1 sin

    3

    n n

    n

     f x nx nxn n

      

     

    .

    2.  Obtain the Fourier series expansion of

    21, 0 2

    4 f x x x    

    f(x+2π)=f(x) and hence obtain 21i n     1

    21

      n

    iin

      21

    2 1iii

    n  

    Solution:

    Here  f x  is an even function.

  • 8/20/2019 Fourier Series notes corrected.pdf

    13/39

    Page 13 of 39 

    01

    cosnn

     f x a a nx

    , where

     

    2

    2 22 3 3

    0

    0

    0

    3

    1 1 1 1

    2 4 8 24 123

    a x dx x

     

      

     

     

     

     

    2

    2

    0

    1 1cos

    4n

    a x nxdx

     

      

     

    =     2

    2

    2 3

    0

    1

    4

    sin cos sin2 2 1

    nx nx nx x x

    n   n n

     

        

     

    =   21 2

    0 cos 2 cos0 04 nn   

     

    =   2 21 2 1

    24   n n

      

     

    2

    21

    1cos .

    12   n f x nx

    n

      

     

    At x = 0, 2 2

    21

    10

    4 12   n f  

    n

      

     

      2 2 2

    21

    1................. 1

    4 12 6n   n

     

     

    At , 0 x f x   

    2

    21

    10 cos

    12   nn

    n

      

     

    22

    1

    1

    12

    n

    n   n

     

       

    12

    21

    1..................... 2

    12

    n

    n   n

     

     

    (1) + (2) gives

  • 8/20/2019 Fourier Series notes corrected.pdf

    14/39

    Page 14 of 39 

    2 2 2

    21

    12

    6 12 42 1n   n

     

     

    2

    2

    1

    1

    82 1n   n

     

    .

    3.  Expand

    , 0 1

    0, 1

    2 , 1 2

     x x

     f x x

     x x

     

     

     

      2 f x f x , as a Fourier series and

    hence deduce that1 1 1

    1 ..............4 3 5 7

       

    Solution:

     f x  is odd,

    1

    sinnn

     f x b n x 

     

    Where 2

    0

    2sin

    2n

    b f x n xdx   

    =  

    1 2

    0 1sin 2 sin x xdx x xdx    

    =   21

    2 2 2 2

    0 1

    cos sin cos sin1 2 1

    n x n x n x n x x x

    n n n n

       

     

     

    2-2 -1 1

  • 8/20/2019 Fourier Series notes corrected.pdf

    15/39

    Page 15 of 39 

    =     1 cos1

    cos 0 0 0 0n

    nn n

       

     

     

    =   12cos 2 2

    1 1n nn

    n n n

      

     

     

     

    1

    1

    12 sin

    n

    n

     f x n xn

     

       

    1

    2 2 f  

       

    1

    1

    12 sin

    2

    n

    n

    n

    n

     

     

    1

    2

    0 is evensin

    2 1 is oddn

    nn

    n

     

     

     

    1

    1

    1sin

    4 2

    n

    n

    n

    n

     

     

    1

    1

    1

    2 1

    n

    n   n

    1 1 11

    3 5 7  .

    4.  Expand

    0, 02

    ( ) , ( ),

    sin , 0

     f t f t f t t 

     E t t 

       

     

         

    as a Fourier

    series.

    Solution:

    ( ) f t  is neither even nor odd.

    0

  • 8/20/2019 Fourier Series notes corrected.pdf

    16/39

    Page 16 of 39 

    01

    ( ) cos sinn nn

     f t a a n t b n t 

    where

    2

    0

    0

    2

    0

    1 1

    ( ) sin2

    cos  .

    2

    T a f t dt E tdt  T 

     E t E 

     

    2

    0

    2

    2( )cos sin(1 ) sin(1 )

    2

    n

     E a f t n tdt n t n t dt  

     

    0

    0

    0

    cos(1 ) cos(1 ), 1

    2 (1 ) (1 ) 

    sin 2 , 12

    cos(1 ) cos(1 ) 1 1, 1

    2 (1 ) (1 ) (1 ) 1 

    cos2, 1

    2 2

     E n t n t n

    n n

     E tdt n

     E n nn

    n n n n

     E t n

     E 

     

       

       

       

    22 2 2

    , is even2 (1 ) 1 1 .

