formulation in terms of total charge and current si units name...

17
This discussion revisits ideas several times to make the points clear. (Updated from inductor.docx) Maxwell’s Eq. are the fundamental underpinnings of electronics. We will not incorporate these equations in detail towards solving problems in analog electronics but we begin by recognizing that electric and magnetic fields play an important role in understanding. Indeed by choosing models for components that incorporate these underpinnings we can simplify the approach. Deriving the properties of components will require an understanding of some of Maxwell’s relationships. View the graphic illustrations from Beyond the Mechanical Universe to begin to develop the type of understanding that is helpful in understanding circuits. Formulation in terms of total charge and current SI UNITS Name Differential form Integral form 1 Gauss's law 2 Gauss's law for B 3 Maxwell–Faraday equation 4 Ampère's circuital law Energy and energy flow are important. To illustrate the formulation flow, consider charge flow with ρ as charge per unit volume and the flow of charge or current. is the current density amperes per square meter. is the divergence of the flow. It measures how the flow of charge changes. If the divergence is 0, = 0 then there is no build up of charge. When it is non zero it means that the charge density will increase or decrease because more is flowing in/out as out/in. Conservation of charge says that a time varying charge at some point must be due to the movement of charge into/out of a region. Equal flow in an out does not build up charge so it must be related to the divergence of the flow. !" !" + = 0 Conservation of charge Poynting vector rate of energy transport by E&M fields per unit area is described by the vecto Poynting theorem Time rate of change of the energy density of an E&M field at a point plus the divergence (related to the difference in the transport of energy in vs energy out) of the pointing vector (flow of energy). Must be equal to the transfer of energy to/from electric charges by the work done by the Electric field.

Upload: others

Post on 08-May-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

This  discussion  revisits  ideas  several  times  to  make  the  points  clear.  (Updated  from  inductor.docx)    Maxwell’s  Eq.    are  the  fundamental  underpinnings  of  electronics.  We  will  not  incorporate  these  equations  in  detail  towards  solving  problems  in  analog  electronics  but  we  begin  by  recognizing  that  electric  and  magnetic  fields  play  an  important  role  in  understanding.    Indeed  by  choosing  models  for  components  that  incorporate  these  underpinnings  we  can  simplify  the  approach.    Deriving  the  properties  of  components  will  require  an  understanding  of  some  of  Maxwell’s  relationships.  View  the  graphic  illustrations  from  Beyond  the  Mechanical  Universe  to  begin  to  develop  the  type  of  understanding  that  is  helpful  in  understanding  circuits.    

 

Formulation in terms of total charge and current SI UNITS Name Differential form Integral form  

1 Gauss's law

2 Gauss's law for B

3 Maxwell–Faraday equation

4 Ampère's circuital law

Energy  and  energy  flow  are  important.    To  illustrate  the  formulation  flow,  consider  charge  flow  with  ρ  as  charge  per  unit  volume  and  𝐽  the  flow  of  charge  or  current.    𝐽  is  the  current  density  è  amperes  per  square  meter.  ∇ ∙ 𝐽  is  the  divergence  of  the  flow.  It  measures  how  the  flow  of  charge  changes.  If  the  divergence  is  0,      ∇ ∙ 𝐽 = 0  then  there  is  no  build  up  of  charge.  When  it  is  non  zero  it  means  that  the  charge  density  will  increase  or  decrease  because  more  is  flowing  in/out  as  out/in.    Conservation  of  charge  says  that  a  time  varying  charge  at  some  point  must  be  due  to  the  movement  of  charge  into/out  of    a  region.  Equal  flow  in  an  out  does  not  build  up  charge  so  it  must  be  related  to  the  divergence  of  the  flow.  !"!"+ ∇ ∙ 𝐽 = 0      Conservation  of  charge  

Poynting  vector  

𝑆

rate of energy transport by E&M fields per unit area is described by the vecto

Poynting  theorem  

Time  rate  of  change  of  the  energy  density  of  an  E&M  field  at  a  point  plus  the  divergence  (related  to  the  difference  in  the  transport  of  energy  in  vs  energy  out)  of  the  pointing  vector  (flow  of  energy).    Must  be  equal  to  the  transfer  of  energy  to/from  electric  charges  by  the  work  done  by  the  Electric  field.    

