for general corrosion and localized corrosion of the drip ...volume 1: scientific bases and...

60
6. REFERENCES 6.1 DOCUMENTS CITED BSC (Bechtel SAIC Company) 2001a. FYO Supplemental Science and Performance Analyses,- Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062. BSC 200 lb. FY01 Supplemental Science and Performance Analyses, Volume 2: Performance Analyses. TDR-MGR-PA-000001 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010724.0110. BSC 2001c. Software Code: GoldSim. V7.17.200.,10344-7.17.200-00. BSC 2001d. Total System Performance Assessment - Analyses for Disposal of Commercial and DOE WasteInventories at YuccaMountain - Input to Final Environmental Impact Statement and Site Suitability Evaluation. SL986M3 REV 00 ICN 01. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20011114.0246. - - BSC 2001e. Saturated Zone Transport-Time Analyses Letter Report. MIS-MGR-HS-000001 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL'.20020225.0092. BSC 2002. Technical Work Plan for Decision Support and Documentation, TWP,-MGR-MD- 000028, Revision 00. Las Vegas, Nevada:- Bechtel SAIC Company. ACC: MOL.20020607.0007. Cornell V. 2001. "Meeting Summary - NRC/DOE TSPAI Technical Exchange, August 6-10, 2001." E-mail from V. Cornell to A. Gil, August 15; 2001, with attachment.. ACC: MOL.20010921.0120;MOL.20010921.0121. , CRWMS (Civilian Radioactive Waste Management System) M&O (Management and Operating- Contractor) 2000a. Total System Performance Assessment for the Site Recommendation. TDR- WIS-PA-000001 REV 00 ICN 01. Las Vegas,-Nevada: CRWMS M&O. ACC: MOL.20001220.0045. CRWMS M&O 2000b. Total System Performance Assessment (TSPA) Model for Site Recommendation. MDL-WIS-PA-000002 REV 00. Las Vegas, Nevada: CRWMS M&O. ACC: MOL.20001226.0003. . - CRWMS M&O 2000c. Repository Safety Strategy: Plan to Prepare the Safety Case to Support Yucca Mountain Site Recommendation and Licensing Considerations. TDR-WIS-RL-000001- REV 04 ICN 01. Two volumes.: Las Vegas; Nevada: CRWMS M&O. ACC: MOL.20010329.0825. CRWMSM&O 2000d. GeneralCorrosionand Localized Corrosion of the Drip Shield. ANL-EBS-MD-000004 REV 00. Las Vegas,-Nevada: CRWMS'M&O.': ' ACC: MOL.20000329.1185. I TDR-WIS-PA-000009 REV 01 ICN 01 August 2002 6-1

Upload: others

Post on 24-Jul-2020

7 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

6. REFERENCES

6.1 DOCUMENTS CITED

BSC (Bechtel SAIC Company) 2001a. FYO Supplemental Science and Performance Analyses,-

Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas,

Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062.

BSC 200 lb. FY01 Supplemental Science and Performance Analyses, Volume 2: Performance

Analyses. TDR-MGR-PA-000001 REV 00. Las Vegas, Nevada: Bechtel SAIC Company.ACC: MOL.20010724.0110.

BSC 2001c. Software Code: GoldSim. V7.17.200.,10344-7.17.200-00.

BSC 2001d. Total System Performance Assessment - Analyses for Disposal of Commercial and

DOE Waste Inventories at Yucca Mountain - Input to Final Environmental Impact Statementand Site Suitability Evaluation. SL986M3 REV 00 ICN 01. Las Vegas, Nevada: Bechtel SAIC

Company. ACC: MOL.20011114.0246. - -

BSC 2001e. Saturated Zone Transport-Time Analyses Letter Report. MIS-MGR-HS-000001REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL'.20020225.0092.

BSC 2002. Technical Work Plan for Decision Support and Documentation, TWP,-MGR-MD-

000028, Revision 00. Las Vegas, Nevada:- Bechtel SAIC Company.ACC: MOL.20020607.0007.

Cornell V. 2001. "Meeting Summary - NRC/DOE TSPAI Technical Exchange, August 6-10,

2001." E-mail from V. Cornell to A. Gil, August 15; 2001, with attachment..ACC: MOL.20010921.0120;MOL.20010921.0121. ,

CRWMS (Civilian Radioactive Waste Management System) M&O (Management and Operating-

Contractor) 2000a. Total System Performance Assessment for the Site Recommendation. TDR-WIS-PA-000001 REV 00 ICN 01. Las Vegas,-Nevada: CRWMS M&O.ACC: MOL.20001220.0045.

CRWMS M&O 2000b. Total System Performance Assessment (TSPA) Model for Site

Recommendation. MDL-WIS-PA-000002 REV 00. Las Vegas, Nevada: CRWMS M&O.

ACC: MOL.20001226.0003. . -

CRWMS M&O 2000c. Repository Safety Strategy: Plan to Prepare the Safety Case to Support

Yucca Mountain Site Recommendation and Licensing Considerations. TDR-WIS-RL-000001-REV 04 ICN 01. Two volumes.: Las Vegas; Nevada: CRWMS M&O.ACC: MOL.20010329.0825.

CRWMS M&O 2000d. General Corrosion and Localized Corrosion of the Drip Shield.ANL-EBS-MD-000004 REV 00. Las Vegas,-Nevada: CRWMS'M&O.': '

ACC: MOL.20000329.1185.

I TDR-WIS-PA-000009 REV 01 ICN 01 � August 20026-1

Page 2: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

CRWMS M&O 2000e. General Corrosion and Localized Corrosion of Waste Package OuterBarrier. ANL-EBS-MD-000003 REV 00. Las Vegas, Nevada: CRWMS M&O.ACC: MOL.20000202.0172.

CRWMS M&O 2000f. Near Field Environment Process Model Report. TDR-NBS-MD-00000 1REV 00, ICN 02. Las Vegas, Neviada: CRWMS M&O. ACC: MOL.20001005.0001.

CRWMS M&O 2000g. Inventory Abstraction. ANL-WIS-MD-000006 REV 00. Las Vegas,Nevada: CRWMS M&O. 'ACC: MOL.20000414.0643.

DOE (U.S. Department of Energy) 2002. Yucca Mountain Site Suitability Evaluation.DOEIRW-0549. Washington, D.C.: U.S. Department of Energy, Office of Civilian RadioactiveWaste Management. ACC: MOL.20020404.0043.

Reamer, C.W. and Gil, A.V.; 2001. Summary Highlights of NRC/DOE Technical Exchange andManagement Meeting o' Total System' Performance Assessment and Integration and Summaryof the Resolution of the Key Technical Issue on Total System Performance Assessment andIntegration. Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC:MOL.20010921.0121.

Reamer, C.W. and Williams; D.R. 2000a. Summary Highlights of NRC/DOE TechnicalExchange and Management Meeting on Unsaturated and Saturated Flow Under IsothermalConditions. Meeting held'August 16-17; 2000, Berkeley, California.Washington, D.C.: U.S. Nuclear Regulatory Commission. ACC: MOL.20001201.0072.

Reamer, C.W. and Williams, D.R. 2000b. Summary Highlights of NRC/DOE TechnicalExchange and Management Meeting on Unsaturated and Saturated Flow Under IsothermalConditions. Washington, D.C.:- U.S. Nuclear Regulatory Commission.ACC: MOL.20001128.0206.

Williams, N.H. 2001. "Contract No. DE-AC08-OIRW12101 -Total Sstem PerformanceAssessment Sensitivity Analyses for Final Nuclear Regulatory Commission Regulations, Rev 00ICN 01." Letter from N.1t Williams (BSC) to S.J. Brocoum (DOE/YMSCO), December 11,2001, RWA:cs-1204010669, with enclosure. ACC: MOL.20011213.0057.

6.2 CODES, STANDARDS, REGULATIONS, AND PROCEDURES

10 CFR (Code of Federal Regulations) 63. Energy: Disposal of High-Level Radioactive Wastesin a Geologic Repository at Yucca Mountain, Nevada. Readily available.

AP-SII. 1OQ, Rev. 0,-ICN 02. Models. Washington, D.C.:. U.S. Department of Energy, Officeof Civilian Radioactive Waste Management. ACC: MOL.20020128.0091.

6.3 SOURCE DATA, LISTED BY DATA TRACKING NUMBER

MO0205MWDTSP09.002. TSPA-FEIS Model Cases: Risk Information Calculations.Submittal date: 5/30/2002

I TDR-WIS-PA-000009 REV 01 ICN 01

I

6-2 August 2002

Page 3: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104

103

102

101

100

10-1

10-2

10-3

10-6-

SE01_039imb.gsrr SEOI 40im5.gsm; SE01 O nms.gsm;Figu 1 .JNB

100 1000 10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average.

