foundations of materials science and engineeringfoundations of materials science and engineering...

12
Foundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central Florida Javad Hashemi, Ph.D. Professor of Mechanical Engineering Texas Tech University Higher Education Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. Louis Bangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

Upload: others

Post on 06-Mar-2021

62 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

Foundations ofMaterials Scienceand Engineering

Fourth Edition

William F. SmithProfessor Emeritus of Engineering

University of Central Florida

Javad Hashemi, Ph.D.Professor of Mechanical Engineering

Texas Tech University

Higher Education

Boston Burr Ridge, IL Dubuque, IA Madison, Wl New York San Francisco St. LouisBangkok Bogota Caracas Kuala Lumpur Lisbon London Madrid Mexico CityMilan Montreal New Delhi Santiago Seoul Singapore Sydney Taipei Toronto

Page 2: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

TABLE OF CONTENTS

Preface xvii

CHAPTER 1Introduction to Materials Scienceand Engineering 21.1 Materials and Engineering 31.2 Materials Science and Engineering 6

1.3 Types of Materials 81.3.1 Metallic materials 81.3.2 Polymeric Materials 101.3.3 Ceramic Materials 111.3.4 Composite Materials 131.3.5 Electronic Materials 15

1.4 Competition Among Materials 161.5 Recent Advances in Materials Science and

Technology and Future Trends 181.5.1 Smart Materials 181.5.2 Nanomaterials 19

1.6 Design and Selection 201.7 Summary 211.8 Definitions 211.9 Problems 22

1.10 Materials Selection and DesignProblems 23

2.3.3 Electronic Structure of MultielectronAtoms 35

2.3.4 Electronic Structure and ChemicalReactivity 39

2.4 Types of Atomic and MolecularBonds 412.4.1 Primary Atomic Bonds 422.4.2 Secondary Atomic and Molecular

Bonds 42

2.5 Ionic Bonding 422.5.1 Ionic Bonding in General 422.5.2 Interionic Forces for an Ion Pair 432.5.3 Interionic Energies for an Ion Pair 462.5.4 Ion Arrangements in Ionic Solids 472.5.5 Bonding Energies of Ionic Solids 48

2.6 Covalent Bonding 492.6.1 Covalent Bonding in the Hydrogen

Molecule 492.6.2 Covalent Bonding in Other Diatomic

Molecules 502.6.3 Covalent Bonding by Carbon 512.6.4 Covalent Bonding in Carbon-Containing

Molecules 532.6.5 Benzene 53

2.7 Metallic Bonding 552.8 Secondary Bonding 59

2.8.1 Fluctuating Dipoles 60C H A P T E R 2

Atomic Structure and Bonding 242.1 The Structure of Atoms 252.2 Atomic Numbers and Atomic Masses 26

2.2.1 Atomic Numbers 262.2.2 Atomic Masses 26

2.3 The Electronic Structure of Atoms 292.3.1 The Hydrogen Atom 292.3.2 Quantum Numbers of Electrons of

Atoms 33

vi

2.9

2.102.112.122.13

2.8.2 Permanent Dipoles 61

Mixed Bonding 622.9.1 lonic-Covalent Mixed Bonding 622.9.2 Metallic-Covalent Mixed Bonding 63

2.9.3 Metallic-Ionic Mixed Bonding 64Summary 64Definitions 65

Problems 66Materials Selection and DesignProblems 70

Page 3: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

Table of Contents

CHAPTER 3Crystal and AmorphousStructure in Materials 723.1 The Space Lattice and Unit Cells 73

3.2 Crystal Systems and BravaisLattices 74

3.3 Principal Metallic CrystalStructures 753.3.1 Body-Centered Cubic (BCC) Crystal

Structure 773.3.2 Face-Centered Cubic (FCC) Crystal

Structure 803.3.3 Hexagonal Close-Packed (HCP) Crystal

Structure 81

3.4 Atom Positions in Cubic Unit Cells 83

3.5 Directions in Cubic Unit Cells 84

3.6 Miller Indices for Crystallographic Planes inCubic Unit Cells 88

3.7 Crystallographic Planes and Directions inHexagonal Crystal Structure 933.7.1 Indices for Crystal Planes in HCP Unit

Cells 933.7.2 Direction Indices in HCP Unit

Cells 943.8 Comparison of FCC, HCP, and BCC Crystal

Structures 963.8.1 FCC and HCP Crystal Structures 963.8.2 BCC Crystal Structure 98

