fourier

31

Upload: eric-burgos

Post on 08-Jul-2015

65 views

Category:

Education


0 download

DESCRIPTION

Math

TRANSCRIPT

Page 1: Fourier
Page 2: Fourier

JOSEPH FOURIER

• Joseph Fourier (21 de marzo de 1768 en Auxerre – 16 de mayo de 1830

en París), matemático y físico francés conocido por sus trabajos sobre

la descomposición de funciones periódicas en series trigonométricas

convergentes llamadas Series de Fourier, método con el cual consiguió

resolver la ecuación del calor. La transformada de Fourier recibe su

nombre en su honor. Fue el primero en dar una explicación científica al

efecto invernadero en un tratado. Se le dedicó un asteroide que lleva su

nombre y que fue descubierto en 1992.

Page 3: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• La energía térmica se transfiere del calentador al interior de las

regiones más fresca a un cuerpo sólido por medio de conducción. Es

conveniente referirse a la transferencia como flujo de calor, se tratara

de calor a líquido o gas que difunde a través del cuerpo de las regiones

de alta concentración en las regiones de baja concentración.

• Sea 𝑷𝟎 un punto (𝒙𝟎, 𝒚𝟎, 𝒛𝟎) interior al cuerpo y S una superficie lisa a

través de 𝑷𝟎, también, sea n un vector unitario normal a S en el punto

𝑷𝟎 (Fig.11). En el tiempo t, el flujo de calor ɸ (𝒙𝟎, 𝒚𝟎, 𝒛𝟎, t) a través de S

en 𝑷𝟎 en la dirección de n es la cantidad de calor por unidad de área por

unidad de tiempo que se lleva a cabo a través de S en 𝑷𝟎 en esa

dirección. El flujo es medido en unidades tales como calorías por

centímetro cuadrado por segundo. FIGURA 11

Page 4: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

Page 5: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• Si u (x, y, z, t) denota las temperaturas en los puntos (x, y, z) del cuerpo

en el tiempo t y si n es una coordenada que representa la distancia en

la dirección de n, el flujo ɸ (𝒙𝟎, 𝒚𝟎, 𝒛𝟎, t) es positiva cuando la

direccional derivada de du/dn es negativo en 𝑷𝟎 y negativo cuando

du/dn es positivo.

• Un postulado fundamental, conocido como ley de Fourier, en la teoría

matemática de los Estados de Conducción de Calor es que la magnitud

del flujo ɸ (𝒙𝟎, 𝒚𝟎, 𝒛𝟎, t) es proporcional a la magnitud de la derivada

direccional du/dn a 𝑷𝟎 en el tiempo t. Es decir, hay un coeficiente K,

conocida como la conductividad térmica del material, de tal manera

que:

(1) ɸ = −𝑲𝒅𝒖

𝒅𝒏(K > 0) en 𝑷𝟎 y tiempo t.

Page 6: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• Otro coeficiente térmico del material es su calor específico un. Ésta es la

cantidad de calor necesaria para elevar la temperatura de una unidad de

masa de la unidad de un material en la escala de temperatura. Salvo

indicación contraria, siempre serán suponga que los coeficientes K y a son

constantes en todo el cuerpo sólido y que lo mismo puede decirse de 𝝈, la

masa por unidad de volumen del material.

• Con estas hipótesis, un segundo postulado de la teoría matemática es que la

conducción conduce a una función u de la temperatura que, junto con su

derivado 𝒖𝒕 y los de la primera o segunda orden con respecto a x, y y z, es

continua a lo largo de cada interior de dominio a un cuerpo sólido en el que

sin calor es generado o perdido.

• Supongamos ahora que el calor fluye sólo paralelamente al eje x en el

cuerpo, para que el flujo ɸ y temperaturas u dependan sólo de x y t. Por lo

tanto ɸ = ɸ (x, t) y u = u (x, t). Asumimos en la actualidad que calor no es

generado ni perdido dentro del cuerpo y por lo tanto que el calor entra o sale

solamente a través de su superficie.