Figure 1. Base-Case Results for the Sensitivity Studies

I TDR-WIS-PA-000009 REV 01 ICN 01

IEa)

r;D

C)

0

C:

cC

C)

_ I i r I I I I I'I I I I I

- Base Case - Total of All ScenariosBase Case - Erupive Release Scenario

-- Base Case - Igneous Activity Groundwater Release Scenario_-r _ Base Case - Nominal Scenaro

r.

r

r -z~~

100000

c0August 2002

_

F-l

Page 4: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

0

103102

101

100

10-1

10-3

10-4

10-510-6

1

SE01_001im5 gsm; SE01_039im5 gsm; Figure 2JNB_ ~ ~~~ 1 I 1 1 I I X 7 I & IX l | r I X

._ Eruptive Release -Base Case Model (300 Realizations)* Eruptive Release - Revised Supplemental Model (5000 Realizations)

.r -- - - - - - - - - -

r.

I I I I I I tI I I I I I i i , I

1000 10000 100000

Time (years)

NOTE: The mean annual dose curve is a probability-weighted average.

Figure 2. Comparison of Base-Case TSPA Model with Revised Supplementary Model for IgneousActivity Eruptive Release Scenario

I TDR-WIS-PA-000009 REV 01 ICN 01

Ea)E

a)

0C)

_F

I

a)

._

)o

Z

I I I I l I l l

August 2002F-2

Page 5: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104

103102

101

100

10-1

10-2

10-3

10-4

10-510-6

1

SE01_040im5 gsm, SE01_PO1im5.gsm; SEO1_043im5; Figure 3 JNB

00 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average.

Figure 3. Comparison of Base-Case TSPA Model with Revised Supplementary Model for IgneousActivity Groundwater Release Scenario

I TDR-WIS-PA-000009 REV 01 ICN 01

E

a')

cn00

c):

CZ

Igneous Activity Groundwater Release Scenario (Base-Case Model)* 'Revis'ed Supplernental Mbdet (Linea Sarmiplin.g)'

Revised Supplemental Model (Logarithmic Sampling).

_ .... ........... ..... . *.

_

F-3 August 2002

Page 6: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Ea')

0L_

E

a)

0

cl

SEO_040nm6 gsm; SEO1_06nm6; Figure 4 JNB104-103

102

101

100

10-1

10-2

10O3

10-4

10-5

10 -

100 1000 10000

Time (years)

100000

NOTE: Each mean annual dose curve is a probability-weighted average.

Figure 4. Comparison of Base-Case TSPA Model with Revised Supplementary Model for NominalScenario

I TDR-WIS-PA-000009 REV 01 ICN 01 F4 August 2002

Page 7: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Ignmus Activity Eruptive Relese S.enado

100 lowo 1o0 o

Time (years)

(b) Igneous Activity Goundwter Release Scenario1i

SE

C)0,

a01

=CC

100 1000 10000

Time (yeam)

100 1000 lo"

10o000

IoooTime (years)

NOTE: Each mean annual dose curve is a probability-weighted average.

Figure 5. Dominant Radionuclide Contributors to Mean Annual Dose

co-zAugust 2002

2E

C~

=CC

CC,

(c) Nominal Scenario

0)

0

0=

I TDR-WIS-PA-000009 REV 01 ICN 01 F-5

Page 8: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Ea)

Ea)tD0o

f_

-S

aC:

C:

Sc

a)

104

103102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

SE01 040im5gsm: SEo1 o0emS5.gsm; SE01jO40nm6: SEOl_082nm6.gSM Figure 6J

- Igneous Activity Groundwater Release Scenario - Base Case* Extreme Infiltration

NnmintISr iRA rUR R ?e4Fl

100 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results ofthe sensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 6. Sensitivity of Mean Annual Dose to the Climate and Net Infiltration TSPA Model Component

August 2002I TDR-WIS-PA-000009 REV 01 ICN 01 F-6

Page 9: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

EC)

Ea)CA0C

C:C:

C:

a)

104

103102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

1

SEOI 04AmCsgsm; SEOI O3sImS; SEOI_074im5; SE01 040nm6; SEO1_O9nm6 gsn; Figure 7JNI

00 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 7. Sensitivity of Mean Annual Dose to the Seepage TSPA Model Component

cocfAugust 2002I TDR-WIS-PA-000009 REV 01 ICN 01

-- Igneous Activity Groundwater Release Scenario - Base Case* 9 5 Percentile Seepage

Seepage 1 m31year

_ .= Nominal Scenario.- Base Case..£ Seepage= 1 mS/year

_ rr t - -F~~~~~~~~~_ ..... .

._ .............

F 7

Page 10: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SE0104OmSgsm SEO1_082im5gsm: SE01S1imS.gsm; SE01_3im5.gsni;SE01_040nm6: SE01_ 10m0: SEO1_O7snm6; SE01_101nm6 Figure 6.JNB

1000 10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 8. Sensitivity of Mean Annual Dose to Drift Invert pH

co5August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

_ rrrr I I F li

- Igneous Activity Groundwater Release Scenario - Base Case* Driff Invert pH = 3

* Drift Invert pH = 7* DiftInvertpH=1Q

_-r _ Nominal Scenario - Base Case* Driftlnvert.pH= 3* Drift Invert pH = 7

Drift Invert pH 40

Ea,

E

00

C:c

0)

104

103102

101

100

10-110-2

10-3

10-4

10-5

10-6

00 100000

_

F-8

Page 11: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104

103102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

1

SE01 040im5.gsm SE01088im8.gsm SE1 89imsgsm;SEOI 040nmi.gsm: SE01 097nm6.gsm: SEO1 098nm6gsr; Figue.JNB5 I I . I .I I I , lII I

- - Igneous Activity Groundwater Release Scenario - Base Case* Drift Invert ionic Strength = Maximum x 1.5A Drift Invert Ionic Strenoth = Minimum/1.5I

- Nominal Scenario:- 3ase.Case* Drift Invert Ionic Strength = Maximum x 1.5* Drift Invert Ionic Strength Minimum1 5

00 1000 10000

. .~ -aI

100000Time (years)

NOTE: Each mean annual dose cunve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 9. Sensitivity of Mean Annual Dose to Drift Invert Ionic Strength

I TDR-WIS-PA-00009 REV 01 CN 01

EC)

E

a0C

C:

C:

a)

I

CoGAugust 20029

Page 12: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

0

103

102

101

100

10-1

10-2

10-3

10-4

10-510-6

1C

SEOI _94nme.gsm: SEQ1_041 nm.gsm; SE01_107nm.gsm; Figue 10.JNB

i IT , ,, ., I , .1.

- Nominal Scenario,- Base Case* Enhanced Drip Shield Degradation Rate- Neutralize Drip Shield

r~~~~~~~~~~~~~~~~~~~~~~

r~~~~~~~~~~~~~~~~~~~~~

r~~~~~~~~~~~~~~~~~~~~~~

r~~~~~~~~~~~~~~~~~~~~~~

r~~~~~~~~~~~~~~~~~~~~~~

AAr ~ ^*^_

A,r , ,,1 ...(-7~~~~~~~'1000 10000

I

100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 10. Sensitivity of Mean Annual Dose to the Drip Shield Performance TSPA Model Component

colAugust 2002I TDR-WIS-PA-000009 REV 01 ICN 01

I

a)

Ea)(no06IC:C:

cC

(D

.-I

I - -?11 -- 1 .

A AA ~ ~ A.. . .. . .." 'l "

*-r -- v

00

F-10

Page 13: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SE01_IOniS.gsm; Figure1.JNB

Time (years)

NOTE: Each mean annual dose cunve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 1. Contribution of Radionuclides for the Base Case and the Case with the Drip ShieldNeutralized

cO%August 2002I TDR-WIS-PA-OO009 REV 01 ICN 01

IEco0en

C:

CnC

a)

104

103102

101

100

10-1

10-2

10-3

10-410-5

10-6

1

-- Neptunium-237 + Plutonium-239 + Plutonium240 (Base Case)* Neutralize Drip Shield a

-- Carbon-14 + Technetium-99 (Base Case)Neutralize Drip Shield

3. .. ........... .. Atfr at~~~~~~A A AsL* tV-) ,0000fff .'--X ='A

,~~~~ ~~~ -,, I I,t> ., j. I, I,,I,

00 1000 10000 100000

F-11

Page 14: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Ea)

Ea)

ci00

C:C

C

a)

104

103

102

101

100

10-1

10-2

10-3

10-4

10-510-6

1

SEO_40nmr6.gsm: SEOI 039nm6.gsm; SE01_19nm.gsm: SE01 o5snm6gsm; Figure 12.JNB

00 1000 10000 100000Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 12. Sensitivity of Mean Annual Dose to the Waste Package Performance TSPA Model Component

I TDR-WIS-PA-O009 REV 01 ICN 01

cogF-12 August 2002

- Nominal Scenario - Base Case* *3'h Percentile" Degradation Rate (See Secllon 3.3.4)* Extreme General Corrosion Rate (See Section 3.3.4)* Neutralize Waste Package

.*- * --''3 .. ......