3.9 Volume, Planar, and Linear Density Unit-Cell Calculations 983.9.1 Volume Density 983.9.2 Planar Atomic Density 993.9.3 Linear Atomic Density 101

3.10 Polymorphism or Allotropy 102

3.11 Crystal Structure Analysis 1033.11.1 X-Ray Sources 1043.11.2 X-Ray Diffraction 1053.11.3 X-Ray Diffraction Analysis of Crystal

Structures 107

3.12 Amorphous Materials 113

3.13 Summary 114

3.14 Definitions 1153.15 Problems 1163.16 Materials Selection and Design

Problems 122

CHAPTER 4Solidification and CrystallineImperfections 1244.1 Solidification of Metals 125

4.1.1 The Formation of Stable Nuclei in LiquidMetals 127

4.1.2 Growth of Crystals in Liquid Metal andFormation of a Grain Structure 132

4.1.3 Grain Structure of IndustrialCastings 133

4.2 Solidification of Single Crystals 134

4.3 Metallic Solid Solutions 1384.3.1 Substitutional Solid Solutions 1394.3.2 Interstitial Solid Solutions 141

4.4 Crystalline Imperfections 1434.4.1 Point Defects 1434.4.2 Line Defects (Dislocations) 1444.4.3 Planar Defects 1474AA Volume Defects 150

4.5 Experimental Techniques for Identificationof Microstructure and Defects 1514.5.1 Optical Metallography, ASTM Grain Size,

and Grain Diameter Determination 1514.5.2 Scanning Electron Microscopy

(SEM) 1564.5.3 Transmission Electron Microscopy

(TEM) 1584.5.4 High-Resolution Transmission Electron

Microscopy (HRTEM) 1594.5.5 Scanning Probe Microscopes and Atomic

Resolution 161

4.6 Summary 166

4.7 Definitions 1664.8 Problems 168

4.9 Materials Selection and DesignProblems 170

Page 4: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

viii Table of Contents

C H A P T E R 5Thermally Activated Processes andDiffusion in Solids 1725.1 Rate Processes in Solids 1735.2 Atomic Diffusion in Solids 177

5.2.1 Diffusion in Solids in General 1775.2.2 Diffusion Mechanisms 1775.2.3 Steady-State Diffusion 1805.2.4 Non-Steady-State Diffusion 182

5.3 Industrial Applications of DiffusionProcesses 1845.3.1 Case Hardening of Steel by Gas

Carburizing 1845.3.2 Impurity Diffusion into Silicon Wafers for

Integrated Circuits 1885.4 Effect of Temperature on Diffusion in

Solids 191

5.5 Summary 195

5.6 Definitions 1955.7 Problems 196

5.8 Materials Selection and DesignProblems 198

C H A P T E R 6Mechanical Properties ofMetals I 200

6.1 The Processing of Metals and Alloys 2016.1.1 The Casting of Metals and Alloys 2016.1.2 Hot and Cold Rolling of Metals and

Alloys 2036.1.3 Extrusion of Metals and Alloys 2086.1.4 Forging 2096.1.5 Other Metal-Forming Processes 211

6.2 Stress and Strain in Metals 2126.2.1 Elastic and Plastic Deformation 2136.2.2 Engineering Stress and Engineering

Strain 2136.2.3 Poisson's Ratio 2166.2.4 Shear Stress and Shear Strain 216

6.3 The Tensile Test and the Engineering Stress-Strain Diagram 2176.3.1 Mechanical Property Data Obtained from

the Tensile Test and the EngineeringStress-Strain Diagram 220

6.3.2 Comparison of Engineering Stress-StrainCurves for Selected Alloys 225

6.3.3 True Stress and True Strain 225

6.4 Hardness and Hardness Testing 227

6.5 Plastic Deformation of Metal SingleCrystals 2296.5.1 Slipbands and Slip Lines on the Surface of

Metal Crystals 2296.5.2 Plastic Deformation in Metal Crystals by

the Slip Mechanism 2326.5.3 Slip Systems 2346.5.4 Critical Resolved Shear Stress for Metal