    0, is odd

     E n

    n n   n

    n

         

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    17/39

    Page 17 of 39 

    2

    0

    2

    0

    0

    2( )sin sin sin

    cos( 1) cos( 1)2

    sin( 1) sin( 1)1

    2 ( 1) ( 1)

    0, 1

    n

    w

     Ewb f t wt dt wt nwt dt  

     Ewn wt n wt dt  

     Ew n wt n wt n

    n w n w

    n

      

     

     

     

     

     

     

     

    2

    1

    0

    0

    0

    2 2

    sin

    (1 cos2 )2

    sin2

    2 2

    ( 0)2 2

    2 cos2 cos4( ) sin .....

    2 2 1 4 1

    w

    w

     Ewb wt dt  

     Ewwt dt 

     Ew wt t 

    w

     Ew E 

    w

     E E E wt wt  f t wt 

     

     

     

     

     

     

     

     

     

     

    5. 

    Expand 2f(x) = x , 0 x 2, f(x+2) = f(x) as a Fourier series and hence

    evaluate2

    1

    1

    n   n

    .

    f(x)

    x42-2

  • 8/20/2019 Fourier Series notes corrected.pdf

    18/39

    Page 18 of 39 

    Solution: Note that f(x) is neither even nor odd.

     01

    ( ) ( cos sin )n nn

     f x a a nx b nx

    where

     

    22 32

    0

    0 0

    1 1 4

    2 2 3 3

     xa x dx

     

     22 2

    2

    2 2 3 3 2 2

    0 0

    2 sin cos sin 4cos 2 2

    2n

     x n x n x n xa x n x dx x

    n n n n

      

     

     22 2

    2

    2 2 3 30 0

    3 3

    2 cos sin s

    sin 2 22

    4 2cos2 0 0 (cos2 cos0)

    4.

    n

     x n x n x co n x

    b x n x dx xn n n

    n nn n

    n

      

     

       

     

     

    2 21

    4 4 4( ) cos sin

    3   n f x n x n x

    n n  

     

     

    A x=0, f(x) is discontinuous

    2 21

    2 21

    2 2

    21

    (0 ) (0 ) 4 4 4cos0 sin0

    2 3

    4 0 4 4 1

    2 3

    1 42

    3 4 6

    n

    n

    n

     f f  

    n n

    n

    n

     

     

     

     

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    19/39

  • 8/20/2019 Fourier Series notes corrected.pdf

    20/39

    Page 20 of 39 

    2lO

    y

     x

    l-l

    Half range Expansions

    While solving various physical and engineering problems, there is a practical need

    for expanding functions defined over a finite range. Such an expansion is possible

    if functions under consideration can be extended to a periodic function which is

    either even or odd.

    Consider a piecewise continuous function ( ), f x   defined in a finite interval

    (0, ).l   Then it is possible to extend ( ) f x  to a periodic function, which is even or

    odd.

    Consider the function ( ) g x  defined as follows:

    ( ), 0

    ( ) ; ( 2 ) ( ).( ), 0

     f x x l 

     g x g x l g x f x l x

     

    Then ( ) g x  is called an even periodic extension of ( ) f x .

    Graph of ( ) f x  

    Graph of even periodic extension of f(x).

    O

    y

     x

    l

  • 8/20/2019 Fourier Series notes corrected.pdf

    21/39

    Page 21 of 39 

    2lO

    y

     x

    l-l

    The function ( ) g x  can be expanded as Fourier cosine series

    0

    1

    ( ) cosnn

    n g x a a x

     

     

    where0

    0

    1 ( )

    a g x dxl 

     and0

    2 ( ) cos

    nna g x x dx

    l l    

    But for 0 , x l    ( ) ( ). g x f x  We have

    0

    0

    1( )

    a f x dxl 

     and0

    2( ) cos

    n

    na f x x dx

    l l 

       

    ( ) ( ) f x g x 0

    1

    cos ,nn

    na a x

     

     for 0 . x l   

    Such an expansion of ( ) f x   is called the half range Fourier Cosine series

    expansion of ( ). f x  

    Also, if( ), 0

    ( ) ; ( 2 ) ( ).( ), 0

     f x x l  g x g x l g x

     f x l x

     

    Then ( ) g x  is called an odd periodic extension of ( ) f x .