Page 2: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

 More  simply  for  circuits  under  conditions  where  radiation  can  be  ignored  

• Electric  fields  are  produced  by  charge  build  up.  Electrostatic  fields.  Fields  start  and  end  on  charge.  

• No  magnetic  charges  (N/S  poles)  so  the  magnetic  field  lines  have  no  starting  or  ending  points.  

• To  build  a  non  conservative  E  field  you  pull  the  energy  from  the  current  by  a  changing  magnetic  field  (dB/dt  has  an  associated  E)(Lenz’s  law)  

• Magnetic  fields  are  generated  by  currents    

Ralph  Morrison  [Fields  of  Electronics  (pg  77-­‐78)]è  Paraphrased  The  true  field  patterns  for  various  elements  extend  out  into  space.  In  the  circuit  view  of  capacitors  and  inductors  the  field  energy  does  not  leave  the  confines  of  the  components.  As  components  get  smaller  a  larger  fraction  of  their  field  energy  is  in  the  space  around  the  component.  This  energy  must  leave  and  return.  For  an  AC  circuit  this  is  twice  per  cycle  so  the  time  scale  is  1/f.    Field  energy  travels  at  roughly  c  (1  ns/ft).    Thus  the  field  extension  and  the  frequency  set  the  scale  for  when  the  energy  cannot  return  to  the  component  fast  enough.  If  the  field  energy  cannot  return  in  phase  with  the  current  or  voltage  the  energy  is  radiated.  The  statement  above  tries  to  establish  when  radiation  can  be  ignored  from  a  geometric  and  speed  argument.    The  point  is  important.    Antennae  are  designed  to  radiate  energy  as  their  fundamental  electrical  function.    Protoboard  circuits  are  not  supposed  to  radiate  and  they  don’t  at  the  frequencies  used  in  the  lab.    There  are  however  fields  set  up  in  space  and  the  energy  transport  is  throught  these  fields.  On  wiki  I  discovered  this  nice  images.    They  depict  the  external  fields  and  show  energy  propagation.  

 

energy  density  u   𝑢! =!"!#$%!"#$%&

= !!𝜀!𝐸!, 𝑢! =

!"!#$%!"#$%&

= !!!!

!!

   

Page 3: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

http://physics.stackexchange.com/questions/17085/is-­‐there-­‐something-­‐like-­‐the-­‐poynting-­‐vector-­‐for-­‐hydraulic-­‐circuits  

 www.furryelephant.com/content/electricity/visualizing-­‐electric-­‐current/surface-­‐charges-­‐poynting-­‐vector/  red  electric,  green  magnetic,  arrows  energy  flow      

 Now  you  can  add  specific  constraints  and  assumptions  

• Add  in  conducting  materials  and  special  geometry  to  get  circuits.  • Conductors  immediately  cancel  field  (V=0  inside)  • driving  frequencies  slow  • wait  until  transients  are  damped  out  • Ohm’s  law  for  resistors.  • capacitors  store  all  energy  in  E  and  neglect  B  • wires  and  resitors  neglect  effects  of  B  • Inductors  store  energy    in  B,  ideal  èmagnetic  fields  only  energy  storage.  • Power  supplies  can  drive  circuits  at  fixed  frequency  and  fixed  amplitude.  

 So  the  field  eq.    with  the  geometric  and  material  properties  have  a  steady  state    solution  and  the  voltages  across  the  components  can  be  characterized  as  below.      Voltage  (general  and  electrostatics)  In  electrostatics  the  fields  and  charge  distribution’s  are  independent  of  time.  In  this  

Page 4: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

case    

         reduces  to        ∇×𝐸 = 0      and  under  these  conditions  the  electric  field  can  be  defined  in  terms  of  the  gradient  of  a  scalar  potential  V(x,y,z).    Once  time  dependent  fields  are  allowed  the  full  content  of  Maxwells  equations  must  include  both  𝐸,  𝐵  and  their  relationship.    The  result  is  that  an  expanded  potential  function   𝐴,Φ  must  be  used.    Here  𝐴  is  the  vector  potential  and  Φ  is  the  scalar  potential  which  is  a  generalized  version  of  V.    The  most  general  choice  for  𝐴,Φ  defines  them  up  to  a  gauge  transformation.  That  is  any  𝐴,Φ  related  by  𝐴⟹ 𝐴 + ∇Λ    è    you  can  add  the  gradient  of  a  scalar  function  Λ  to  𝐴  and  Maxwell’s  equations  remain  unchanged.  Φ⟹ Φ− !