Single Crystals 2356.5.5 Schmid'sLaw 2376.5.6 Twinning 240

6.6 Plastic Deformation of PolycrystallineMetals 2426.6.1 Effect of Grain Boundaries on the Strength

of Metals 2426.6.2 Effect of Plastic Deformation on

Grain Shape and DislocationArrangements 244

6.6.3 Effect of Cold Plastic Deformation onIncreasing the Strength of Metals 246

6.7 Solid-Solution Strengthening of Metals 2476.8 Recovery and Recrystallization of

Plastically Deformed Metals 2496.8.1 Structure of a Heavily Cold-Worked Metal

before Reheating 2506.8.2 Recovery 2516.8.3 Recrystallization 252

6.9 Superplasticity in Metals 2576.10 Nanocrystalline Metals 259

6.11 Summary 2616.12 Definitions 262

6.13 Problems 2636.14 Materials Selection and Design

Problems 268

Page 5: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

C H / ( P T E R 7Mechanical Properties ofMetals II 2707.1

7.2

7.3

7.4

7.5

7.6

7.7

1

7.87.9

L_

Fracture of Metals 2717.1.1 Ductile Fracture 272

7.1.2 Brittle Fracture 273

7.1.3 Toughness and Impact Testing 276

7.1.4 Ductile to Brittle TransitionTemperature 276

7.1.5 Fracture Toughness 279

Fatigue of Metals 2817.2.1 Cyclic Stresses 285

7.2.2 Basic Structural Changes that Occurin a Ductile Metal in the FatigueProcess 286

7.2.3 Some Major Factors that Affect theFatigue Strength of a Metal 287

Fatigue Crack Propagation Rate 2887.3.1 Correlation of Fatigue Crack

Propagation with Stress and CrackLength 288

7.3.2 Fatigue Crack Growth Rate versus Stress-Intensity Factor Range Plots 290

7.3.3 Fatigue Life Calculations 292

Creep and Stress Rupture of Metals 2947.4.1 Creep of Metals 294

7.4.2 The Creep Test 296

7.4.3 Creep-Rupture Test 297

Graphical representation of Creep- andStress-Rupture Time-Temperature DataUsing the Larsen-Miller Parameter 298A Case Study in Failure of MetallicComponents 300Recent Advances and Future Directions inImproving the Mechanical Performance ofMetals 3037.7.1 Improving Ductility and Strength

Simultaneously 3037.7.2 Fatigue Behavior in Nanocrystalline

Metals 305

Summary 305Definitions 306

7.107.11

CH A

Tabl© of Contents ix

Problems 307Materials Selection and DesignProblems 309

P T E R 8Phase Diagrams 3108.18.28.38.48.58.6

8.78.88.98.108.11

8.128.138.148.158.16

CH A

Phase Diagrams of Pure Substances 311Gibbs Phase Rule 313Cooling Curves 314Binary Isomorphous Alloy Systems 315The Lever Rule 318Nonequilibrium Solidification of Alloys 322

Binary Eutectic Alloy Systems 326Binary Peritectic Alloy Systems 333Binary Monotectic Systems 338Invariant Reactions 339Phase Diagrams with Intermediate Phasesand Compounds 341Ternary Phase Diagrams 345