Page 7: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• Luego construimos un pequeño paralelepípedo rectangular, situado en

el interior del cuerpo, con un vértice en un punto (x, y, z) y con caras

paralelas a los planos de coordenadas. Las longitudes de los bordes

son ∆x, ∆ y y ∆ z, como se muestra en la figura 12.

Page 8: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• La masa del elemento de material del paralelepípedo de la ocupación es

tu 𝜹∆𝒙∆y ∆z, así, en vista de la definición de calor específico declarada

anteriormente, sabemos que es una medida de la cantidad de calor que

entra a ese elemento por unidad de tiempo en el tiempo t es

aproximadamente:

(2) σ ∆𝐱∆y ∆z𝐮𝐭( x, t )

• Otra manera de medir dicha cantidad es observar que, dado que el flujo

de calor es paralelo al eje x, el calor cruza sólo las superficies ABCD y

EFGH del elemento, que son paralelas al plano yz.

• Si la dirección del flujo ɸ(x, t) está en la dirección positiva del eje x, se

deduce que la cantidad de calor por unidad de tiempo cruzar el ABCD

superficial en el elemento en el tiempo t es ɸ (x, t) ∆y ∆z.

Page 9: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• A causa de que el calor va dejando el elemento a través de la cara

EFGH, la cantidad neta de calor entrando al elemento por unidad de

tiempo es, entonces,

ɸ (x, t) ∆y ∆z - ɸ ( x + ∆x, t ) ∆y ∆z.

• En vista de la ley de Fourier (1), esta expresión puede ser escrita

(3) K [ 𝒖𝒙 ( x + ∆x, t ) - 𝒖𝒙 (x, t) ∆y ∆z .

• Igualando las expresiones (2) y (3) para la cantidad de calor entrando el

elemento por unidad de tiempo y luego dividiendo por a σ𝛅 ∆𝐱∆y ∆z,

tenemos

𝒖𝒕 (x , t) = 𝑲

𝝈𝜹. 𝒖𝒙( x + ∆x, t ) − 𝒖𝒙(𝒙 ,𝒕)

∆𝒙

Page 10: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• Dejando ∆x tiende a cero aquí, nos encontramos con que las temperaturas en un cuerpo sólido, cuando calor fluye sólo paralelo al eje x, satisfacen la ecuación de calor unidimensional

(4) 𝒖𝒕(x, t) = 𝒌𝒖𝒙𝒙(x, t) , donde , k = 𝑲

𝝈𝜹

• La constante k aquí se llama la difusividad térmica del material.

• En la derivación de la ecuación (4), asumimos que no hay ninguna fuente de calor dentro del cuerpo sólido, sólo de la transferencia de calor por conducción. Si hay una fuente uniforme en todo el cuerpo que genera calor a una tasa constante 𝑸 por unidad de volumen, es fácil modificar la derivación para obtener la ecuación del calor

(5) 𝒖𝒕( x, t)= 𝒌𝒖𝒙𝒙 𝒙, 𝒕 + 𝒒𝟎, donde 𝒒𝟎 =𝑸

𝝈𝜹

Page 11: Fourier

UNA ECUACIÓN DIMENSIONAL DE CALOR

• Esto se logra simplemente agregando el término Q ∆x ∆ y ∆z a la

expresión (3) y proceder de la misma manera como antes. La tasa Q por

unidad de volumen en el que el calor es generado mayor, de hecho,

cualquier función continua de x y t, en este caso el término 𝒒𝟎en la

ecuación (5) se sustituirá por una función q (x, t).