!!!!!        as  long  as    Λ    satisfies  ∇!Λ− !

!!!!!!!!

= 0    Of  interest  is  the  choice  of  Coulomb  gauge  where  the  scalar  potential  is  chosen  based  on  the  condition  that  ∇ ∙ 𝐴 = 0  which  leads  to  ∇!Φ =  𝜌 𝜖! .    This  defines  the  potential  as  that  due  instantaneously  to  the  charge  distribution  at  time  t.    This  formalism  is  counter  intuitive.  One  expects  the  relativistic  constraint  that  fields  should  set  up  in  a  manner  consistent  with  a  propagation  time  less  than  or  equal  to  c  should  also  apply  to  these  potential  functions.    However  it  is  possible  to  define  the  scalar  potential  in  this  manner  and  preserve  the  nature  of  the  E  and  B  derived    because  of  the  corresponding  𝐴  .    Take  home  message  For  circuits  in  this  course,  the  usual  definition  of  the  potential  derived  from  electrostatics  will  be  fine.    However  in  reviewing  general  E&M  one  finds  that  V  only  applies  to  electrostatics.    Circuit  theory  must  deal  with  both  the  steady  state  and  the  transient  aspects  of  circuitry.    A  charging  capacitor  is  an  example  of  a  time  dependent  circuit  response.    Treating  circuit  responses  that  are  on  the  10’s  nanosecond  scale  (100  MHz)  do  not  require  complex  extensions  from  electrostatics.  However  one  must  realize  that  in  general  there  may  be  effects  due  to  the  time  dependent  nature  of  the  circuit  response  that  requires  the  more  complete  formulation.        When  circuits  and  time  periods  get  small  then  quantum  effects  and  the  full  set  of  Maxwell’s  equation  may  need  to  be  considered.    When  analyzing  the  sources  of  noise  small  voltages  may  be  generated  by  pickup  of  time  dependent  fields  in  the  environment.        

Page 5: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

 

First  let  us  carefully  consider  voltage,  V,    and  EMFs,  εxxx  There  are  two  types  of  electric  fields  based  on  the  way  they  are  generated.  

1. 𝐸!    generated  by  charges  in  space  Q.    Based  on  Max.  Eq    1.  conservative electrostatic field 𝐸!  

2. 𝐸!    generated  by  change  𝐵 →!"!"          i.e.  Faraday’s  law.  Based  on  Max.  Eq.  3.  

These  fields  have  non  zero  integral  on  a  closed  path  (non-­‐conservative).    

Φ! = 𝐵 ∙ 𝑑𝐴  

    is  the  magnetic  flux  through  a  surface.  

𝐸! ∙𝑑𝑙 =  −𝑑Φ𝑑𝑡  

The  electric  field  𝐸!  is  generated  such  that  integral  around  the  line  that  encloses  the  surface  is  due  to  a  changing  flux    

Convention  è  VBA  means  the  "V"  from  A  to  B,  at  B  relative  to  A,  or  with  respect  to  A]  Some  distribution  of  static  charge  creates  an  electric  field  𝐸!  and  you  move  a  small  test  charge  through  this  field  between  points  AèB  and  you  can  define  the  voltage  at  B  wrt  A  as  the  work  done  against  the  field  to  move  the  test  charge.  

𝑉!" = − 𝐸! ∙  𝑑𝑙!

!  

The  voltage  in  a  circuit  is  the  work  per  unit  charge  to  move  through  the  field  of  the  first  type  along  some  path.    

 

By  defining  EMFs  wrt  closed  paths  only  the  non-­‐conservative  forces  are  counted  

     This  careful  separation  is  required  because  in  electric  circuits  the  charges  are  moved  by  various  forces  through  some  path  along  a  circuit.    In  a  battery,  for  example,  there  may  be  chemical  potentials  that  drive  the  charges  in  one  direction  and  a  build  up  of  charge  that  creates  an  electric  field  𝐸!.    