Summary 348Definitions 349Problems 351Materials Selection and DesignProblems 355

P T E R 9Engineering Alloys 3589.1

9.2

Production of Iron and Steel 3609.1.1 Production of Pig Iron in a Blast

Furnace 360

9.1.2 Steelmaking and Processing of Major SteelProduct Forms 361

The Iron-Iron-Carbide System 3639.2.1 The Iron-Iron-Carbide Phase

Diagram 363

9.2.2 Solid Phases in the Fe-Fe,C PhaseDiagram 363

9.2.3 Invariant Reactions in the Fe-Fe^C PhaseDiagram 364

9.2.4 Slow Cooling of Plain-Carbon Steels 366

Page 6: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

Table of Contents

9.10

9.11

9.3 Heat Treatment of Plain-CarbonSteels 3739.3.1 Martensite 373

9.3.2 Isothermal Decomposition of 9.9Austenite 378

9.3.3 Continuous-Cooling TransformationDiagram for a Eutectoid Plain-CarbonSteel 383

9.3.4 Annealing and Normalizing of Plain-Carbon Steels 386

9.3.5 Tempering of Plain-Carbon Steels 387

9.3.6 Classification of Plain-Carbon Steels andTypical Mechanical Properties 391

9.4 Low-Alloy Steels 392

9.4.1 Classification of Alloy Steels 392

9.4.2 Distribution of Alloying Elements in AlloySteels 394

9.4.3 Effects of Alloying Elements on theEutectoid Temperature of Steels 395

9.4.4 Hardenability 396

9.4.5 Typical Mechanical Properties andApplications for Low-Alloy Steels 401

9.5 Aluminum Alloys 401

9.5.1 Precipitation Strengthening(Hardening) 403

9.5.2 General Properties of Aluminum and ItsProduction 410

9.5.3 Wrought Aluminum Alloys 411

9.5 .4 Aluminum Casting Alloys 416

9.6 Copper Alloys 418

9.6.1 General Properties of Copper 418

9.6.2 Production of Copper 419 10.1

9.6.3 Classification of Copper Alloys 419 10.2

9.6.4 Wrought Copper Alloys 422

9.7 Stainless Steels 424

9.7.1 Ferritic Stainless Steels 424

9.7.2 Martensitic Stainless Steels 425

9.7.3 Austenitic Stainless Steels 427

9.8 Cast Irons 429

9.8.1 General Properties 429

9.8.2 Types of Cast Irons 429

9.8.3 White Cast Iron 429

9.12

9.139.149.159.16

9.8.4 Gray Cast Iron 431

9.8.5 Ductile Cast Irons 432

9..8.6 Malleable Cast Irons 435

Magnesium, Titanium, and Nickel

Alloys 436

9.9.1 Magnesium Alloys 436

9.9.2 Titanium Alloys 438

9.9.3 Nickel Alloys 440

Special-Purpose Alloys and

Applications 441

9.10.1 Intermetallics 441

9.10.2 Shape-Memory Alloys 442

9.10.3 Amorphous Metals 446

Metals in Biomedical Applications—

Biometals 448

9.11.1 Stainless Steels 449

9.11.2 Cobalt-Based Alloys 449

9.11.3 Titanium Alloys 451

Some Issues in the Orthopedic Applicationof Metals 452Summary 454Definitions 455Problems 457Materials Selection and DesignProblems 465

CHAPTER 10Polymeric Materials 468

Introduction 469Polymerization Reactions 47110.2.1 Covalent Bonding Structure of an

Ethylene Molecule 471

10.2.2 Covalent Bonding Structure of anActivated Ethylene Molecule 472

10.2.3 General Reaction for the Polymerizationof Polyethylene and the Degree ofPolymerization 473

10.2.4 Chain Polymerization Steps 473

10.2.5 Average Molecular Weight forThermoplastics 475

Page 7: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

10.310.4

10.5

10.6

10.7

10.2.6 Functionality of a Monomer 47610.2.7 Structure of Noncrystalline Linear

Polymers 476

10.2.8 Vinyl and Vinylidene Polymers 47810.2.9 Homopolymers and Copolymers 47910.2.10 Other Methods of Polymerization 482

Industrial Polymerization Methods 484

Crystallinity and Stereoisomerism in SomeThermoplastics 48610.4.1 Solidification of Noncrystalline

Thermoplastics 48610.4.2 Solidification of Partly Crystalline

Thermoplastics 48610.4.3 Structure of Partly Crystalline

Thermoplastic Materials 48810.4.4 Stereoisomerism in Thermoplastics 48910.4.5 Ziegler and Natta Catalysts 490

Processing of Plastic Materials 49110.5.1 Processes Used for Thermoplastic

Materials 49210.5.2 Processes Used for Thermosetting

Materials 496

General-Purpose Thermoplastics 49810.6.1 Polyethylene 50010.6.2 Polyvinyl Chloride and Copolymers 50310.6.3 Polypropylene 50510.6.4 Polystyrene 505

10.6.5 Polyacrylonitrile 50610.6.6 Styrene-Acrylonitrile (SAN) 507

10.6.7 ABS 50710.6.8 Polymethyl Methacrylate (PMMA) 50910.6.9 Fluoroplastics 510

Engineering Thermoplastics 51110.7.1 Polyamides (Nylons) 51210.7.2 Polycarbonate 51510.7.3 Phenylene Oxide-Based Resins 51610.7.4 Acetals 51710.7.5 Thermoplastic Polyesters 51810.7.6 Polyphenylene Sulfide 51910.7.7 Polyetherimide 52010.7.8 Polymer Alloys 521