    Graph of ( ) f x  

    Graph of odd periodic extension of f(x)

    O

    y

     xl

  • 8/20/2019 Fourier Series notes corrected.pdf

    22/39

    Page 22 of 39 

    The function ( ) g x  can be expanded as Fourier Sine series

    1

    ( ) sinnn

    n g x b x

     

     

    where

    0

    2( ) sin

    n

    nb g x x dx

    l l 

       

    But for 0 , x l    ( ) ( ). g x f x  We have

    0

    2( ) sin

    n

    nb f x x dx

    l l 

       

    ( ) ( ) f x g x 1

    sin ,nn

    nb x

     

     for 0 . x l   

    Which is called the half range Fourier Sine series expansion of ( ). f x  

    Problems:

    1.  Expand ( ) ,0 f x x x as half range Fourier cosine and sine series. Also

    draw the graph of the corresponding periodic extensions of ( ). f x  

    Solution:

    Graph of even periodic extension of ( ) f x .

    0

    1

    ( ) cosnn

     f x a a nx

    , where

  • 8/20/2019 Fourier Series notes corrected.pdf

    23/39

    Page 23 of 39 

    0

    0 0

    1 1( ) .

    2a f x dx xdx

     

    2

    00 0

    2

    2

    2 2 2 sin ( cos )( )cos cos (1)

    0,2 ( 1) 1

    .4, odd

    n

    n

     x nx nxa f x nxdx x nxdx

    n nn even

    n   nn

       

     

     

    2 2

    4 cos cos3( ) .

    2 1 3

     x x f x x

         

    Graph of odd periodic extension of ( ) f x .

    1

    ( ) sinnn

     f x b nx

    , where

    2

    00 0

    1

    2 2 2 ( cos ) ( sin )( )sin sin (1)

    2 ( 1) 0 2( 1) .

    n

    nn

     x nx nxa f x nxdx x nxdx

    n n

    n n

     

    1

    1

    2( ) ( 1) sin .n

    n

     f x x nxn

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    24/39

    Page 24 of 39 

    2.  Expand

    , 02

    ( )

    1 ,2

     x l  x

    l  f x

     x l  x l 

       

    as half range Fourier cosine and sine

    series. Also draw the graph of the corresponding periodic extensions of( ). f x  

    Solution:

    Graph of even periodic extension of ( ) f x .

    ( ) f x   01

    cosnn

    na a x

     

     

    Where

    2

    0

    0 0

    2

    1 1( ) 1

    l l 

     x xa f x dx dx dxl l l l  

     

    22 2

    02

    1 11

    2 2 4

    l  l 

     x x

    l l l 

         

     

    2

    0 0

    2

    2 2( )cos cos 1 cos

    l l 

    n

    n x n x na f x x dx x dx x dxl l l l l l l  

     

     

    2 2

    22cos cos 1

    2

    nn

    n

      

     

     

    1

  • 8/20/2019 Fourier Series notes corrected.pdf

    25/39

    Page 25 of 39 

    2 2

    0, 2, 6, 10, 14, ...

    8, 2, 6, 10, 14, ...

    n

    nn    

     

     

    2 2 2

    1 8 1 2 1 6( ) cos cos

    4 2 6 f x x x

    l l 

     

     

    .

    Graph of odd periodic extension of ( ) f x  

    ( ) f x   1 sinn

    n

    n

    b xl 

     

     

    Where

    0

    2( )sin

    n

    na f x x dx

    l l 

       

    2

    0

    2

    2  sin 1 sin

     x n x n x dx x dx

    l l l l l  

     

     

    1

    2 22

    2 2

    0, even4

    sin 42 1 , odd

    n

    nn

     xn n

    n

     

      

     

     

    O

    y

     x

  • 8/20/2019 Fourier Series notes corrected.pdf

    26/39

    Page 26 of 39 

    2 2 2 2

    4 1 1 3 1 5  ( ) sin sin sin

    1 3 5 f x x x x

    l l l 

     

      

    Expand ( ) 1 ,0 x

     f x x l l 

    as a Fourier cosine and sine series. Also draw the

    graph of the corresponding periodic extensions of ( ). f x  

    Solution:

    Graph of even periodic extension of ( ). f x  

    Let 01

    ( ) cosnn

    n f x a a xl 

    .