Page 6: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

 The  battery  above  builds  a  charge  distribution  so  that  the  electric  field  inside  the  battery  balances  the  chemical  forces  pushing  +  charges  up.    The  work/per  unit  charge  done  by  the  chemical  process  is  extracted  and  stored  in  the  idealized  field  shown.  Voltage  is  defined  as  the  work  done  moving  a  charge  through  the  electric  field  and  εbat  is  the  work  done  by  the  chemical  forces  per  unit  charge.  This  is  the  obvious  case  since  there  are  two  distinct  forms  of  energy:  chemical  and  electrostatic.    The  electrostatic  field  shown  above  only  represents  the  field  inside  the  battery.  This  field  also  extends  out  through  the  circuit,  is  modified  by  additional  charge  build  up  and  drives  charges  through,  for  example,  resistors.    If  charges  are  free  to  flow  they  can  be  transported  from  the  positive  to  the  negative  terminal  extracting  energy  from  this  electric  field.    Charges  extract  energy  qV  in  this  transport.    The  chemical  field  only  resides  inside  the  battery.  And  in  any  closed  loop  there  is  a  gain  qεbat  on  each  cycle  through  the  circuit.  For  the  battery  εbat=Vbat    

 The  field  that  permeates  the  circuit  due  to  the  charges  on  the  PS  terminals  (shown  as  the  two  charged  metal  plates  above)  can  be  described  by  a  potential.    All  of  the  potentials  used  to  analyze  a  circuit  are  expressed  in  terms  of  the  work  done  moving  through  the  circuit  by  these  fields.    The  chemical  energy  and  the  induced  E  can  be  considered  to  generate  these  fields  by  moving  the  charges  to  the  ends  of  the  

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCTPR

OD

UC

ED B

Y AN

AU

TOD

ESK ED

UC

ATIO

NA

L PRO

DU

CT

Page 7: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

components  (PS,  inductor)  .    It  is  this  build  up  of  charge  that  generates  the  voltage,  field  through  the  circuit.  Interior  to  the  PS  and  the  inductor  this  field  is  equal  and  opposite  to  the  induced  field  for  inductors  or  the  way  the  chemical  process  does  work  for  a  battery.    Again  the  charges  are  pushed  against  a  field  to  build  up  charge  at  the  ends  until  the  battery  can  no  longer  move  charge  to  the  terminals  or  the  inductors  induced  field  can  no  longer  move  charge  to  set  up  the  electrostatic  field  𝐸!.      WIKIPEDIA  (with  some  additional  edits)  EMF  is  classified  as  the  external  work  expended  per  unit  of  charge  to  produce  an  electric  potential  difference  across  two  open-­‐circuited  terminals.  For  an  open  ended  inductor  charge  builds  at  the  ends  which  develop  a  field  𝐸!    to  balance  the  file  𝐸!  .  𝐸! = −𝐸!      

Voltage  is  equal  to  the  work  which  would  have  to  be  done,  per  unit  charge,  against  a  static  electric  field    𝐸!  to  move  the  charge  between  two  points.

Inside a source of emf that is open-circuited, the conservative electrostatic field created by separation of charge exactly cancels the forces producing the emf. Thus, the emf has the same value but opposite sign as the integral of the electric field aligned with an internal path between two terminals A and B of a source of emf in open-circuit condition (the path is taken from the negative terminal to the positive terminal to yield a positive emf, indicating work done on the electrons moving in the circuit).[22] Mathematically:

where Ecs is the conservative electrostatic field 𝐸!created by the charge separation associated with the emf, dℓ is an element of the path from terminal A to terminal B. This equation applies only to locations A and B that are terminals, and does not apply to paths between points A and B with portions outside the source of emf. This equation involves the electrostatic electric field due to charge separation Ecs and does not involve (for example) any non-conservative component of electric field due to Faraday's law of induction.

In the case of a closed path in the presence of a varying magnetic field, the integral of the electric field around a closed loop may be nonzero; one common application of the concept of emf, known as "induced emf" is the voltage induced in a such a loop.[24] The "induced emf" around a stationary closed path C is:

where now E is the entire electric field, conservative and non-conservative, and the integral is around an arbitrary but stationary closed curve C through which there is a varying magnetic field. Note that the electrostatic field does not contribute to the net emf around a circuit because the electrostatic portion of the electric field is conservative (that is, the work done against the field around a closed path is zero).

This definition can be extended to arbitrary sources of emf and moving paths C:[25]

Page 8: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

which is a conceptual equation mainly, because the determination of the "effective forces" is difficult.    POWER  SUPPLY    The  power  supply  effectively  puts  charge  on  its  plates  (act  simply  like  a  capacitor)  with  a  given  magnitude  and  frequency.    Driving  the  circuit  with  this  charged  CAP  (PS  terminals)  produces  fields  across  all  the  components.  