10.8

10.9

10.10

10.11

10.12

10.1310.1410.1510.16

Thermosetting Plastics (Thermosets) 52110.8.1 Phenolics 52310.8.2 Epoxy Resins 52510.8.3 Unsaturated Polyesters 52710.8.4 Amino Resins (Ureas and

Melamines) 529

Elastomers (Rubbers) 53110.9.1 Natural Rubber 53110.9.2 Synthetic Rubbers 53410.9.3 Properties of Polychloroprene

Elastomers 53610.9.4 Vulcanization of Polychloroprene

Elastomers 536Deformation and Strengthening of PlasticMaterials 53910.10.1 Deformation Mechanisms for

Thermoplastics 53910.10.2 Strengthening of Thermoplastics 54110.10.3 Strengthening of Thermosetting

Plastics 54510.10.4 Effect of Temperature on the Strength of

Plastic Materials 545Creep and Fracture of PolymericMaterials 546

10.11.1 Creep of Polymeric Materials 54610.11.2 Stress Relaxation of Polymeric

Materials 547i. F.X I * £ \s I V €•* t kj »—* ' /

10.11.3 Fracture of PolymericMaterials 550

Polymers in Biomedical Applications—Biopolymers 55210.12.1 Cardiovascular Applications of

Polymers 55310.12.2 Ophthalmic Applications 55410.12.3 Drug-Delivery Systems 55510.12.4 Suture Materials 55610.12.5 Orthopedic Applications 556

Summary 557

Definitions 558

Problems 560

Materials Selection and DesignProblems 570

Page 8: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

x i i Table of Contents

CHAPTER 11Ceramics 572

11.1 Introduction 57311.2 Simple Ceramic Crystal

Structures 57511.2.1 Ionic and Covalent Bonding in Simple

Ceramic Compounds 57511.2.2 Simple Ionic Arrangements Found in

Ionically Bonded Solids 57611.2.3 Cesium Chloride (CsCl) Crystal

Structure 57911.2.4 Sodium Chloride (NaCl) Crystal

Structure 58011.2.5 Interstitial Sites in FCC and HCP Crystal

Lattices 58411.2.6 Zinc Blende (ZnS) Crystal

Structure 58611.2.7 Calcium Fluoride (CaF2) Crystal

Structure 58811.2.8 Antifluorite Crystal Structure 59011.2.9 Corundum (A12O3) Crystal

Structure 59011.2.10 Spinel (MgAl2O4) Crystal

Structure 59011.2.11 Perovskite (CaTiO3) Crystal

Structure 59011.2.12 Carbon and Its Allotropes 591

11.3 Silicate Structures 59511.3.1 Basic Structural Unit of the Silicate

Structures 59511.3.2 Island, Chain, and Ring Structures of

Silicates 59511.3.3 Sheet Structures of Silicates 59511.3.4 Silicate Networks 597

11.4 Processing of Ceramics 59811.4.1 Materials Preparation 59911.4.2 Forming 59911.4.3 Thermal Treatments 604

11.5 Traditional and EngineeringCeramics 60611.5.1 Traditional Ceramics 60611.5.2 Engineering Ceramics 609

11.6 Mechanical Properties of Ceramics 61111.6.1 General 61111.6.2 Mechanisms for the Deformation of

Ceramic Materials 61111.6.3 Factors Affecting the Strength of Ceramic

Materials 61211.6.4 Toughness of Ceramic Materials 61311.6.5 Transformation Toughening of Partially

Stabilized Zirconia (PSZ) 61511.6.6 Fatigue Failure of Ceramics 61511.6.7 Ceramic Abrasive Materials 617

11.7 Thermal Properties of Ceramics 61811.7.1 Ceramic Refractory Materials 61911.7.2 Acidic Refractories 62011.7.3 Basic Refractories 62011.7.4 Ceramic Tile Insulation for the Space