    Then0

    0

    2 1( ) .

    2

    a f x dxl 

     

    0 0

    2 2

    2 2

    2 2( )cos 1 cos

    0,

    2 1 ( 1) .4,

    l l 

    n

    n

    n x na f x xdx xdx

    l l l l l  

    n even

    n   n odd n

     

     

    2 21

    1 4 (2 1)( ) cos

    2 (2 1)n

    n x f x

    n l 

    .

    -l   l

  • 8/20/2019 Fourier Series notes corrected.pdf

    27/39

    Page 27 of 39 

    Graph of odd periodic extension of ( ) f x  

    Let1

    ( ) sin .nn

    n f x b x

     

    Then0 0

    2 2 2( )sin (1 )sin

    l l 

    n

    n x nb f x xdx xdx

    l l l l l n

     

    Thus1

    2( ) sin .

    n

    n f x x

    n l 

     

    Problems:

    Obtain the half range Fourier Cosine and sine series expansions of the

    functions. Also draw the graph of corresponding periodic extensions.1)

     

    ( ) sin ,0 f x x x x .

    2)  ( ) ( ),0 f x x x x .

    3) 

    , 02

    ( )

    ,2

     x x

     f x

     x x

     

    .

    4) 

    ( ) 2 ,0 2 f x x x .

    5)  ( ) cos ,0 f x x x l 

    l  .

    6)  ( ) sin ,0 f x x x l l 

    .

    7) 

    If ( ) f x is piecewise continuous for 0 , x l  having half range expansions

    l-l

    0

    2l

  • 8/20/2019 Fourier Series notes corrected.pdf

    28/39

    Page 28 of 39 

    01 1

    ( ) cos & sinn nn n

    n n f x a a x f x b x

    l l 

     then show that

    2 22 2 2

    0

    1 10 0

    2 2( ) 2 & ( )

    l l 

    n n

    n n

     f x dx a a f x dx bl l 

    .

    Fourier integral representation:

    Let f(x) be a piecewise continuous and absolutely integrable function of x in

    ( , ). , ., ( ) .i e f x dx exists

    Then f(x) can be represented by an integral as

    0

    1( ) ( ) cos ( )sin (1)

    ( ) ( )cos , ( ) ( )sin .

     f x A S sx B s nx ds

    where A s f t st dt B s f t st dt  

     

     

    Such an integral representation is called the Fourier integral representation of f(x).

    The integral on RHS of (1) converges to f(x0) if f(x) is continuous at x0  and to

    average of left and right hand limits if f(x) is discontinuous at x0.

    Proof: Consider a periodic function f l(x) defined in (-l, l) such that f l(x) =f(x) for

    l x l 

    Then, f l(x) can be represented by a Fourier series as

    0

    1

    ( ) cos sin (2)l n nn

    n x n x f x a a b

    l l 

       

     

    Where

  • 8/20/2019 Fourier Series notes corrected.pdf

    29/39

    Page 29 of 39 

    0

    1 1 1( ) , ( )cos , ( )sin

    2

    l l l 

    l n l n l  

    l l l 

    n t n t  a f t dt a f t dt b f t dt  

    l l l l l  

     

     

    Substituting in (2) we get,

    1

    1 1 1( ) ( ) ( )cos cos ( )sin sin

    2

    l l l 

    l l l l  

    nl l l 

    n t n x n t n x f x f t dt f t dt f t dt 

    l l l l l l l  

     

     

    1

    1 1( ) ( ) ( )(cos cos sin sin )2

    l l 

    l l l 

    nl l 

    n t n x n t n x f x f t dt f t dt l l l l l l  

       

     

    n

    n Let s

       

    Then1

    1 nn n n

     s s s s or 

    l l 

     

     

     

    On substitution we get

    1

    1 1( ) ( ) ( )(cos cos sin sin )

    2

    l l 

    nl l l n n n n n

    nl l 

     s f x f t dt f t s t s x s t s x dt s

     

     

    1

    1 1( ) ( ) cos ( )cos sin ( )sin )

    2

    l l l 

    l l n n l n n l n n

    nl l l 

     f x f t dt s s x f t s t dt s x f t s t s

     

     

     

    Let , then ( ) ( )l l f x f x .