 A  complete  picture  takes  this  into  account  when  there  is  significant  energy  radiated  by  the  PS.    For  an  AC  PS  at  a  fixed  frequency  𝜔 = 2𝜋𝑓  [1  Hz  =  2𝜋  radians/s].    All  processes  will  reach  an  equilibrium  oscillatory  behavior  with  frequency  𝜔.    The  differences  will  be  in  amplitude  and  phase.  We  fix  the  phase  of  the  current  from  the  PS  as  follows:  𝑖!" 𝑡 = 𝐼!"!𝑠𝑖𝑛 𝜔𝑡 = 𝐼!"!𝑐𝑜𝑠 𝜔𝑡 − !

!  

       𝑣!" 𝑡 = 𝑉!"!𝑠𝑖𝑛 𝜔𝑡 + 𝜑!"    phase  depends  on  circuit    Resistors  In  R  there  is  a  field  and  the  charges  move  through  this  field  and  the  field  does  work  on  the  charges  which  is  released  as  heat.    Field  is  always  in  phase  with  the  current.  Work  per  unit  charge  is  the  voltage.    Voltage  on  the  resistor  is  minus  the  work  described.    So  the  potential  or  V  is  the  work  you  would  do  to  lift  a  test  charge  from  bottom  to  the  top  (i.e.    moving  opposite  the  current  direction).    When  you  go  down  

 

Page 9: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

hill  you  gain  energy  gravity  does  positive  work  but  the  potential  of  gravity  drops.  Potentials  increase  by  pushing  stuff  against  the  appropriate  field.          Resistor  is  in  phase  with  the  current        𝑉! = 𝑖𝑅 = 𝐼!𝑅 sin 𝜔𝑡 = 𝐼!𝑅 cos 𝜔𝑡 −

𝜋2  

 Since  the  resistor  voltage  is  in  phase  with  the  current  energy  is  always  being  supplied  to  the  resistor.  Thus  a  resistor  is  a  energy  dissapator.    All  through  the  circuit  you  calculate  ∆𝑉  across  components  as:    

∆𝑉 = 𝑉! − 𝑉! = − 𝐸 ∙ 𝑑𝑙  

 However  there  is  a  special  field  that  you  consider  and  you  do  not  include  fields  that  drive  the  plate  charging  in  the  PS  or  the  induced  fields  of  the  inductor.    In  both  these  devices  there  are  two  parts  that  push  charge.    In  the  battery  it  might  be  chemical  or  electrical  but  this  mechanism  charges  up  the  PS  plates.    The  overall  force  experienced  by  the  charge  is  zero.  [Same  as  when  you  lift  a  ball  at  constant  speed.  No  overall  force  but  person’s  work  is  stored  in  the  field  and  the  field  extracts  this  work  by  doing  negative  work.]    The  battery  pushes  the  charge  with  a  force  that  matches  the  E-­‐field.    In  the  inductor  there  is  an  induced  E  field  that  sucks  the  energy  out  and  into  the  B  or  decreasing  B  cause  an  E  to  push  charge  and  give  the  charge  energy.    So  when  you  calculate  the  voltage/field  across  the  inductor  you  don’t  use  the  E  induced  which  is  always  equal  and  opposite  E  circuit.    Just  as  in  the  battery  the  steady  state  solution  has  the  total  force  as  zero  in  the  battery  and  the  inductor.    There  are  two  fields  that  balance.    Again,  the  induced  E  field  is  equal  and  opposite  electrostatic  field  of  the  circuit  in  the  inductor.    Current  again  assumes    -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐    𝑖 = 𝐼! sin 𝜔𝑡 = 𝐼! cos 𝜔𝑡 − !

!                          