Shuttle Orbiter 620

11.8 Glasses 62011.8.1 Definition of a Glass 62211.8.2 Glass Transition Temperature 62211.8.3 Structure of Glasses 62311.8.4 Composition of Glasses 62411.8.5 Viscous Deformation of Glasses 62611.8.6 Forming Methods for Glasses 62811.8.7 Tempered Glass 63011.8.8 Chemically Strengthened Glass 630

11.9 Ceramic Coatings and SurfaceEngineering 63211.9.1 Silicate Glasses 63211.9.2 Oxides and Carbides 632

11.10 Ceramics in Biomedical Applications 63411.10.1 Alumina in Orthopedic

Implants 63411.10.2 Alumina in Dental Implants 63611.10.3 Ceramic Implants and Tissue

Connectivity 636

11.11 Nanotechnology and Ceramics 63711.12 Summary 63911.13 Definitions 64011.14 Problems 64211.15 Materials Selection and Design

Problems 646

Page 9: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

Table of Contents

CHAPTER 12Composite Materials 648

12.1 Introduction 64912.2 Fibers for Reinforced-Plastic Composite

Materials 65112.2.1 Glass Fibers for Reinforcing Plastic

Resins 65112.2.2 Carbon Fibers for Reinforced

Plastics 65312.2.3 Aramid Fibers for Reinforcing Plastic

Resins 65412.2.4 Comparison of Mechanical Properties

of Carbon, Aramid, and Glass Fibersfor Reinforced-Plastic CompositeMaterials 655

12.3 Fiber-Reinforced-Plastic CompositeMaterials 65712.3.1 Matrix Materials for Fiber-Reinforced

Plastic Composite Materials 65712.3.2 Fiber-Reinforced-Plastic Composite

Materials 65812.3.3 Equations for Elastic Modulus of a

Lamellar Continuous-Fiber-PlasticMatrix Composite for Isostrain andIsostress Conditions 662

12.4 Open-Mold Processes for Fiber-Reinforced-Plastic Composite Materials 66712.4.1 Hand Lay-Up Process 66712.4.2 Spray-Up Process 66712.4.3 Vacuum Bag-Autoclave Process 66812.4.4 Filament-Winding Process 670

12.5 Closed-Mold Processes for Fiber-ReinforcedPlastic Composite Materials 67212.5.1 Compression and Injection Molding 67212.5.2 The Sheet-Molding Compound (SMC)

Process 67212.5.3 Continuous-Prorusion Process 674

6 Concrete 67412.6.1 Portland Cement 67512.6.2 Mixing Water for Concrete 67812.6.3 Aggregates for Concrete 67912.6.4 Air Entrainment 67912.6.5 Compressive Strength of Concrete 679

12.6.6 Proportioning of Concrete Mixtures 67912.6.7 Reinforced and Prestressed Concrete 68212.6.8 Prestressed Concrete 683

12.7 Asphalt and Asphalt Mixes 68412.8 Wood 685

12.8.1 Macrostructure of Wood 68512.8.2 Micro structure of Softwoods 68812.8.3 Microstructure of Hardwoods 68912.8.4 Cell-Wall Ultrastructure 69012.8.5 Properties of Wood 692

12.9 Sandwich Structures 69512.9.1 Honeycomb Sandwich Structure 69512.9.2 Cladded Metal Structures 695

12.10 Metal-Matrix and Ceramic-MatrixComposites 69612.10.1 Metal-Matrix Composites (MMCs) 69612.10.2 Ceramic-Matrix Composites

(CMCs) 70012.10.3 Ceramic Composites and

Nanotechnology 703

12.11 Bone: A Natural Composite Material 70312.11.1 Composition 70312.11.2 Macrostructure 70312.11.3 Mechanical Properties 70512.11.4 Biomechanics of Bone Fracture 70612.11.5 Viscoelasticity of the Bone 70712.11.6 Bone Remodeling 70712.11.7 Nanotechnology and Bone Repair 708

12.12 Summary 70812.13 Definitions 70912.14 Problems 71212.15 Materials Selection and Design

Problems 716

CHAPTER 13Corrosion 718

13.1 General 71913.2 Electrochemical Corrosion of Metals 720

13.2.1 Oxidation-Reduction Reactions 72013.2.2 Standard Electrode Half-Cell Potentials

for Metals 722

Page 10: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

xiv Table of Contents

13.3 Galvanic Cells 72413.3.1 Macroscopic Galvanic Cells with

Electrolytes That Are One Molar 72413.3.2 Galvanic Cells with Electrolytes That Are