    ( ) 0 0.

    l n n

     f t dt s s

     

     Now taking the limit as , we getl    

  • 8/20/2019 Fourier Series notes corrected.pdf

    30/39

  • 8/20/2019 Fourier Series notes corrected.pdf

    31/39

    Page 31 of 39 

    Which is called the complex form of Fourier integral representation of ( ). f x  

    Note (2): If ( ) f x  is an even function of , x  then

    0

    ( ) ( )cos 2 ( )cos A s f t st dt f t st dt 

     

    ( ) ( )sin 0 B s f t st dt 

     

    Therefore Fourier integral becomes

    0

    2( ) ( )cos f x A s sx ds

     

     

    0 0

    2( ) cos cos f t st sx dt ds

     

     

    Which is called the Fourier Cosine integral representation of ( ). f x  

    If ( ) f x  is an odd function of , x  then

    ( ) ( )cos 0 A s f t st dt 

     

    0

    ( ) ( )sin 2 ( )sin A s f t st dt f t st dt 

     

    0

    2( ) ( )sin f x B s sx ds

     

     

    0 0

    2( ) sin sin f t st sx dt ds

     

     

    Which is called the Fourier Sine integral representation of ( ). f x  

  • 8/20/2019 Fourier Series notes corrected.pdf

    32/39

    Page 32 of 39 

    Fourier transforms

    Consider the Fourier integral representation of the function ( ) f x  given by

    ( )1

    ( ) ( )2

    i s x t  

     f x f t e dt ds 

     

    )1 1( )

    2 2

    isx ist  e f t e dt ds

     

     

     

    Let1

    ( ) ( ) (1)2

    ist  F s f t e dt 

     

     

    Then1

    ( ) ( ) (2)2

    isx f x F s e ds

     

     

    The integral defined by (1) is called the Fourier transform of the function ( ) f x  

    and is denoted by ( ) . F f x  Given ( ) ( ) , F s F f x   the formula (2) defined( ), f x  which is called the inverse Fourier transform of ( ) F s and is denoted by

    1 ( ( ) F F s .

    Note (1): A function ( ) f x  is said to be self-reciprocal under Fourier transforms if

    ( ) ( ). F f x F s  

    Note (2): If ( ) ( ), F f x F s   then 1( ) ( ) f x F F s   is called spectralrepresentation of ( ) F s   and ( ) F s   is called spectral density of ( ). f x  Here  s   is

    called the frequency of the transform. The graph of ( ) F s   is called amplitude

    spectrum of ( ) f x  and2

    ( ) F s  is called energy of the spectrum.

    Properties of the Fourier transforms:

    (1) Fourier transform is linear

    i.e., if 1 2andc c  are constants then

    1 2 1 2( ) ( ) ( ) ( ) F c f x c g x c F f x c F g x  

  • 8/20/2019 Fourier Series notes corrected.pdf

    33/39

    Page 33 of 39 

    Proof: Follows from definition and linearity of the integral.

    (2) If ( ) ( ) F f x F s  then ( ) ( )iax F e f x F s a  

    Proof: Consider( )1( ) ( )

    2

    i s a t   F s a f t e dt  

     

    1( )

    2

    ist iat  f t e e dt 

     

     

    1

    ( )2

    iat ist   f t e e dt  

     

    ( )iax F e f x  

    (3) 

    If ( ) ( ) F f x F s  then ( ) ( )isa F f x a e F s  Proof: Exercise

    (4) If ( ) ( ) F f x F s  then

    1( )

      s F f ax F 

    a a

     

     

    Proof: Exercise

    (5) 