Page 12: Fourier

EL MÉTODO DE FOURIER, OPERACIONES

LINEALES• Si 𝒖𝟏 y 𝒖𝟐 son funciones y 𝒄𝟏 y 𝒄𝟐 son constantes, la función 𝒄𝟏 𝒖𝟏+ 𝒄𝟐

𝒖𝟐 de interfaz de usuario de 𝒄𝟏 se llama una combinación lineal de 𝒖𝟏 y

𝒖𝟐. Tenga en cuenta que 𝒖𝟏 + 𝒖𝟐 y 𝒄𝟏 𝒖𝟏 así como la función constante 0,

en casos especiales. Un espacio lineal de funciones, o un espacio

funcional, es una clase de funciones, todo ello con un dominio común

de la definición, tal que cada combinación lineal de dos funciones en

que clase permanece en él; es decir, si en la clase de interfaz de usuario

𝒖𝟐, entonces así es 𝒄𝟏 𝒖𝟏+ 𝒄𝟐 𝒖𝟐 Un ejemplo es el espacio de función

𝑪𝒑(a, b),

(1) L(𝒄𝟏 𝒖𝟏+ 𝒄𝟐 𝒖𝟐) = 𝒄𝟏L 𝒖𝟏+ 𝒄𝟐L 𝒖𝟐

cuando 𝒄𝟏 y 𝒄𝟐 son constantes. En particular,

(2) L(𝒖𝟏 + 𝒖𝟐) = L 𝒖𝟏+L𝒖𝟐 y L(𝒄𝟏 𝒖𝟏) = 𝒄𝟏L 𝒖𝟏

Page 13: Fourier

OPERACIONES LINEALES

• La función Lu puede ser una función constante; en particular,

L(0) = L(0 x 0) = 0L(0) = 0.

• Si 𝒖𝟑es una tercera función en el espacio, entonces

L(𝒄𝟏 𝒖𝟏+ 𝒄𝟐 𝒖𝟐+ 𝒄𝟑 𝒖𝟑) = L(𝒄𝟏 𝒖𝟏+ 𝒄𝟐 𝒖𝟐) + L(𝒄𝟑 𝒖𝟑)

= 𝒄𝟏L 𝒖𝟏+ 𝒄𝟐L 𝒖𝟐+ 𝒄𝟑L 𝒖𝟑

• Procediendo por inducción, encontramos que L transforma

combinaciones lineales de N funciones de esta manera:

(3) L( 𝒏=𝟏𝑵 𝒄𝒏 𝒖𝒏) = 𝒏=𝟏

𝑵 𝒄𝒏𝑳 𝒖𝒏

Page 14: Fourier

PRINCIPIO DE SUPERPOSICIÓN

• Cada término distinto de cero de una ecuación diferencial homogénea

lineal en u, que consiste en una constante o una función de las

variables independientes solas, una de las derivadas de la u o u propia.

Por lo tanto cada ecuación diferencial homogénea lineal tiene la forma

(1) Lu = 0,

• donde L es un operador diferencial lineal.

(2) A𝒖𝒙𝒙 + B𝒖𝒙𝒚+ C𝒖𝒚𝒚+ 𝑫𝒖𝒙+𝑬𝒖𝒚+F𝒖 = 𝟎,

• donde las letras A a la F denotan constantes o funciones de x e y

solamente, el segundo orden lineal homogéneo de la ecuación en

derivadas parciales de u(x, y). Puede ser escrito en forma (1) cuando

(3) L = A 𝝏𝟐

𝝏𝒙𝟐+ B

𝝏𝟐

𝝏𝒚𝝏𝒙+ C

𝝏𝟐

𝝏𝒚𝟐+ D

𝝏

𝝏𝒙+ E

𝝏

𝝏𝒚+ F.

Page 15: Fourier

PRINCIPIO DE SUPERPOSICIÓN

• Condiciones de contorno lineales homogéneas también tienen la forma (1). Luego las variables que aparecen como argumentos de u y como argumentos de funciones que sirven como coeficientes en el operador lineal L están restringidas para que representen puntos en el límite del dominio.

• Ahora indicamos un principio de superposición, que es fundamental para el método de Fourier, para resolver problemas de valor de límite lineal.

• Teorema:

Supongamos que cada función de un infinito conjunto 𝒖𝟏, 𝒖𝟐,... satisface una ecuación diferencial homogénea lineal o la condición de frontera de Lu = O. Luego la serie infinita

(4) 𝒖 𝒏=𝟏∞ 𝒄𝒏 𝒖𝒏,

donde la 𝒄𝒏 son constantes, también cumple con Lu = 0, siempre que la serie converge y es diferenciable de todos los derivados involucrados, siempre que cualquier condición que requiera de continuidad en la frontera es satisfecha por Lu cuando Lu = 0 es una condición de frontera.