     Capacitor  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  Produces  an  electric  field  from+  plate  to  the  minus  plate  both  in  between  the  plates  and  through  the  circuit.  This  field  will  drive  charges  and  can  be  characterized  by  a  voltage  V  =Q/C.        [top  high,  bottom  low]  

 

 

Page 10: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

           

𝑉! =𝑄𝐶 =

1𝐶

𝑑𝑖𝑑𝑡 = −

𝐼!𝜔𝐶 cos  (𝜔𝑡)  

 Of  course  when  viewing  the  full  cycle  the  capacitor  field  changes  direction  and  sometimes  the  current  moves  in  the  direction  of  the  field  (charging)  but  there  are  also  times  that  the  current  is  moving  opposite  the  direction  of  the  field  (discharging).  These  correspond  to  parts  of  the  cycle  where  energy  is  stored  and  released  respectively.    Inductor    -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  Inductor  has  an  induced  field  Eind  that  does  not  permeate  the  circuits  this  wraps  around  the  wires  in  a  closed  loop.    This  field  will  drive  charge  along  the  field  lines  (opposite  of  the  way  the  capacitor  works)  until  a  voltage  is  built  up  to  oppose  this  field.  You  must  imagine  a  capacitor  in  parallel  that  receives  the  charges  that  are  pushed  through  thereby  creating  a  field  of  type  𝐸!  in  the  inductor  opposite  the  induced  field.    This  field  can  be  characterized  using  the  potential  rather  than  a  field.    Eind  is  an  𝐸!  type  field.  

   

 phasor  

direction  at  t=0  

Current  is  increasing  in  the  direction  shown.  Faraday’s  law  states  and  EMF  will  be  generated  to  oppose  this  increase.    The  inductor  is  shown  in  the  middle  frame  (non  standard  representation)  where  the  induced  field  blue  is  balanced  by  the  build  up  of  charge  which  generates  the  black  field  and  a  corresponding  voltage  equal  to  the  EMF  just  as  in  the  battery.    

𝑉! = 𝐿𝑑𝑖𝑑𝑡 = 𝜔𝐿𝐼!cos  (𝜔𝑡)  

           

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

T

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

T

Page 11: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

     Inductor  &  Power  Supply  restated-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐  The  power  supply  and  the  inductor  are  similar  in  that  there  is  an  alternate  source  of  the  field  generated  around  the  loop.    The  power  supply  uses,  for  example,  chemical  energy  to  drive  the  charges  onto  a  capacitor,  its  terminals.    The  inductor  uses  the  magnetic  field  energy  transferred  to  the  current  by  the  changing  flux.    Eind  is  an  𝐸!  type  field.    

 These  additional  Emfs  push  charge  through  the  element.    For  an  inductor  since  the  induced  field  pushes  the  charge  as  they  move  through  the  inductor  a  voltage  must  be  maintained  to  counter  this  push.    The  hidden  capacitance  of  the  circuit  will  therefore  charge  up  as  shown  above  in  the  same  way  that  a  battery  charges  up  the  ends  (terminals)  which  generates  an  electric  field  in  the  circuit.  At  times  of  increasing  positive  current  there  must  be  a  supplied  voltage  to  push  the  charges  in  the  direction  of  the  current.  At  times  of  decreasing  positive  current  the  EMF  is  pushing  the  current  and  the  voltage  is  opposite  the  current  direction.    During  this  part  of  the  cycle  the  EMF  does  positive  work  on  the  charges  and  the  electrostatic  fields  related  to  voltage  are  opposite  the  motion  so  they  extract  energy  (negative  work).    So  electrostatic  fields  are  setup  across  the  various  components  by  the  buildup  of  charge  in  the  circuit.    Since  the  components  can  be  adequately  described  in  terms  of  the  voltage  drops  and  not  the  fields  one  only  needs  to  find  the  work  done  crossing  each  element.    Thus  EMFs  and  Voltages  are  used  to  characterize  the  circuit  behavior.  Each  element  has  been  idealized  to  encompass  one  aspect  of  the  problem.    A  conducting  wire  will  adjust  charge  to  eliminate  internal  fields.  A  capacitor  builds  conservative  electric  fields,  𝐸!,  with  no  significant  magnetic  field.  An  inductor  builds  magnetic  fields  and  subsequent  non-­‐conservative  𝐸!  that  generates  the  conservative  electric  fields.  To  treat  general  situations  these  basic  elements  are  combined.            derivatives  function   same   derivative   integral   Phasor  [real]  sin(θ)   cos(θ-­‐π/2)   cos(θ)   -­‐cos(θ)   down  cos(θ)   sin(θ+π/2)   -­‐sin(θ)   sin(θ)   right  -­‐sin(θ)   cos(θ+π/2)   -­‐cos(θ)   cos(θ)   up  