    If   ( ) ( ) F f x F s  then

    (i)  1

    ( )cos ( ) ( )

    2

     F f x ax F s a F s a  

    (ii)  ( )sin ( ) ( )

    2

    i F f x ax F s a F s a  

    (iii)  ( ) ( ) F f x F s  

    (iv)  ( ) ( ) F f x F s  

    (v)  ( ) ( ) F f x F s  

    (vi)  ( ) ( )n

    n n

    nd  F x f x i F sds

     

    (vii)    ( ) ( ) ( ) ( )n n F f x is F f x  

  • 8/20/2019 Fourier Series notes corrected.pdf

    34/39

    Page 34 of 39 

    Convolution:

    For functions ( ) & ( ), f x g x we define the convolution of ( ) & ( ), f x g x  denoted by

    ( ) f g x as 1

    ( ) ( ) ( ) ;

    2

     f g x f t g x t dt 

       provided the integral exists.

     Note that . f g g f    

    Convolution Theorem:

      ( ) ( ) ( ) . F f g x F f x F g x  

    Proof:

    Consider

    ( )

    1( ) ( )( )

    2

    1 1( ) ( )

    2 2

    1 1( ) ( )

    2 2

    isx

    isx

    ist is x t  

     F f g x f g x e dx

     f t g x t dt e dx

     f t e g x t e dx dt 

     

    Let  x t u . Then

    ( )

    ( )

    1 1( ) ( ) ( )

    2 2

    1 1( ) ( )

    2 2

    ( ) ( ) .

    ist is u

    ist is u

     F f g x f t e g u e du dt 

     f t e dt g u e du

     F f x F g x

     

     

    Parseval’s Identity: 

    If ( ) ( ) F f x F s then 2 2| ( ) | | ( ) | f x dx F s ds

    .

    Proof:

  • 8/20/2019 Fourier Series notes corrected.pdf

    35/39

    Page 35 of 39 

    1

      ( ) ( ), { ( )} ( ),

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    1 1. ., ( ) ( ) ( ) ( )2 2

    isx

     If F f x F s F g x G s then

     F s G s F f x g x or 

     f x g x F F s G s

    i e f t g x t dt F s G s e ds

     

    For 0, x  we get

    ( ) ( ) ( ) ( ) f t g t dt F s G s ds

     

    ( ) ( ) ( ) ( ) Let g x f x or g x f x .

       

    2 2

    ( ) ( ) ( ) ( ) ( ).

    ( ) ( ) ( ) ( ) ( ) ( )

    | ( ) | | ( ) |

    ThenG s F g x F f x F f x F s

     f t g t dt f t f t dt F s F s ds

     f t dt F s ds

     

    Problems:

    1)  Find the Fourier transform of1, | |

    ( )0, | |

     x a f x

     x a

     

    . Hence deduce that

    2sin sin

     2 2

    t t dt and dt  

    t t 

    .

    Solution:

    1

    ( ) ( )

    2

    1 1 2 sin1 ( )

    2 2

    isx

    aa   isxisx

    a   a

     F f x f x e dx

    e ase dx F s

    is s

     

     

    .

  • 8/20/2019 Fourier Series notes corrected.pdf

    36/39

    Page 36 of 39 

    0

    0

    1 1 2 sin( ) ( ) cos sin

    2 2

    2 sin sincos sin is an odd function of

    0, | |

    sincos ( ) , | |

    2 2

    1

    2 2

    isx   as f x F s e sx i sx ds s

    as as sxds sx s

     s s

     x a

    as sxds f x x a

     s

     

    0 , | |4

     x a

     

    .

    0

    For 0, ( ) 1.

    sin.

    2

     x f x

    asds

     s

     

    0

    0

    Let or . .

     On substitution, we get

    sin

    / 2

    sintor .

    t 2

    t dt as t s ds

    a a

    t dt 

    t a a

    dt 

     

    2 2

    2 2

    0

    2

    0

    2

    0

    By Parseval's identity,

    | ( ) | | ( ) |

    2 sin 4 sini.e., 1

    sin

    2

    sinFor 1, we get .