Page 16: Fourier

PRINCIPIO DE SUPERPOSICIÓN

• Superposición también es útil en la teoría de ecuaciones diferenciales

ordinarias. Por ejemplo, de la dos soluciones 𝒚 = 𝒆𝒙 y , 𝒚 = 𝒆−𝒙de la

ecuación homogénea lineal 𝒚𝒏- 𝒚 = 0, sabemos que 𝒚 = 𝒄𝟏𝒆𝒙+ 𝒄𝟐𝒆

−𝒙

también es una solución. En este libro, estaremos preocupados

principalmente con la aplicación del principio de superposición para

soluciones de ecuaciones diferenciales parciales.

• Para demostrar el teorema, debemos abordar la convergencia y la

diferenciabilidad de series infinitas. Supongamos que las funciones 𝒖𝒏y constantes 𝒄𝒏 son tales que la serie (4) converge a u a lo largo de

cierto dominio de las variables independientes y x representan una de

las variables.

• La serie es diferenciable, con respecto a x si los derivados 𝝏𝒖𝒏 / 𝝏𝒙 y,

𝝏𝒖 / 𝝏𝒙 existen y si la serie de funciones 𝒄𝒏𝝏 𝒖𝒏 / 𝝏𝒙 converge a 𝝏𝒖 / 𝝏𝒙 :

(5)𝜕𝒖

𝜕𝒙= 𝒏=𝟏

∞ 𝒄𝒏𝝏𝒖𝒏

𝝏x

Page 17: Fourier

PRINCIPIO DE SUPERPOSICIÓN

• Tenga en cuenta que una serie debe ser convergente si quiere ser

derivable. Si, además, la serie (5) es diferenciable con respecto a x,

serie (4) es diferenciable dos veces con respecto a x.

• Sea L un operador lineal donde Lu es un producto de una función f de

las variables independientes u o un derivado de la u, o donde Lu es la

suma de un número finito de términos. Mostramos ahora que si es

diferenciable de todos los derivados involucrados en L en las serie (4) y

cada una de la funciones u; en la serie (4) satisface la ecuación

diferencial homogénea lineal Lu = 0, entonces la serie (4) lo satisface.

• Para lograr esto, primero observamos que según la definición de la

suma de una serie infinita,

𝒇𝜕𝒖

𝜕𝒙= 𝒇 lim

𝑵→∞ 𝒏=𝟏𝑵 𝒄𝒏

𝝏𝒖𝒏

𝝏x

• cuando la serie (4) es diferenciable con respecto a x.

Page 18: Fourier

PRINCIPIO DE SUPERPOSICIÓN

• Por lo tanto

(6) 𝒇𝜕𝒖

𝜕𝒙= lim

𝑵→∞ 𝒏=𝟏𝑵 𝒄𝒏

𝝏𝒖𝒏

𝝏x

• Aquí el operador 𝝏/𝝏𝒙 puede remplazarse por otros derivados ,si la serie es diferenciable. A continuación, agregando los lados correspondientes de ecuaciones similares a la ecuación (6), incluyendo a uno que no tenga algún derivado, encontramos que

(7) L𝒖 = lim𝑵→∞

𝑳( 𝒏=𝟏𝑵 𝒄𝒏𝒖𝒏)

• La suma en el lado derecho de la ecuación (7) es una combinación lineal de las funciones 𝒖𝟏,𝒖𝟐,...,𝒖𝒏; y si 𝑳𝒖𝒏= 0 (𝒏 = 1,2,...), sigue, con la ayuda de la propiedad (3), en la sección 29, que

L𝒖 = lim𝑵→∞

𝒏=𝟏𝑵 𝒄𝒏𝑳𝒖𝒏 = lim

𝑵→∞0 = 0.

• Esto es, por supuesto, el resultado deseado.