_ _

I

Page 15: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104-

103-102-

101

100 -10-1 -

10-2

10-3

10-4-

10-5 -10-6

SE01_040nm6.gsm; SE01 058m6.gsm: Figure 3.JNB

-N- Neptunium-237 + Plutonium 239 + Plutonium 240 (Base Case)- * Neutralize Waste Package

Carbon-14 + Technetium-99 (Base Case)Neutralize Waste Package

r - 11 .... 1. ... ^ : :, :.

r

r

- -; ..r

100 1000

I-

10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 13. Contribution of Radionuclides for the Base Case and the Case with the Waste PackageNeutralized

CIuAugust 2002I TDR-WIS-PA-000009 REV 01 ICN 01

IEEa,co0

aC:

ctsa)

li � I I � r4 �

I ., ,,j, .I

F-13

Page 16: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Ea)

Ea)

0

0

04

103

102

101

100

1

10-2

10-3

10-4

10-10-6

c

SEO1_040nm6 gsm; SE01_090nm6 gsm, Figure 14 JNB

r-

r

r

r

i0 1000 10000 100000.

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 14. Sensitivity of Mean Annual Dose to In-Package Temperature

I TDR-WIS-PA-000009 REV 01 ICN 01

I I I I i I Il. . . , . .I I I , I

Nominal Scenario - Base Case- * Increase Waste Form Temperature 60°C

r- - -

I I S Ill I - i I I IE E E E a E D

F-14 August 2002

Page 17: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Ea)

Ea)J)r00C

C:

a)7)

104

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

1

SE01 4imS,.gsm; SE01057im5.gsm; SE01 052im5.gsm: SE01_06jrs.gsm;SE01_O40nm6: SEO1I04nm6; SEOi 078nm6: SEO1-ornm6; Figur 15.JNB

00 1000 10000 100000Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 15. Sensitivity of Mean Annual Dose to In-Package pH

I TDR-WIS-PA-000009 REV 01 ICN 01

- Igneous Activity Groundwater Release Scenario - Base Case* In-Package pH = 3* In-Package pH = 7* In-Package pH = 10

-- Nominal Scenariol- Base Case.., * In-Package pH-_ a....

A In-Package pH = 7* In-Package pH = 10

t _ * ~ ~ ~ ~ ~ ~ ~ ~ t

_

I

CIN

August 2002F-15

Page 18: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Dependence of Neptunium Solubility

1 010109108

loa

z, 107E tJos

10>. 103

3= 100

0/ 10"o 01 0-2

10Q1oQ1-5

SE L 4 n O s i gure Is{a.

2 4 6 8 10 12 14

pH

(b) Dependence of Plutonium Solubility

1 010(

I 10'

.1 oE 10E io-

10-10-

: 101

10'

10-

2 4 6 8

pH

10 12 14

Figure 16. Dependence of Neptunium and Plutonium Solubility on pH

R 200F- 16 August 2002

- sf .ren INepttniwm S Nb1fhy7act C i- 9 hPeIwNepjniurr 5sbiUliyt 20

• h P er n d u op 1 u6 burn & c lT iI f

-705s' -Pp enhik.Pluoorfb.35bb hw)5h -6 P2cei PIutoopRm Scoub21iw

)3 2 / )2\ S /i

)7.

I

I TDR-WIS-PA-000009 REV 01 ICN 01

Page 19: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Contribution of Neptunium-237SE4 - OIm "n, AS: s oWTS5m: SEOI O6m5. : SIO65 .)S:

-4sswIswnnit SEOI Csuni sEOOS~ 2 sEOI FIU 1 O NSnS F9r lI~Jl

1000 10000 100000Time (years)

Contribution of Plutonium-239

104 . . . O.I . n. S n01 0m,5 ; Se 0knS 7

1000 10000 100000Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 17. Contribution of Neptunium-237 and Plutonium-239 to Mean Annual Dose for Different pHModels

c 3August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

(a)

I-E 10

E0

o 10

r' 10C 10

< 10'7 10-

c 1010

.IR- Igneoss Ac~Aty Gtoundwatr Reses Scenamo - Sase Case

* In-Package pH = * in-Package pH= i

-1r Nominl cenaio iBss Cas -0r n b Pactage p = g

* n-Package pH = 7.In-PIk pI-I = 40

-2

.3

-i34.50.-o.*r** 2 5t '"100

(b)

3 -

IE o

E 100 10o 0o 10ar: 10

< 10

E 10

10

- Igneous Aciiy .undwatel Releas Scenio -Base Caser s P InrI rr Pc3 - -

- * nPakcnH = 7n-Packae pH= 10

O1- Nomina Scenaioi ase Casei

io- n-Package pH-

2- nr 4i32 -j>! l g

4--F I

S4 j 4

100

P-17

Page 20: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SE01 _o[m5.Qsm; SEo_080mS.gsm; SEOt_08t m5.s;SFQ1 U6OnmA SPOI Op5nmR, Spot flRn,~ ir I S ~11

10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 18. Sensitivity of Mean Annual Dose to In-Package Ionic Strength

f trAugust 2002I TDR-WIS-PA-000009 REV 01 ICN ot

Ea)

E

0

-itCC:

c

a)

0

103

102

101

100

10-1

10-2

10-4

10-5

10-6

1c

- - Igneous Activity Groundwater Release Scenario - Base Case* In-Package Ionic Strength = Maxinum x 1 5

A In-Package Ionic Strength = Minimum/1 5

- - Nominal Scenario - Base CaseIn-Package Ionic Strength = Maximum x 1.5

A In-Package Ionic Strength = Minimum1.5

rr

00 1000 100000

F-18

Page 21: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104-

103 -102- 1o1 01

100 -

10-1

10-2

10-3

10-4

10-5

10-

101

SE01 _O40m6gsm: SED1 44nm g sm: SEC1 O8OnmE.gsm; F gure 19.JNBI I I p I l ii I

- Nominal Scenario - Base Case* 9 5 th Percentile Cladding DegradationI Neutralize Cladding

... .. 11 -

3 1000 10000

Time (years)

100000

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 19. Sensitivity of Mean Annual Dose to the CSNF Cladding Degradation Rate

I TDR-WIS-PA-000009 REV 01 ICN 01

E

a)U)a)(n0

C:

C:

a)

CIEAugust 2002F-t19

Page 22: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SE01-040 mSgm; SEOI _45im5.gsm; SE01 _4nm6 SEOI ()51rm,6 F gJr 20.JNB

1000 10000 100000Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 20. Sensitivity of Mean Annual Dose to the Waste Form Dissolution Rate

ccGAugust 2002I TDR-WIS-PA-000009 REV 01 ICN 01

Ea)

E

(D0)

00-rJ

5

C:

C:

CZ0)

104

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

1

- Igneous Activity Groundwater Release Scenario - Base Case.- * 95eh Percentile Waste Form Dissolution Rate

-- Nominal Scenario.- Base Case-r * 9 5 h Percentile Waste.FQrm-Dissolution Rate

- .. . .................... S.