    2

    a

    a

     f x dx F s ds

    as asdx ds ds

     s s

    as ads

     s

    t a ds

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    37/39

    Page 37 of 39 

    2)  Find the Fourier transform of , 0a x

    e a  and hence evaluate

    2 2

    0

    cos xt dt 

    a t 

    and

    { }a x

     F xe

     

    0

    2 2   0

    2 2 2 2

    2 2

    2 2

    0

    2 2 2

    0

    1 2{ } cos

    2

    2cos sin

    2 2(0 ( )) ( )

    1( ) ( )

    2

    1(cos sin )

    2

    2 cos

    cos cos

    a x a x   isx a x

    ax

    o

    isx

     F e e e dx e sxdx

    ea sx s sx

    a s

    e aa F s

    a s a s

     f x F s e ds

    a sx i sx ds

    a s

    a sxds

    a s

     sx xt ds

    a s a

      

     

     

     

     

     

     

      20

    ( )

    2 2

    a x f xdt e

    t a a

     

     

    Since

    1

    2 2 2 2 2

    { ( )} ( )

    2 2 21, { } { }

    ( )

    nnn

    n

    a x a x

    d  F x f x i F s

    ds

    d d a as for n F x e i F e i i

    ds ds a s a s  

     

     

    3) 

    Find the Fourier transform of2 2

    , 0a xe a   and hence show that

    2

    2

     x

    e

    is

    self-reciprocal under Fourier transform.

  • 8/20/2019 Fourier Series notes corrected.pdf

    38/39

    Page 38 of 39 

    2 2 2 2 2 2

    2 2

    2

    2

    22

    ( )

    2 4

    42

    1 1{ }

    2 2

    1

    2

    2

    a x a x isx a x isx

    is sax

    a   a

     sis

    a   axa

     F e e e dx e dx

    e dx

    ee dx

     

     

     

     

    Let2

    isax t 

    a then

    dt dx

    a  

    =

    2 2

    2 2

    2 24 42

    2 2

     s s

    a at t e dt e

    e e dt  a   a  

     

    Put

    2

    1

    21

    2

    t y or t y

    dt y dy

     

    2 2 2 2

    2 2 2 214 4 4 42

    0

    12

    2 22 2 2 2

     s s s s

     ya a a ae e e e e y dy

    a a a

       

     

     

    For1

    2a  or 2 1a   

    2 22 2

    2 2{ } { } x s

    a x F e F e e  

    2

    2 s

    e

      is self-reciprocal under Fourier transform.

    4) 

    Find the Fourier transform of1 1

    ( ) 0 1

     x x f x  x

        and hence evaluate

    2

    0

    sin xdx

     x

     

  • 8/20/2019 Fourier Series notes corrected.pdf

    39/39

    1

    1

    1

    0

    1

    2 2

    0

    2

    1 1{ ( )} ( ) (1 )(cos sin )

    2 2

    2(1 ) cos (1 )sin .

    2 sin cos 2 (1 cos )(1 ) ( )

    1( ) ( )

    2

    1 2 (1 cos )(cos

    2

    isx

    isx

     F f x f x e dx x sx i sx dx

     x sx dx x sx is an odd function of x

     sx sx s x F s

     s s s

     f x F s e ds

     s sx

     s

     

     

     

     

      

    2

    0

    sin )

    (1 ) 12 (1 cos )cos ( )   2

    20 1

    i sx ds

     x x s sx ds f x

     s x

      

     

       

     

     

    20

    2

    20

    22

    20 0

    (1 cos )0, (1 0)

    2 2

    2sin ( / 2)

    2

    / 2 2 2

    2 sin sin2

    4 2 2

     sx For x   ds

     s

     sds

     s

     Let s t or s t ds dt 

    t t dt or dt  

    t t 

     

     

     

     

    Exercises:

    1. 

    Obtain the Fourier transform of2

    3

    0

    1 1 cos sin( ) and hence evaluate cos( / 2)

    0 1

     x x   x x x f x x dx

     x x

             

     

       

    2.  Find the Fourier transform of ( )0 0

     x x a f x

     x a

     

     

    3. 

    Find the Fourier transform of

    2 2

    ( )0

    a x x a f x