Page 19: Fourier

PRINCIPIO DE SUPERPOSICIÓN

• La discusión anterior se aplica también a condiciones de contorno

homogéneos lineales de Lu = 0. En ese caso, requerimos la función Lu

para satisfacer la condición de continuidad en los puntos de la frontera

para que sus valores representen la limitación de valores como esos

puntos que son abordados desde el interior del dominio. Esto completa

la prueba del teorema.

Page 20: Fourier

UN PROBLEMA DE TEMPERATURA

• El problema del valor de límite lineal

(1) 𝒖𝒕 𝒙, 𝒕 = 𝒌𝒖𝒙𝒙 𝒙, 𝒕 𝟎 < 𝒙 < 𝒄, 𝒕 > 𝟎 ,

(2) 𝒖𝒕 𝟎, 𝒕 = 𝟎, (𝒕 > 𝟎)

(3) 𝒖 𝟎, 𝒕 = 𝒇 𝒙 𝟎 < 𝒙 < 𝒄 ,

es un problema para la u de temperaturas (x, t) en una losa infinita de

material, limitado por los planos x = 0 y x = c, si sus caras están aisladas y

la distribución de la temperatura inicial es una función prescrita 𝒇 𝒙 de la

distancia desde la cara x = O. (ver Fig. 25). Suponemos que en la k la

conductividad térmica del material es constante a lo largo de la losa y que

el calor no se genera dentro de ella.

• En esta sección, se ilustra el método de Fourier para resolver problemas

de valor de límite lineal resolviendo el problema de temperatura que se

acaba de afirmar. Una serie de medidas que deben adoptarse aquí ,es

sólo formarlo o manipularlo. Una verificación de la solución final puede

encontrarse en el cap. 11

Page 21: Fourier

UN PROBLEMA DE TEMPERATURA

Page 22: Fourier

UN PROBLEMA DE TEMPERATURA

• Para determinar no trivial (u ≢ 0) funciones que satisfacen las

condiciones homogéneas (1) y (2). Buscamos soluciones separadas de

esas condiciones, o funciones de la forma

(4) 𝒖 = 𝑿 𝒙 𝑻(𝒕)

que les satisface. Tenga en cuenta que X es una función de x solamente y T

es una función solo de t. Tenga en cuenta que X y T deben ser no trivial (X

≢ O, T ≢ 0). Si u = XT satisface la ecuación (1), a continuación

𝑿 𝒙 𝑻′(𝒕) = 𝒌𝑿" 𝒙 𝑻(𝒕);

y para valores de x y t tal que el producto x T(t) es distinto de cero,

podemos dividir por kX(x) T(t) para separar las variables:

𝑻′(𝒕)

𝒌𝑻(𝒕)=

𝑿"(𝒙)

𝑿 𝒙

Page 23: Fourier

UN PROBLEMA DE TEMPERATURA

• Desde la izquierda es una función de t solo no varía con x, sin

embargo, es igual a una función de x solamente y, por lo que no puede

variar con t, ahí los dos lados deben tener algún valor constante una en

común. Es decir,

𝑻′(𝒕)

𝒌𝑻(𝒕)= −𝛌,

𝑿"(𝒙)

𝑿 𝒙= −𝛌.

• Nuestra opción de −𝛌, en lugar de 𝛌, para la separación de

constante, es claro, un asunto menor de notación. Es sólo para

conveniencia más adelante, que hemos escrito −𝛌.

• Si u = XT es satisfacer la primera de las condiciones (2) y, a

continuación, X‘(0)T(t) debe desaparecer para todos t (t > 0). Con

nuestro requisito que T ≢ 0, se deduce que X' (0) = 0. Asimismo,

la segunda de las condiciones (2) está satisfecha por u = XT si

X'(C) = 0.