_~~~~~~~~~~~~~~~~~~~~~~ ,, I,1 I I

00

_ _

I

F-20

Page 23: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

IF,

E

c

a

tCtD

nC

C:

a,

104

103102

101

100

10-1

10-2

10-3

10-4

10-510-6

SEOl 40imS.gsm; SEO10415.9gsm: SEWL 040nm6.gsm:SE01 0,4n.gsm; Figure 21.JNBI ' I ' ' I I I ' ' ' ' I I ' ' I I '

- Igneous Activity Groundwater Release Scenario - Base Case* 9 5th Percentile Sotubility Limits

100 1000 10000 100000

Time (years)

NOTE: Each mean annual dose cunve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 21. Sensitivity of Mean Annual Dose to Radionuclide Concentration Limits

I TDR-WIS-PA-000009 REV 01 ICN 01

C !7

August 2002F-21

Page 24: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Activity Groundwater Release Scenario

5t01fsS gsn: s seOlm E s gm Fo 22(5)JN

1000 10000 100000

Time (years)

(b)

I

E

0,

,m0

0

Nominal Scenario

1 04 53 m;,m9o 7SEOI n O o_. SEO.O_012.oi: SOl 1:.m: F 22M JN

103

102

101

100

10-I1 O-s

10 s10-

1 0-6

100 1000 10000 100000

Time (years)

NOTE: Each mean annual dose cunve i a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 22. Sensitivity of Mean Annual Dose to Concentration Lmits for Neptunium and Plutonium

I TDR-WIS-PA-000009 REV 01 ICN 01c1)

F-22 August 2002

(a) Igneous

3 .neous ACtviy G oundwmter Releas Sonri - ,ase Case* NeptuniumSoiLIityIYo gL RIPtonu, B Sobilikth10 gL

.r NeptL'niLmnSoIblLItY_O .mgL&Piutcnit m.S6Ibilit O~tT mg&* Nep3nium Solub y 0 mg/L, Plutonium SIublty=1 7 mg

1 r j

°E 1 0a

1 Q4E 102

C) 1010o 0

Mc10.1= 1-

c 10-3C 1-

'0 10-5

1 0-6

100

_~~~~~~ 1 ia,--Nomnal scenaro -se cas

* Nertuir.SoLbIiy=IOsmgt. Plutonium S6lubi rOi mgL

* Npu SumSubiity=I0I mTgt Pluonium Solbllty=10' r

Page 25: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104

103102

101

100

10-1

10-2

10-3

0-4

10-510-6

1

SEO1_0401m5.gsm; SEO Oirsgsm,; SE0_4onrSgsm: SEOI 02nm6; Fig,UE 23.JNB

00 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 23. Sensitivity of Mean Annual Dose to Concentration of Waste Form Colloids

C)9August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

- Igneous Activity Groundwater Release Scenario - Base Caser m 0x Waste FormColloidConcentration

Nominal Scenano'- Base Case* Nominal - Waste Form Colloid Concentration

_ . ... .......

a)5-

E

00

C:C

C

a)

F 23

Page 26: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SE01 O4im5.gsm;:SEO_07sm5.gsm,;SE01-04nm6gsm;SEOlo3n6.gsm;Fgu24.JNB

1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 24. Sensitivity of Mean Annual Dose to Concentration of Plutonium and Americium IrreversiblySorbed to Waste Form Colloids

C'IArAugust 2002I TDR-WIS-PA-000009 REV 01 ICN 01

a)L.-

E

a)a)

0n

C:

C:

a)

-- Igneous Activity Groundwater Release Scenario - Base Case* 1 Lx Maximum Colloidal Radionuclide Concentration

_ -f -Nominal Scenario Base Case* 1 .5x Maximum Colloidal Radionuclide Concentration

...i. ............... ........... ...

104

103

102

101

100

10-1

10-2

10-3

10-4

10-5

10-6

1 00

_

I

F-24

Page 27: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SEOl 040imS.gsm; SEOI 07EmS.gsm; SE0_040nm6.gsm; SEOI_OBInmr6.gsm: Figur 25.JNB-. ,,.,,, I I I 'lIii-I- Igneous Activity Oroundwater Release Scenario - Base Case

r * 1 00x ol[oid Concentfation, 1 00x Radionuclide Concentrationon Colloids

- Nominal Scenarior * 00x Coltoid Con(_ on Colloids

r .r

. '

- Base Caseentration: 1ox Radionucilir

1000

ie Concentration -!

- ..... I'll Ii

10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 25. Sensitivity of Mean Annual Dose to Concentration Limits for Plutonium and AmericiumIrreversibly Sorbed to Waste Form Colloids

CalAugust 2002I TDR-WIS-PA-000009 REV 01 ICN 01

104-

103-102-

101 -

100 -10-1 -

1 -2-

10-3 -

10-4 -

10-5-

1o-6-

IEa)(D,a)0C

UF0

CC:

ca)

100

F-25

Page 28: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

E0)

E.1

a

C:

a)0)

104

103102

101

100

10-1

10-2

10-3

10-4

10-510-6

1

SEOI OmS.gsm, SEOI C4OniCsm, 8202OirSE ossnme.srrur6.JNS

00 1000 10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 26. Sensitivity of Mean Annual Dose to Radionuclide Sorption in the Drift Invert

I TDR-WIS-PA-000009 REV 01 ICN 01

C-2-F-26 August 2002

-- Igneous Activity Grdundwater Release Scenario - Base Case.'* s Prcentile Engineered Barrier System Sorption

_--Noiil- BaseC.se* 5 -h Percentile Engineered Barrier System Sorption

............... . r '

100000

Page 29: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104

103,o

E0(00co

C:ccCtco

102

101

100

10-1

1

10-4

10-5

10-6

SE01 40ims.gsm, SEOI 040nmS.gsm, SEO1_037m5.gsm, SEO 057n6.gsm; Figure 27.JNB

100 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 27. Sensitivity of Mean Annual Dose to Radionuclide Diffusivity of the Drift Invert

ci3I TDR-WIS-PA-000009REV01ICN01 F-27 August 2002

Page 30: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

IEC)

cn

C:C:

C:

co

0

103

102

101

100

10-1

10-2

10-3

10-4

10-5-

10-6

1c

SE01 O4Oisgs, SEOI _ im5, SE01 oOn.gs, SEQI) l&Onm.gs; FigL 25.JNB

1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 28. Sensitivity of Mean Annual Dose to Treatment of Strontium-90 and Cesium-137 in theUnsaturated Zone Radionuclide Transport Component of the TSPA Model

I TDR W1S-PA-000009 REV 01 ICN 01

-- Igneous Activity Groundwater Release Scenafio - Base Caser * Include Cesium-137 and trontium-90

- Nominal Scenario - Base Case- * Include Cesium-137 and Strontium-90

r

r tW#

.." ...- I

I I . . . .

)O

c 1� a,IAugust 2002F 29

Page 31: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SF01 O im5.gn 01 SE0154imssm SFOt i.onmagsm, SEC1 049nm.6 sm; Flgue 29JNB

Igneous Activity Groundwater Release Scenaio - Base Case_ - * Neutraiize Unsaturated and Saturated Zones7

= Nominal ScenarioNeutralize Unsatur

r'

~r

Include Strontium-90 and Cesium-137ated and Saturated Zones i

*....

1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 29. Effect of Neutralizing Both the Unsaturated Zone and Saturated Zone Radionuclide TransportBarriers on Mean Annual Dose

August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

0)I

1-Ep

E

c:0C

C:C:

Cc

a).a)

104

103lf2

101

10-1

10-2

10-3

10-4

10-5 -,

10-6-

ic0

_ _

F-29

Page 32: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a)

E~0)

0)0

0)

Igneous Activity Groundwater Release Scenario

104 - ,s>n_Jaos F,:>10 - Base Case (All Radionucl des)102 ._ Neut; izeUr,,Atltdand Satated Zcnesj

101 - Ameicur-24110 r . All other Radionuclidos

100 r . -

10-2 .*10: .

10 -5-

10 -6_

100 1000 10000 100000

Time (years)

(b) Nominal Scenario

1O4 -E1t0°3 ~-a Caseas 2 - N~eot;rlize 5

E 1WW - IIneo:m-3

1o1 Amercio-uo 0 7 All 05 r R

_ 10-0-M

lo1 2 _ - 10-3-

< io-3 '

5 10- 10-.

100 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 30. Contribution of Individual Radionuclides When Both the Unsaturated Zone and SaturatedZone Radionuclide Transport Barriers Are Neutralized

I TDR-WIS-PA-000009 REV 01 ICN 01

C 7.- ( F-30 August 2002

(All Radonucides)

Jnsaturtled and Saturted ZonesF + C:ium-t37241Rodono chdes

I

. I'l

I .i i-I0*, >

Page 33: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

.

* (a) Igneous Activity Groundwater Release Scenario

@ ~~~~~ ~~1 04 _ w_ so _r_suNS 3 B-3asneCase '1 '7 Ci' 'S~~~~ ~~~~~ 10 r NeuriŽ&Taffimt 9dzt Tcib&SittlrdZ6ie

* t~~~~~~~~~ 1 02 -* NeutralIze Both Udsat rat d and Saturated Z6Jnes* O t ~~~~~ ~ ~ ~~ ~~0 -r i

8101-0o10-2-

1 0-3 __

t 1 0

* d 10-r* 105 ,,,''/I ,,,, l,1.* 100 1000 10000 100000* Time (years)

S* (b) Nominal Scenario

* ~~~~~~~~104 Dsomss_ssoSpS 2 -5 ase cas (Lncbdlng stronti: 2 ZJcT-rFoa tN

_ E ~~~~103 . Netua Cumawrt%ezwne Tnou ~tmbZdneS~~~~~~~ 102 - Not411ie5 t Usturted ndSaturated ZOns

* ~~~~EO 10

021 0 -10-1 _j102-

* 9d 10-

E 105* <io-~ .,, *,...........