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY

AN

AU

TOD

ESK

ED

UC

ATI

ON

AL

PRO

DU

CT

PRODUCED BY AN AUTODESK EDUCATIONAL PRODUCT

PRO

DU

CED

BY A

N A

UTO

DESK

EDU

CA

TION

AL PR

OD

UC

T

Page 12: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

-­‐cos(θ)   sin(θ-­‐π/2)   sin(θ)   -­‐sin(θ)   left      

 green  is  sine  blue  is  sine  phase  of  +pi/2  red  is  phase  –pi/2  Let  phase  angle  be  defined  wrt  x-­‐axis  in  that  we  project  rotating  arrows  (counter  clockwise,  angular  speed  𝜔)  i.e.  look  at  their  cosine  projection.      For  t=0  cosine  is  1.      For  𝜔𝑡 = !

!    cosine  is  0.      

The  blue  oscillation  above  is  a  cosine  oscillation  with  phase  of  0.  Green  is  a  sine  function  with  0  phase  or  a  cosine  with  !

!  ,    cos 𝜔𝑡 − !

!= sin  (𝜔𝑡)  

Red  is  cosine  with  !!    

   

           

180o=-­‐π   0o   -­‐90o=-­‐π/2    You  can  also  imagine  a  mass  spring  system  with  a  driving  force.    The  diff.  eq.  will  have  a  steady  state  solution  as  an  analog  to  the  electric  circuit.      See  Coax  cable.doc      -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐other  ideas  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐      

-­‐1.5  

-­‐1  

-­‐0.5  

0  

0.5  

1  

1.5  

0   20   40   60   80   100   120  

L  

C  

R    

Page 13: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

 

Looking  for  solutions  to  configurations  of  components  coupled  to  driving  mechanisms  or  power  supplies.      There  are  mechanical  analogs  to  passive  circuits  that  involves    springs,  masses,  damping  and  driving  forces.    To  find  solutions  we  develop  the  differential  equation.    One  approach  is:    

1. demand  that  the  voltage  (due  to  𝐸!  fields)  around  a  closed  loop  is  zero.    

2. Current  into  a  junction  is  the  same  as  the  current  out.  

𝑉!" 𝑡 = 𝑉! 𝑡 + 𝑉! 𝑡 + 𝑉! 𝑡  𝑖!" 𝑡 = 𝐼! 𝑡 + 𝐼! 𝑡    Kirchoff’s  Laws  

 

Series  RLC  circuit  

𝑉!" 𝑡        power  supply    𝑉! 𝑡 = 𝑅𝑖 𝑡    capacitor    𝑉! 𝑡 = ! !

!    capacitor  

 𝑉! 𝑡 = 𝐿 !" !

!"    capacitor  

Page 14: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

 𝑉!" 𝑡 = 𝑅𝑖 𝑡 + ! !

!+ 𝐿 !" !

!"      

 

𝑉!" 𝑡 = 𝑅𝑑𝑄 𝑡𝑑𝑡 +

𝑄 𝑡𝐶 + 𝐿

𝑑!𝑄 𝑡𝑑𝑡!  

 

0 = 𝑅𝑑𝑄 𝑡𝑑𝑡 +

𝑄 𝑡𝐶 + 𝐿

𝑑!𝑄 𝑡𝑑𝑡!    

   𝑎𝑦!! + 𝑏𝑦! + 𝑐𝑦 = 0  

 The  solution  is  of  the  form:    