Page 24: Fourier

UN PROBLEMA DE TEMPERATURA

• Por lo tanto u = XT cumple las condiciones (1) y (2) cuando X y T

satisfacen estos dos problemas homogéneos:

(5) 𝑿" 𝒙 + 𝛌𝑿(𝒙) = 𝟎, 𝑿′(𝟎) = 𝟎 𝑿′(𝒄) = 𝟎,

(6) 𝑻′ 𝒕 + 𝛌𝒌𝑻 𝒕 = 𝟎

• donde el parámetro 𝛌 tiene el mismo valor en ambos problemas. Para

encontrar soluciones no triviales de este par de problemas, primero

observamos que ese problema (6) no tiene condiciones de límites. Por lo

tanto tiene soluciones no triviales para todos los valores de la 𝛌.

Problema (5) tiene dos condiciones de contorno, puede tener soluciones

no triviales para sólo determinados valores 𝛌

• Problema (5) se llama un problema de “Sturm-Liouville”. La teoría

general de este tipo de problemas se desarrolla en el cap. 8, donde se

muestra que 𝛌 debe ser evaluada en orden para que sus soluciones

sean no triviales.

Page 25: Fourier

UN PROBLEMA DE TEMPERATURA

• Si 𝛌 = 0, la ecuación diferencial en el problema (5) se convierte en X "(x)

= 0. Su solución general es X(x) = Ax +B, donde A y B son constantes.

Desde X' (x) = A, las condiciones de contorno X' (0) = 0 y X' (c) = 0

requieren que A = 0. Por lo tanto X(x) = B; y, excepto por un factor

constante, el problema (5) tiene la solución X(x) = 1 si 𝛌 = 0. Tenga en

cuenta que cualquier valor distinto de cero en B puede haber sido

seleccionado aquí.

• Si 𝛌 > 0, podemos escribir 𝛌 = ∝𝟐(∝ > 0). La ecuación diferencial en el

problema (5), toma la forma X”(x) +∝𝟐 𝑿 (x) = 0, solución general que

Escribiendo

𝑿′(𝒙)= - 𝑪𝟏 ∝ 𝒔𝒊𝒏 ∝ 𝒙 + 𝑪𝟐𝒄𝒐𝒔 ∝ 𝒙

y teniendo en cuenta que ∝ es positiva y, en particular, distinto de cero,

vemos que la condición X' (0) = 0 implica que 𝐶2 = O. También, la condición

X' (c) = 0, se deduce que 𝑪𝟏 ∝ 𝒔𝒊𝒏 𝒄 = 0. Ahora si X(x) es una solución no

trivial del problema (5), 𝑪𝟏 ≠ 0. Por lo tanto ∝,debe ser una raíz positiva de

la ecuación 𝑪𝟏 ∝ 𝒔𝒊𝒏 𝒄 = 0.

Page 26: Fourier

UN PROBLEMA DE TEMPERATURA

• Es decir,

∝ =𝒏𝝅

𝒄(n=1, 2, …),

Por lo tanto, excepto el factor constante 𝑪𝟏,

𝑿 𝒙 = 𝒄𝒐𝒔𝒏𝝅𝒙

𝒄(n=1, 2, …),

• Si ∝< 0, escribimos 𝝀= −∝𝟐( ∝ > 0). Esta vez, la ecuación diferencial en

problema (5) tiene la solución general

𝑿(𝒙)= 𝑪𝟏𝒆∝𝒙 + 𝑪𝟐𝒆

∝𝒙

• Entonces

𝑿′(𝒙)= 𝑪𝟏 ∝ 𝒆∝𝒙 − 𝑪𝟐 ∝ 𝒆∝𝒙

Page 27: Fourier

UN PROBLEMA DE TEMPERATURA

la condición X' (0) = 0 implica que 𝑪𝟐= 𝑪𝟏. Por lo tanto

𝑿(𝒙)= 𝑪𝟏 𝒆∝𝒙 + 𝒆−∝𝒙 , o

𝑿(𝒙)= 2𝑪𝟏𝒄𝒐𝒔𝒉 ∝ 𝒙

• Pero la condición X' (c) = 0 requiere que 𝑪𝟏de sinh ∝ 𝒄 = 0; y, desde sinh∝ 𝒄 ≠ 𝟎, sigue que 𝑪𝟏= O. Por lo tanto el problema (5) tiene solamente la solución trivial x ≢ 0 si 𝛌 < O. Los valores