'U10-n

* 100 1000 10000 100000

Time (years)

* NOTE: Each mean annual dose curveis a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

SS Figure 31. Effect o Saturated Zone Radionuclide Transport Barrier on Mean Annual Dose

S

* I TDR-WIS-PA-0000 REV 01ICN 01F-3 1 August 2002

Page 34: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Igneous Activity Groundwater Release Scenario

4 .O O9

S.g~ .OO4~ FIgD. F.atw.N

10 1000 10000 100000

Time (years)

(b) Nominal Scenario

10- NutraeUn&

1 0 3 - eA l.-241

102 - All esir Rdio

81 0o - ;All on., Rad.

0-r0 101

05-~L9h. Radi

10 n< 10-a

10

SEOlO&sm 6OIO~tg ); F

1000 10000

Time (years)

NOTE: Each mean annual dose cuve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 32. Contribution of Individual Radionuclides When the Saturated Zone Radionuclide TransportBarrier Is Included

I TDR-WIS-PA-000009 REV 01 ICN 01

A 2 .I 0

F-32 Aug7ust 2u002

(a)

E

E08accC

aii

103

102

101

100

10-2

1 02

1034

1 0 -5 10-

10c

Netalie OnsaWAtm Zone trAtiu tr c 4.Amh-24jm :Al Other Fedio,Llcides

* Neutralize Unsaturatei & Sauatd Zons (St eMr ur 9 Ces un. A.nruh m-241

Al oher Rdilenee dsj

*. *S,,

. . A..,

i *,^- Ai

t i t Sff \

. '^ ' '' '*1A -.

.turaed zone (Stndutim-3O + Ce$ium17

4r I I ,Id1onucI'd s

.td & SauM Zones(Stroum0 + Celum.-17)

onudidis

.. . ~~~A;:-A -

i .* ..

100000

- it I''I'll - I

I

Page 35: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Igneous Activity Groundwater Release Scenario

1000 10000 100000

Time (years)

(b) Nominal Scenario

I-

0C

0)

4

103

1 0 10'

100

10-°

10-2

104

10-510-6

10c'0 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 33. Effect of Unsaturated Zone Radionuclide Transport on Mean Annual Dose

I TDR-WIS-PA-000009 REV 01 ICN 01

:- 2se CaseiiNelmrlize Saturate Zone Only

s Neutrflize Slth Unsatulatd and SaturaW Z6nes

r i0,00CCCa,

104

103

102

101

100

10-I

10-2

10-3

10-4

105101

00

- se.Case(ncdngSonium-e and CeslM 137)

Nreutralze th Uatatd & Stur.ted Zo

. f S -

�.". � .� '�.

C��qAugust 2002F-33

Page 36: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Igneous Activity Groundwater Release Scenario

104

1032 102

ED 1 0'

_ 100C

- 10-410-2.

c< 105

02 jo-s.

1 o-6

100 1000 10000

Time (years)

(a) Igneous Activity Groundwater Release Scenario

. titaize Sattrated;Zone (s&onni + CcsiL -137!I- Ammicium-24t..All Other Radcnu id.s

F * NeubaizeUn aturmtedr& Satuated Zones (Strdtl -9 9a s Oc eum-137) -A rn s e rciu ri 4. A All Other Radr uii de.

* * v

* a j^ -

r * * .; ;fij, ,0_ ; .l100 1000 10000

SEI~,Sg: SEl4m.g~F,. 4aB

100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 34. Contribution of Individuai Radionuclides When the Unsaturated Zone Radionuclide TransportBarrier Is Included

CXV2

August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

I

!. Neutrailze Satuoatedzone (stoniunso desiLmtn-ia* .Amerioim-241 -.

A Other Radiwncl des

. Netralize Uneaturd & Satuated Zonese (Sdm!um s + ce, 3 S7)

* A i Othe, Radioni ts t

Z r -S..-

t r ¢ . *. 0.

* rA 5 . *,,,, , > 100000

aaaaSSaSSaaaaaSSaSaaSaaaaSaSaaaaaSaSaSaa

104 -

E~ 103-2 102 -

8 10°-E

rt 101 -

' 10-2-

C)

c 100-

< 1 0 -- 10-02 10-s--

10 6

F-34

Page 37: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Igneous Activity Groundwater Release Scenario

I)E0)

00

CC

C

0)

04

103

102

101

100

10-1

10-s

1 0-:

1 0-

10-6

1 C

SF01 D4OtmS.s�t. SEe] flSim&g,m 8501 O&IImF.0em; F�UrO2�{O)JNB

100001000

Time (years)

(b) Nominal scenario

E

00

CaaVC)

104

103

102

101

100

10-'

1 Q2

1 0-3

1JQA104

10-6

1 00 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 35. Sensitivity of Mean Annual Dose to Sorption, Matrix Diffusion, and Colloid Filtration in theUnsaturated Zone and Saturated Zone Radionuclide Transport Components of the TSPAModel

c31August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

_ - ase Case i

B... ;. . ..,'

Neutralize Natural Fare P!wad Tranport Para,eter

100000

1 ~ 7 1 f . . . .

B ses Ca (sIncluding Strontium-SO and Cei-137)r . & i N aar TPe,aspo-eraiqfq3Neutrilze Naturl Brer Flow & Trnspo Pameters

* A

00

F 35

Page 38: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Igneous Activity Groundwater Release Scenario

104 - f. NeutlizTranspor aameterOnly($troniur-s0+desLm-37

All Othr Radionuclides2 102-E . Neu5 ize oth F6 and Traspor (r- + 1Cs-137

101 - AhbdOII-, 124 .

1 10 All Oth er dionucdes

0 10-3

CM5 104 A

0-1 2 ~ ~ ~~~~-

1 )

, 10 -5. - ' * ..

10-6

100 1000 10000 100000

Time (years)

(b) Nominal Scenario

1 4 i. N uralizeT ran porParam ters Only (Strontiwr-90. C esirn-1$7) E104 -r-fe~~~NW 10. T-,.. P .. AhOhsWad uclls103 -r Ame.riim-244 .102 - . All he,r Radonuclidcs

a 101 2I

E * N u Both FloW and T ransp ort (S rontU m-S +0 C esIu m-IS7)

101 * Att&16t f1 -24I . 7

io * All Oher R adion, clid s

0 0 1

- 10-2

5 10, .

, 10-5

10-6

100 1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the resulsensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 36. Role of Sorption, Matrix Diffusion, and Colloid Filtration in the UnsaturateSaturated Zone Radionuclide Transport Components of the TSPA ModelRadionuclides

I TDR-WIS-PA-000009 REV 01 ICN 01 F-36

a6aSaaaaa

6

aaaaa

S

aaa

SaS

S

S

S

S

S

aa

S

S

S

aS

ts of the SS

ad Zone andafor Different S

S

0 3 S- August 2002 aa

a

+ T .Nt Ft :1t * T5 ~ ~ 21 r' '~ 717- stji _ ,I ,,,* , Z I

Page 39: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

0103]102]101

100

10-1 -

10-2

10-3

10-4

10-5

10-6 -

100

SE01_039im5 gsm; SE01_025im5 gsm; Figure 37.JNB

, , , , .I , , , , ,,, I

. - Eruptive Release - Base Case . . U

* Eruptive Release 9 5th Percentile Probabilityr - - - . . . . . . - . . .

* * 0 Seg !esweo4rA1mqus.m.j.�1 � . ..

i . l. ..I

I I I .I I I I iI I ,I I I I . .