𝑦 𝑡 = 𝐴!𝑒!"  ;        𝑟 =−𝑏 ± 𝑏! − 4𝑎𝑐

2𝑎    There  are  three  possibilities:  critically  damped,  overdamped,  underdamped.    When  you  build  a  circuit  and  then  apply  power  the  circuit  must  transition  from  the  initial  state  to  the  steady  state.    For  well  behaved  circuits  one  can  often  just  wait  for  the  transients  to  damp  out  and  look  for  the  steady  state.    However,    some  circuits  may  have  remarkable  responses  to  certain  transitions.    One  classic  example  is  the  inductor.  Large  voltages  can  be  generated  if  one  simply  opens  a  switch  in  a  circuit  with  large  inductance.    This  is  of  course  how  spark  plug  voltages  were  generated  in  cars  with  a  distributor  with  rotor  and  gap.    The  link  on  the  web  page  to  an  RLC  lab  explores  this  in  a  nice  way.    For  now  we  ignore  the  transient  behavior  and  look  for  solutions  only  when  the  driving  voltage:    𝑉!" 𝑡 =  𝑉! sin 𝜔𝑡 + 𝜑    Since  any  function  𝑉!" 𝑡  can  be  written  as  a  sum  of  sinusoidal  functions  (Fourier  transform)  and  since  the  equation  above  is  linear,  the  response  of  the  RLC  circuit  to  a  genera  sinusoidal  voltage  can  be  used  to  construct  the  response  to  a  general  driving  potential.    To  find  the  solution  we  represent  the  voltages  across  components  by  a  complex  impedance  Z  and  then    V=IZ.    However  Z  is  complex.    The  complex  nature  and  the  form  of  the  equation  preserve  the  frequency  but  allow  for  a  phase  and  an  amplitude  that  depend  on  the  component.    These  factors  are  included  in  the  discussion  above.    The  complex  impedance  is  an  arrow  in  the  complex  plane.    These  arrows  or  phasors  add  like  vectors.    Considering  the  equivalent  impedance  of  a  LC  parallel  circuit.  

Page 15: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

Voltages  are  equal  and  the  current  is  the  sum.    In  order  to  include  the  phase  differences  we  find.          𝑉 = 𝐼𝑍                    Z  is  the  impedance    𝑉 𝑡 = 𝑉! 𝑡 =  𝑉! 𝑡        parallel  elements  have  the  same  voltage  and  different  current.  = 𝐼!"𝜔𝐿 sin 𝜔𝑡 +

𝜋2 = 𝐼!"𝜔𝐿𝑗 sin 𝜔𝑡  

= 𝐼!"1𝜔𝐶 sin 𝜔𝑡 −

𝜋2 = 𝐼!"

1𝑗𝜔𝐶 sin 𝜔𝑡  

The  fact  that  they  are  180o  out  of  phase  means  their  amplitudes  subtract  and  this  is  handled  by  the  imaginary  factors  j.  So  we  add  the  two  currents  to  get  total    

𝐼! =𝑉!𝑗𝜔𝐿 + 𝑉!𝑗𝜔𝐶 = 𝑗𝑉!(𝜔𝐶 −

1𝜔𝐿)  

𝑍!"#$% =1

𝜔𝐶 − 1𝜔𝐿

=𝜔𝐿

𝜔!𝐿𝐶 − 1  

 Define            𝜔! =

!!";    𝜔!! =

!!"      

 𝑍!"#$% =

!"!!!

!!!!!!        at  the  “magic  frequency  the  impedance  is  infinite  [broken]  

   The  voltage  is  up  the  two  currents  point  left  and  right.    When  the  two  currents  are  equal  then  the  charge  feeds  the  inductor  and  the  inductor  charges  the  capacitor  in  such  a  manner  that  no  additional  current  is  required  to  maintain  the  voltage.    therefore  as  soon  as  the  steady  state  is  reached  the  cap  and  the  inductor  will  maintain  the  voltage  of  the  power  supply  with  i=0.  This  similar  to  a  capacitor  in  a  DC  circuit.    It  charges  up  and  then  maintains  the  PS  voltage  without  current.  This  will  occur  when  𝜔 = !

!"      for  higher  frequencies    we  find  that  𝜔𝐶 > !

!"      in  this  case  the  

impedance    𝑍 = !!"    and  therefore  requires  more  current  to  maintain  the  voltage  on  

the  the  capacitor.    This  arrangement  makes  the  overall  current  have  the  appropriate  phase  as  a  capacitor.    It  is  good  to  understand  that  in  the  limit  of  the  frequency    0  or  ∞  the  components  have  interesting  response.       impedance   𝜔

 0   𝜔

 ∞  

Page 16: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

inductor   𝑗𝜔𝐿   short  circuit   open  circuit  capacitor   1

𝑗𝜔𝐶  open  circuit   short  circuit  

 

 To  improve  basic  understanding  here  are  some  impedance  values  I  found.    Check  to  see  if  you  agree.  

 Practical  Electronics  Handbook,  Ian  Sinclair  

   

Page 17: Formulation in terms of total charge and current SI UNITS Name ...csma31.csm.jmu.edu/physics/courses/EEanalog/Aw2.pdf · More%simply%forcircuits%underconditionswhereradiationcanbeignored

 Notice  that  in  dealing  with  a  AC-­‐PS,  Max.  eq  4  is  not  invoked  so  the  fields  generated  by  !!

!"  are  ignored.