(7) 𝛌𝟎 = 𝟎, 𝛌𝒏 = (𝒏𝝅

𝒄)𝟐 (n=1, 2, …)

de 𝛌 por qué el problema (5) tiene soluciones no triviales que se denominan valores propios de ese problema y sus soluciones

(8) 𝑿𝟎 𝒙 = 𝟏, 𝑿𝒏 𝒙 = 𝒄𝒐𝒔𝒏𝝅𝒙

𝒄(n = 1, 2, …) ,

son funciones propias correspondientes.

Page 28: Fourier

UN PROBLEMA DE TEMPERATURA

• En cuanto a la ecuación diferencial (6), debemos determinar sus

soluciones 𝑻𝟎 𝒕 y 𝑻𝒏(𝒕) (n = 1,2,...) correspondientes a cada uno de los

auto-valores 𝛌𝟎 y 𝛌𝒏(n = 1,2,...). Esas soluciones se encuentran en

constantes múltiplos de

(9) 𝑻𝟎 𝒕 = 𝟏, 𝑻𝒏 𝒕 = 𝒆𝒙𝒑 (−𝒏𝟐𝝅𝟐𝒌

𝒄𝟐𝒕) (n = 1, 2, …) ,

• Por lo tanto, cada uno de los productos

(10) 𝒖𝟎 = 𝑿𝟎 𝒙 𝑻𝟎 𝒕 = 𝟏, y

(11) 𝒖𝒏 = 𝑿𝒏 𝒙 𝑻𝒏 𝒕 = 𝒆𝒙𝒑 −𝒏𝟐𝝅𝟐𝒌

𝒄𝟐𝒕 𝒄𝒐𝒔

𝒏𝝅𝒙

𝒄(n = 1, 2, … )

satisface las condiciones homogéneas (1) y (2). El procedimiento es solo

utilizado para obtenerlos y se llama el método de separación de variables.

Page 29: Fourier

UN PROBLEMA DE TEMPERATURA

• Ahora, como ya se ha mostrado en ejemplo 1, el principio de

superposición en esa sección nos dice la combinación lineal

generalizada

(12) 𝒖 𝒙, 𝒕 = 𝑨𝟎 + 𝒏=𝟏∞ 𝑨𝒏 𝒆𝒙𝒑 ( −

𝒏𝟐𝝅𝟐𝒌

𝒄𝟐𝒕) 𝒄𝒐𝒔

𝒏𝝅𝒙

𝒄

de las funciones (10) y (11) se satisface las condiciones (1) y (2). Las

constantes una (n = 0, 1, 2, ...) en la expresión (12) se obtiene fácilmente de

la condición de no homogénea (3), es decir, u (x, 0) = f (x). Más

precisamente, por escribir t = 0 en la expresión (12), tenemos

𝐟 𝐱 =𝟐𝑨𝟎

𝟐+ 𝒏=𝟏

∞ 𝑨𝒏 𝒄𝒐𝒔𝒏𝝅𝒙

𝒄𝟎 < 𝒙 < 𝒄 .

Page 30: Fourier

UN PROBLEMA DE TEMPERATURA

• Dado que se trata de una serie coseno de Fourier 0 < x < c, se deduce

que

(13) 𝑨𝟎 =𝟏

𝒄 𝟎𝒄𝒇 𝒙 𝒅𝒙 ,

y

(14) 𝑨𝟎 =𝟐

𝒄 𝟎𝒄𝒇 𝒙 𝒄𝒐𝒔

𝒏𝝅𝒙

𝟐𝒅𝒙 ,

• Ya ha finalizado la solución formal de nuestro problema de temperatura.

Se trata de la expresión (12) junto con sus coeficientes (13) y (14).

Observe que las temperaturas de estado estacionario, cuando t tiende a

infinito, 𝑨𝟎. Esa temperatura constante es evidentemente el valor

promedio, o medio , de la temperatura inicial f (x) en el intervalo 0 < x <

c.

Page 31: Fourier