1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 37. Sensitivity of Mean Annual Dose to the Igneous Activity Probability TSPA Model Component

I TDR-WIS-PA-000009 REV 01 ICN 01

_E

a)U)0C]

:F

-

* g g * * g g l g g g g E

. . . ..i

F-37 August 2002

Page 40: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104

103102

101

100

10-110-2

10-3

10-4

10-510-6

100

SEO1_040imS gsm, SEO1_096im5, SEO1_057im5 gsm, Figure 38 JNBi I I I 1 * I , I I I a I I I I I I

- Igneous Activity Groundwater Release Scenario - Base Case _

* Zone 2 Only* 9 5 th Percentile of Waste Packages in Zone 1

1000001000 10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 38. Sensitivity of Mean Annual Dose to the Number of Waste Packages Disrupted by IgneousIntrusion

I TDR-WIS-PA-000009 REV 01 ICN 01

E

L-Ea)C')0

C:

a)

August 2002F-38

Page 41: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

101

10°

10-1

10-2

10-3

10-4

10-5-

10-6

100

SE01_039im5 gsm; SE01_021'm5 gsm, Figure 39 JNB

, .I .,.,, ,,,,

, - Eruptive Release - Base Case .th

* Eruptive Release 95 Percentile Erupted Volume

* . _ . . . . . . .

~~~~~~~.. . ... -- I. .. . . . . . ... .. . . . -I

...... l_ '-1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

as _ * -

. . . . .... I. .. . . . . . -I

I I I I I I I I I I I I , , I I

1000

I I I I I III

10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 39. Sensitivity of Mean Annual Dose to the Volume of Erupted Material

I TDR-WIS-PA-000009 REV 01 ICN 01

0

103

102a)CD

EU)

CD00

a)

100000

- - - ' w w w **

.

. .II. -I

F-39 August 2002

Page 42: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

a)

a)cn00

a::a)

04

103

102

101

10°-

10-310-4 -

10-5 -

10-6 '

c

SEO_039im5 gsm, S SE01_070im5 gsm, SE01_071im5 gsm, Figure 40 JNB

1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 40. Sensitivity of Mean Annual Dose to Particle Size

I TDR-WIS-PA-000009 REV 01 ICN 01

! , ....

Eruptive Base Case* Decreased Mean Particle Size

Increased Mean Particle Size

F . - - ~~~~~~~~~~~- - - - - -

r ._

E~~ E.

w w s l

)O

F-40 August 2002

Page 43: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

0

103102

101

100

1-1

10-2

10-3

10-4

10-5

10-6

)0 1000

SE01_039im5 gsm, SE01_018im5 gsm; Figure 41.JNB

10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 41. Sensitivity of Mean Annual Dose to Wind Speed

I TDR-WIS-PA-000009 REV 01 ICN 01

a)

CDL-

E

CD

0

c-)

- , , . .. . .. .I- ~ - I - 1 I . . . . ................... I I

Eruptive Release - Base Case . .* Eruptive Release - 95th Percentile Wind Speed

I I I I I I I I I I I I I I II I I I I I I I I

III

I

M

I

- . . .. -V

Lr,

Lr . .. . . . . . . . .

F-41 August 2002

Page 44: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

104-

103-102-

101 -

100 -10-1 -

10-2-

10-3

10-4

10-5

10-6

SE01_039m5.gsm; SE01-020im5 gsm, Figure 42.JNB

I I I I A I I I I I a I I I I II

- Eruptive Release - Base Case (All Wind to $outh)* Eruptive Release - Full Distribution of Wind Direction

r ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~~.

-- U 0 0 O -* 0004111ii

r ' ' ' ' '.

r

r. . . I

100 1000

. . . . . . . I

10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 42. Sensitivity of Mean Annual Dose to Wind Direction

I-

I TDR-WIS-PA-000009 REV 01 ICN 01

a)

E

a)

0

C

C

C

ai)

I I I I I I I

.- I

.- I

. . . .

August 2002F-42

Page 45: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

StO'oon0 r:SO.Oem.s:SOrIn5g':$OO2m.s:SOOOn~r;SO en.smSO~Cn6sn iue4.N

I

I .

F --- .

I . I

- Eruptive Release - Base Case* 5 h Perntile BCEF

95h Percentile BDCFs- 4gneotus frotindwater - Base Case

5 h Percentile BDCFs95b Percentile BDOFs

-- Nomial Scenario - Base Case* 5 h Perntile BDOFs* 95 Percentile BDCFs

- -**-*.-

1000 10000 100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 43. Sensitivity of Mean Annual Dose to the Biosphere TSPA Model Component

C(>3August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

I

ci)

0)

aC:C

0

104-

;103-

102-

101

100

10-1-

10-2-

10-4

10-6 -

100

r 43

Page 46: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

SE01_040im5 gsm; SEO1072im5 gsm; SEO1073=m5 gsm,Fagure 44.JNB

Eruptive Release ' Base Case (FEIS BDCFs)* Eruptive Release - 15 cm Tephra Thickness (SSPA BDCFs)A Eruptive Release 1 cm Tephra Thickness (SPA BDCFs)

-u

A

r _- -AAAA

r . . . . . . . . . . .

r - -

I I I II , III . I I I I I I

1000 10000

I I I I I I I

100000Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 44. Sensitivity of Igneous Activity Eruptive Release Mean Annual Dose to Tephra DepositThickness

I TDR-WIS-PA-000009 REV 01 ICN 01

_Ea)

E

cin

(I0

:

04

103

102

101

10°

10-1

-2

0310-4

10-510-6

1c

r

ff-2

)O

August 2002F-44

Page 47: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

1O

103102

101

100

10-1

10-2

10-3

10-4

10-510-6

10)0

SEO1_039m5 gsm, SEO1_023im5 gsm, SE01_024m5 gsm; Figure 45 JNB

1000 10000-

100000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 45. Sensitivity of Igneous Activity Eruptive Release Mean Annual Dose to Soil Removal Rate

I TDR-WIS-PA-000009 REV 01 ICN 01

a)

E

a)cn

CU00

a,Z

4 - - I I I ~ I 4 I ~ I I I I I 4 4 I ~ 4

Eruptive Release - Base Case* Eruptive Release - 95 Percentile Soil Removal Rate (0.079 cm/year)

. Eruptive Release 5th Percentile Soil Removal-Rate (0.061 cm/year)

- - . . - . .. -I~~~~~~~~~~~~~~~~~~ . .

* . - -- - - - ~ ~ ~ ~ ~ ~ ~ ~ .. -- i

.. . -u

.I ' '

* - - -

r ' - . . .

F- '

r - -

i

F-45 August 2002

Page 48: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Igneous Activity Groundwater Release Scenario

4 SE01_041m5 gsm. SE01_090imSgsm, Fig 46(a) Ja

0 3

102

10110'100

10.1

1 -2

10-3

10-4

10-5

10-6

1C 1000 10000 100000

Time (years)

(b) Nominal Scenario

SEO_040nm6 sgsm SE01_10nm6 gsm, Fig 46(b) JNB

1000 10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 46. Effect of Combinations of Variations in TSPA Model Components

I TDR-WIS-PA-000009 REV 01 ICN 01

a)

E

Cl

i:00-a

C

CCO

I . .. , I . . . . - . I . .f -

- Igneous Activity Groundwater Release Scenano - Base Case* Combined Effects

r- - - ---- --r --- ----- ---

r - - - - - - -- - -

r -5'SO_

105

10-E 104

) 1

-102-

cl, 101 -0o 100 -ai 1o-l-C 10-2C< 10-3tX 1 04-C

a) 10-5-0-6

Nominal Scenario - Base Casa -* Combined Effects *

-- -- -- - - - - - - ----

0~~~~~~~~~~~~

* -r----- ---- -4- - ----- :-- .~~

-0-:

, , _~~~~~~

S

_ S

100 100000

)O

August 2002F-46

Page 49: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

(a) Igneous Activity Groundwater Release Scenario

1000 10000

Time (years)

100 1000 10000

Time (years)

NOTE: Each mean annual dose curve is a probability-weighted average. However, the results of thesensitivity studies do not correspond to expected risk (see introduction to Section 3).

Figure 47. Contributions of Individual Radionuclides in the Study of Effect of Combinations of Variationsin TSPA Model Components

C3+August 2002I TDR-WIS-PA-000009 REV 01 ICN 01

- I.nsoo6 ActmtyG Grondwater Rdease Scenaio All Padionucides_C7mn14

TechnO tum 99

_- Plutur- 239 1- Plolonium-240

E

E0tO

m

00

C

cc

ca)

104

103

102

101

100

10-'

10-2

10-3

104-10-

1 0 -e

Ic00

(b)

100000

I

E

00C

[a

zcC

c

(a

100000

F-47

Page 50: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

INTENTIONALLY LEFT BLANK

I TDR-WIS-PA-000009 REV 01 ICN 01 F-48 August 2002

Page 51: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 1. TSPA Model Areas and Components