Not One Molar 72613.3.3 Galvanic Cells with Acid or Alkaline

Electrolytes with No Metal IonsPresent 727

13.3.4 Microscopic Galvanic Cell Corrosion ofSingle Electrodes 729

13.3.5 Concentration Galvanic Cells 73013.3.6 Galvanic Cells Created by Differences in

Composition, Structure, and Stress 733

13.4 Corrosion Rates (Kinetics) 73513.4.1 Rate of Uniform Corrosion or

Electroplating of a Metal in an AqueousSolution 736

13.4.2 Corrosion Reactions and Polarization 73913.4.3 Passivation 74213.4.4 The Galvanic Series 743

13.5 Types of Corrosion 74513.5.1 Uniform or General Attack Corrosion 74513.5.2 Galvanic or Two-Metal Corrosion 74513.5.3 Pitting Corrosion 74613.5.4 Crevice Corrosion 74913.5.5 Intergranular Corrosion 75113.5.6 Stress Corrosion 75313.5.7 Erosion Corrosion 75613.5.8 Cavitation Damage 75613.5.9 Fretting Corrosion 75713.5.10 Selective Leaching 75713.5.11 Hydrogen Damage 758

13.6 Oxidation of Metals 75913.6.1 Protective Oxide Films 75913.6.2 Mechanisms of Oxidation 76113.6.3 Oxidation Rates (Kinetics) 762

13.7 Corrosion Control 76413.7.1 Materials Selection 76413.7.2 Coatings 76513.7.3 Design 76613.7.4 Alteration of Environment 76713.7.5 Cathodic and Anodic Protection 768

13.8 Summary 77013.9 Definitions 77013.10 Problems 77113.11 Materials Selection and Design

Problems 776

CHAPTER 14Electrical Properties ofMaterials 778

14.1 Electrical Conduction in Metals 77914.1.1 The Classical Model for Electrical

Conduction in Metals 77914.1.2 Ohm's Law 78114.1.3 Drift Velocity of Electrons in a

Conducting Metal 78514.1.4 Electrical Resistivity of Metals 786

14.2 Energy-Band Model for ElectricalConduction 79014.2.1 Energy-Band Model for Metals 79014.2.2 Energy-Band Model for Insulators 792

14.3 Intrinsic Semiconductors 79214.3.1 The Mechanism of Electrical Conduction

in Intrinsic Semiconductors 79214.3.2 Electrical Charge Transport in the

Crystal Lattice of Pure Silicon 79314.3.3 Energy-Band Diagram for Intrinsic

Elemental Semiconductors 79414.3.4 Quantitative Relationships for Electrical

Conduction in Elemental IntrinsicSemiconductors 795

14.3.5 Effect of Temperature on IntrinsicSemiconductivity 797

14.4 Extrinsic Semiconductors 79914.4.1 n-Type (Negative-Type) Extrinsic

Semiconductors 79914.4.2 p-Type (Positive-Type) Extrinsic

Semiconductors 80114.4.3 Doping of Extrinsic Silicon

Semiconductor Material 80314.4.4 Effect of Doping on Carrier

Concentrations in ExtrinsicSemiconductors 803

Page 11: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

^ —

14.5

14.6

14.714.8

14.914.10

14.1114.1214.13

CHA

14.4.5 Effect of Total Ionized ImpurityConcentration on the Mobility ofCharge Carriers in Silicon at RoomTemperature 806

14.4.6 Effect of Temperature on the ElectricalConductivity of ExtrinsicSemiconductors 807

Semiconductor Devices 80914.5.1 The pn Junction 810

14.5.2 Some Application for pn JunctionDiodes 813

14.5.3 The Bipolar Junction Transistor 815

Microelectronics 81614.6.1 Microelectronic Planar Bipolar

Transistors 818

14.6.2 Microelectronic Planar Field-EffectTransistors 819

14.6.3 Fabrication of MicroelectronicIntegrated Circuits 821

Compound Semiconductors 828Electrical Properties of Ceramics 83114.8.1 Basic Properties of Dielectrics 831