StudyTSPA Model Area TSPA Model Component Section

Climate and Net Infiltration 3.3.1

Unsaturated Zone Unsaturated Zone Flow 3.3.10FlwUnstrd Zee..Flow and Seepage Seepage into Emplacement Drifts 3.3.2

Coupled Thermal, Chemical, and Mechanical Effects on Unsaturated (3.3.1,Zone Flow and Seepage - 3.3.2)

Chemistry of Water on Drip Shield (3.3.4)

Chemistry of Water on Waste Package (3.3 4)In-Drift Moisture and. -,..

Chemistry Drift Invert Moisture Conditions - - (3 3.2)

Drift Invert Water Chemistry 3.3.3

_ Drip Shield Early Failure - 3.3.4

Drip Shield General and Local Corrosion 3.3.4

Waste Package and Drip Shield Stress Corrosion Cracking 3.3.4Drip ShieldDegradation Waste Package Early Failure - - - 3.3.4-

Waste Package General and Local Corrosion 3.3.4

Waste Package Stress Corrosion Cracking 3.3.4

MechanicalDisruption 0 Mechanical Disruption of Waste Packages, Drip Shields, and Cladding _ (3.3.4,Disruption of from Seismic Activity and Rockfall 3 3.6)

Engineered BarrersiQuantity and -

Chemistry of Water 3 3.5,Contacting Waste In-Package Temperature, Moisture, and Chemistry - (3.3.2)

Forms

- 'Radionuclide Inventory ' 3.3.15

CSNF Cladding Degradation 3.3.6

Radionuclide Dissolution of Uranium Oxide and High-Level Waste Glass 3.3.6Release Rates and

Concentrations Dissolved Radionuclide Concentrations 3 3.7

Colloid-Associated Radionuclide Concentrations 3.3.8

Radionuclide Transport from the Engineered Barrier System 3.3.9

NOTE: Study section numbers without parentheses indicate sensitivity studies that bear directly on the TSPAmodel area or component. Section numbers in parentheses indicate those sections that bear on themodel area or component indirectly.

, I I -~ August 2002I TDR-WIS-PA-000009 REV 01 ICN 01 -T-1

Page 52: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 1. TSPA Model Areas and Components (Continued)

TSPA Model Area TSPA Model Component StudySection

Dnft Scale Radionuclide Transport in the Unsaturated Zone 3.3.10

Unsaturated ZoneRadionuclide Mountain Scale Radionuclide Transport in the Unsaturated Zone 3.3.10

TransportCoupled Thermal, Chemical, and Mechanical Effects on Unsaturated (3 3.10)Zone Radionuclide Transport

Saturated Zone Flow Saturated Zone Flow 3.3.10and Radionuclide

Transport Saturated Zone Radionuclide Transport 3.3.10

Igneous Activity Groundwater Release Probability 3.3.11

Disruption of Igneous Activity Eruptive Release Probability 3.3.11Engineered Barriersby Igneous Activity Damage to Waste Packages, Drip Shields, and Cladding by Igneous 3.3.12

by Ineou Actvity Intrusion 331

Damage to Waste Packages, Drip Shields, and Cladding by Igneous 3.3.12Eruption

Volume of Erupted Matenal 3 3.13Atmospheric

Transport of Erupted Particle Size and Density 3 3.13Radionuclides

Wind Speed and Direction 3.3.13

Biosphere Dose Conversion Factors 3.3.14

Biosphere 331Characteristics Tephra Deposit Thickness 3.3.14

Tephra Redistribution 3.3.14

Postclosure Postclosure Criticality Probability and Effects NoneCriticality I___I __I

NOTE: Study section numbers without parentheses indicate sensitivity studies that bear directly on the TSPAmodel area or component. Section numbers in parentheses indicate those sections that bear on themodel area or component indirectly.

I TDR-WIS-PA-000009 REV 01 ICN 01 T-2 August 2002

Page 53: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 2. Prioritization of TSPA Model Components

Importance' ~ ~ ~ ~ ~ -Importance to Igneous ImotneoNmiat Expected Importance to Eruptive Activity Groundwater Scenano Mean Annial

Risk Release Mean Annual Dose Release Mean Annua DoseRis D D

* Probability of IgneousEruption in Repository -.

Potentially * Amount of Waste N Waste Package Early FailureSignificant Erupted and Degradation

* BDCFs for Eruptive -

Release Scenario

* Probability of Igneous .Intrusion into Repository-

Possibly . . * Damage to EngineeredSignificant in * Mean Wind Speed and Barriers in IntrusionCombination Direction * Dssolved Pu-239 and Nonewith Other * Soil Redistribution P 24 TransportioS -Nn

Components * UZ Transport of Sr-90--. and Cs-137* SZ Transport of Sr-90

and Cs-137

* Climate and Net -

Infiltration -. * Climate and Net* Seepage into Infiltration

Emplacement Drifts, * Seepage into* In-Drift Temperature, - Emplacement Drifts

Moisture, Chemistry . In-Drift Temperature,* In-Package Moisture, Chemistryb

-Temperature, Moisture, * --Drip Shield DegradationChemistry I - In-Package

* Waste Form (Including Temperature, Moisture,Not _ Cladding) Degradation - C mistry -Soil Thickness and

Not Removal *~~~~~ Dissolved * Waste Form (Including

Significant * Eruptive Volume Concentrations of Rns - Cladding) Degradationother than Pu-239 and * Dissolved Rn

* Particle Size and Density - Pu-240 - - - Concertrations

* Colloid-Associated Rn *' Colloid-Associated Rn-Concentrations - - --Concentrations

* EBS Radionuclide - *J- EBS RadionuclideTransport - -- -- Transport

. , - , UZ and SZ Flowv - *. UZ and SZ Flow* UZ and SZ Transport of - * - UZ and SZ Radionuclide

Rns other than Sr-90 & -- -,Transport -Cs-137 i -v * < BDCFs for Groundwater

* BDCFs for Groundwater 'Release ScenariosRelease Scenanos . _'

NOTES: -

"Analogous conclusions may also apply to seismic activity groundwater release scenario.bIn-drift temperature, moisture, and chemistry could be more important in the nominal scenario iflocalized corrosion is determined to be initiated under expected conditions.,;

- - BDCF = Biosphere dose conversion factor-^UZ, SZ = Unsaturated zone; saturated zone -- - -

EBS = Engineered barrier system - - - - -

Rn = Radionuclide -

Pu, Sr, Cs = Plutonium, strontium, cesium

I TDR-WIS-PA-000009 REV 01 ICN 01 i T-3 - � I 1 , -, August 2002

Page 54: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 3. Correlation of TSPA Model Areas and Components with Model Validation Areas

TSPA Model Area TSPA Model Component Study Model Validation Area_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ S e c t i o nM o e V a i t o n A a

Climate and Net Infiltration 3 3.1 Climate and Net Infiltration

Unsaturated Zone Unsaturated Zone Flow, Coupledl Unauraed eepe Thermal, Chemical, and Mechanical 3.3.1, Unsaturated Zone FlowFlow and Seepage Effects on Unsaturated Zone Flow 3.3.12

Seepage into Emplacement Drifts,Coupled Thernal, Chemical, and 3.3.2 Seepage into Emplacement DriftsMechanical Effects on Seepage

Chemistry of Water on Drip Shield (3.3.4)

Chemistry of Water on Waste (3.3.4)In-Dnft Moisture and Package

Ceisrln-Dnft Moisture and ChemistryChemistry Drift Invert Moisture Conditions (3.3.2)

Drift Invert Water Chemistry 3 3.3

Drip Shield Early Failure 3.3.4

Drip Shield General and Local 3.3.4Corrosion

Waste Package and Drip Shield Stress Corrosion Cracking 3.3.4 Waste Package and Drip ShieldDrip ShieldWatPakganDrpSilDegradation Waste Package Early Failure 3 3.4 Degradation

Waste Package General and Local 3.3.4Corrosion

Waste Package Stress Corrosion 3.3.4Cracking

Quantity andChemistry of Water In-Package Temperature, Moisture, 3.3 5,Contacting Waste and Chemistry (3.3.2)

F o rm s _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Radionuclide Inventory 3.3.15

CSNF Cladding Degradation 3.3.6

Dissolution of Uranium Oxide and 3.3 6 Radionuclide Release Rates andRadionuclide High-Level Waste Glass Concentrations

Release Rates and Dissblved RadionuclideConcentrations Concentrations 3.3.7

Colloid-Associated Radionuclide 3 3 8Concentrations

Radionuclide Transport from theEngineered Barrier System