14.8.2 Ceramic Insulator Materials 834

14.8.3 Ceramic Materials for Capacitors 835

14.8.4 Ceramic Semiconductors 836

14.8.5 Ferroelectric Ceramics 838

Nanoelectronics 841Summary 842

Definitions 843Problems 846Materials Selection and DesignProblems 850

P T E R 1 5Optical Properties andSuperconductive Materials 85215.115.2

15.3

LIntroduction 853Light and the ElectromagneticSpectrum 853Refraction of Light 85615.3.1 Index of refraction 856

15.3.2 Snell's Law of Light Refraction 857

15.4

15.5

15.6

15.7

15.8

15.915.1015.11

CHA

Table of Contents xv

Absorption, Transmission, and Reflection ofLight 85915.4.1 Metals 859

15.4.2 Silicate Glasses 85915 4 1 Plnvtire RfiJl^.-f.O 1 LUSHLJ OUt

15.4.4 Semiconductors 862

Luminescence 86315.5.1 Photoluminescence 864

15.5.2 Cathodoluminescence 864

Stimulated Emission of Radiation andLasers 86615.6.1 Types of Lasers 868

Optical Fibers 87015.7.1 Light Loss in Optical Fibers 870

15.7.2 Single-Mode and Multimode OpticalFibers 871

15.7.3 Fabrication of Optical Fibers 872

15.7.4 Modern Optical-Fiber CommunicationSystems 874

Superconducting Materials 87515.8.1 The Superconducting State 875

15.8.2 Magnetic Properties ofSuperconductors 876

15.8.3 Current Flow and Magnetic Fields inSuperconductors 878

15.8.4 High-Current, High-Field

Superconductors 879

15.8.5 High Critical Temperature (TJSuperconducting Oxides 881

Definitions 883Problems 884Materials Selection and DesignProblems 886

P T E R 1 6

Magnetic Properties 88816.116.2

Introduction 889Magnetic Fields and Quantities 88916.2.1 Magnetic Fields 889

16.2.2 Magnetic Induction 892

16.2.3 Magnetic Permeability 892

16.2.4 Magnetic Susceptibility 894

Page 12: Foundations of Materials Science and EngineeringFoundations of Materials Science and Engineering Fourth Edition William F. Smith Professor Emeritus of Engineering University of Central

xvi Table of Contents

16.3 Types of Magnetism 89416.3.1 Diamagnetism 89516.3.2 Paramagnetism 89516.3.3 Ferromagnetism 89516.3.4 Magnetic Moment of a Single Unpaired

Atomic Electron 89716.3.5 Antiferromagnetism 89916.3.6 Ferrimagnetism 899

16.4 Effect of Temperature onFerromagnetism 899

16.5 Ferromagnetic Domains 900

16.6 Types of Energies That Determine theStructure of FerromagneticDomains 90216.6.1 Exchange Energy 90216.6.2 Magnetostatic Energy 90316.6.3 Magnetocrystalline Anisotropy

Energy 90316.6.4 Domain Wall Energy 90416.6.5 Magnetostrictive Energy 905

16.7 The Magnetization and Demagnetization ofa Ferromagnetic Metal 907

16.8 Soft Magnetic Materials 90816.8.1 Desirable Properties for Soft Magnetic

Materials 90916.8.2 Energy Losses for Soft Magnetic

Materials 90916.8.3 Iron-Silicon Alloys 91016.8.4 Metallic Glasses 91116.8.5 Nickel-Iron Alloys 912

16.9 Hard Magnetic Materials 91516.9.1 Properties of Hard Magnetic

Materials 91516.9.2 Alnico Alloys 91716.9.3 Rare earth Alloys 919

16.9.4 Neodymium-Iron-Boron MagneticAlloys 921

16.9.5 lron-Chromium-Cobalt MagneticAlloys 921

16.10 Ferrites 92316.10.1 Magnetically Soft Ferrites 92316.10.2 Magnetically Hard Ferrites 928

16.11 Summary 92816.12 Definitions 92916.13 Problems 932

16.14 Materials Selection and DesignProblems 936

A P P E N D I X IImportant Properties ofSelected Engineering Materials 937

A P P E N D I X I ISome Properties ofSelected Elements 992

A P P E N D I X I I IIonic Radii of the Elements 994

A P P E N D I X I VSelected Physical Quantitiesand Their Units 997

References for Further Study byChapter 999

Glossary 1002

Answers 1013

Index 1016