bLUaJy scLIVII IIUIDUUIs WItUIVUL[ pa[rnLFlebUs inuicate sensitivity siuaies tat bear directly on tne SPAmodel area or component. Section numbers in parentheses indicate those sections that bear on themodel area or component indirectly.

I TDR-WIS-PA-000009 REV 01 ICN 01

N____________

I

-W.". C

T-4 August 2002

Page 55: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 3. Correlation of TSPA Model Areas and Components-with Model Validation Areas(Continued)

TSPA Model Area - TSPA Model Component Study Model Validation Areasr__ _ _ _ _ _ _ _ _ _ _ _ _ _ ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ WS e c t i o n

Drift Scale Radionuclide Transport in 3310the Unsaturated Zone 3.30 . _ _

Unsaturated Zone Mountain Scale Radionuclide 3.310 Unsaturated Zone RadionucideRadionuclide Transport in the Unsaturated Zone .3. Unsatrt Z Rdoci

Transport - Coupled Thermal, Chemical, and Tno

Mechanical Effects on Unsaturated (3 3.10)Zone Rdionclide Transport

Saturated Zone Fl6w Saturated Zone Flow 3.3.10 Saturated Zone Flow and

Transport Saturated Zone Radionuclide 3.3.1 Radionuclide TransportTransport

,. ~., Igneous Activity Groundwater Release- 3.3.11 -

.- , -Probability . . Probability of Igneous ActivityIgneous Activity Eruptive Release 3 3.11 _

Disruption of Probability .3.Disrupdon of Damage to Waste Packages, Drip - D

by Ineou Actvity Shields, and Cladding by Igneous 3.3.12Intrusion ______Damage to Engineered BarriersDamage to Waste Packages, Drip _ by Igneous Activity -

Shields, and Cladding by Igneous 3.3.12Eruption -_

Volume of Erupted Material 3.3.13 --

Atmosphe ic -__ _______ _______ _______ _____ - A tm osphenc Transport of EruptedTransport of Erupted Particle Siie and Density 3.3.13 adioncTidfs

Radionuclides Ri.,Win Id Speed and Direction 3.3 13 M , If

Biosphere Dose Conversion Factors - -3.3.14 -

Biosphere Tephra Deposit Thickness 3.3.14 Biosphere CharactensticsCharacteristics - -----

Tephra Redistribution - 3.3.14.. ... __ _ L ___ __.AL|. _$ ___ &......... + + .1. v,0 .... *1 _+ 9fAP+S F +A aA

NOTE: Study section numbers witnout parentneses inoicate sensitivity stuuies nM DeUUr UirciIy uI l t :rt-- -

model area or component. Section numbers in parentheses indicate those sections that bear on themodel area or component indirectly. - . - I. ' '' *: ,

I.,--

- � August 2002

I i

I TDR-WIS-PA-000009 REV 0 1 ICN 0 1 I T-5

Page 56: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 4. Correlation of TSPA Model Areas and Components with KTI Agreements -

TSPA Model Area TSPA Model Component Section Related KTI Agreements-

Climate and Net Infiltration 3.3.1 ENFE 1.03, 1.05, 1.07, 2.16, 4.02RDTME 3 20, 3 21RT 1.01, 3.02, 3.05, 3.06

Unsaturated Zone Flow 3.3.1, SDS 3.01, 3.02, 3.03, 3.04Unsaturated Zone 3.3.12 TEF 2.01, 2.04, 2.05,2.08, 2.09,Flow and Seepage 2.10, 2.11, 2.12, 2.13

Seepage into Emplacement Dnfts 3.3.2 TSPAI 3.07, 3.11, 3.18, 3.19,3.20, 3.21, 3 22, 3 23, 3 24, 3.25,

Coupled Thermal, Chemical, and 3.26, 3.27Mechanical Effects on Unsaturated (3.3.1, USFIC 3.01, 3.02, 4.01, 4.02,Zone Flow and Seepage 3.3.2) 4.03, 4.04, 4.05, 4.06, 6.02, 6.03

Chemistry of Water on Drip Shield (3 3.4) CLST 5.04

Chemistry of Water on Waste 2.07, 2.08, 2.09, 2.10, 2.11, 2.12,In-Drift Moisture and Package (3.3.4) 2.13, 2.14, 2.15, 2.16, 2.17, 4.02,

Chemistry ~~~~~~~~~~~~~4.07Chemistry Dnft Invert Moisture Conditions (3.3.2) RDTME 3.01, 3.14

RT 4.03Drift Invert Water Chemistry 3.3.3 TEF 2.04, 2.05, 2.10

TSPAI 3 07, 3 09, 3.10, 3.15

Drip Shield Early Failure 3.3 4CLST 1.01, 1.02,1.03,1.04, 1.05,

Drip Shield General and Local 3.3.4 1.06, 1.07, 1.08, 1.09, 1.10, 1.11,Corrosion 1.12, 1.13, 1.15, 1.16,1.17, 2.04,

2.05, 2.06, 2.07, 2.08, 6.01, 6.02,Waste Package and Drip Shield Stress Corrosion Cracking 3.3.4 6.03, 6.04

Drip Shield ENFE 2.04, 2.05, 2.06, 2.07,Degradation Waste Package Early Failure 3.3.4 2.08, 2.09, 2.10, 2.11, 2.13, 2.14,

2.17, 2.18Waste Package General and Local 3314 RDTME 3.18Corrosion ' S . . TSPAI 2.04, 3.01, 3.02, 3.03,

Waste Package Stress Corrosion 3.04, 3.05, 3.12, 3.13Cracking .3.

NOTES: Study section numbers without parentheses indicate sensitivity studies that bear directly on the TSPAmodel area or component. Section numbers in parentheses indicate sensitivity studies not designed toaddress the TSPA model area or component directly, but whose results can be used to supportpriontization of the model area or component.CLST: = Container life and source termENFE = Evolution of near-field environmentRDTME = Repository design and thermal-mechanical effectsRT = Radionuclide transportSDS = Structural deformation and seismicityTEF = Thermal effects on flowTSPAI = Total system performance assessment and integrationUSFIC = Unsaturated and saturated flow under isothermal conditions

JU

I TDR-WIS-PA-000009 REV 01 ICN 01

I

I

I

I

T-6 August 2002

Page 57: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 4. Correlation of TSPA Model Areas and Components with KTI Agreements (Continued)

TSPA Model Area TSPA Model Component Section Related KTI Agreements

CLST 1.14,-2.01, 2.02,2.03, 2.08,2.09,3.10, 4.10

l ; .. . IA 2.19Mechanical Mechanical Disruption of Waste (3.3.4, RDTME 3.02, 3.03, 3.04, 3.05,

Disruption of Packages,-Drip Shields, and Cladding 336 3.06, 3 07, 3.08, 3.09, 3.10, 3.11,Engineered Barriers - from Seismic Activity and Rockfall 3.12, 3.13, 3.15, 3.16, 3.17, 3.18,

3.19 .SDS 1.02, 2.01, 2.02, 2 03, 2.04

, -~ TSPAI 3.06 Quantity and CLST 3.01, 3.02, 3.03, 3.04, 3.05,

Chemistry of Water In-Package Temperature, Moisture, 3.3.5, -4.01, 4.02, 4.03, 4.04, 4.05Cohtacting Waste and Chemistry - (3.3 2) ENFE 3.03, 3 04

Forms - _ TSPAI 3.08, 3.14

Radionuclide Inventory 3.3.15 - .

CSNF Cladding Degradation 3.3.6

Dissolution of Uranium Oxide and 3.3 6 -CLST 3 06, 3.07, 3 08, 3.09, 4.06,-

Radionuclide High-Level Waste Glass - 4.07, 4.08, 4.09, 4 11Radionuclide ~~~~~~~~~~~~ENFE 3.05, 4.04, 4.05Release Rates and Dissolved Radionuclide FRT 1.03

Concentrations Concentrations 3.3.7 TSPAI 3.16, 3.17, 3.30, 3.42

Colloid-Associated Radionuclide - 3.38Concentrations 3.3.

- Radionuclide Transport from the ,-Engineered Barrier System - - 3

Drift Scale Radionuclide Transport in 3.3.10the Unsaturated Zone . . ENFE 1.06,1.07, 4.03, 4.06 -

Unsaturated Zone Mountain Scale Radionuclide - -RT 1.02,1.04, 1.05, 2.11, 3.01,Radionuclide e Z -,3.3.10 3.04, 3.05, 3.07, 3.10 -

ransport T rasoti h nauae oeTSPAl 3.23, 3.28, 3.29, 3.30,Coupled Thermal, Chemical, and 3 42, 4.02l ---Mechanical Effects on Unsaturated (3.3.10)Zone Radionuclide Transport - . , .

NOTES: Study section numbers without parentheses indicate sensitivity studies thai bear directly on the TSPAmodel area or component. Section numbers in parentheses indicate sensitivity studies not designed toaddress the TSPA model area or component directly, but whose results can be used to supportprioritization of the model area or component.CLST: = Container life and source termENFE = Evolution of near-field environmentIA = Igneous activityRDTME = Repository design and thermal-mechanical effectsRT = Radionuclide transportSDS = Structural deformation and seismicity /

TSPAI = Total system performance assessment and integration

I TDR-WIS-PA-000009 REV 01 ICN 01 T-7 August 2002

Page 58: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 4. Correlation of TSPA Model Areas and Components with KTI Agreements (Continued)

TSPA Model Area TSPA Model Component Study Related Agreements

RT 1.04, 1.05, 2.01, 2 02, 2.03,Saturated Zone Flow 3.3.10 2.04, 2.05, 2.06, 2.07, 2.08, 2.09,

Saturated Zone Flow _ 2.10, 2.11, 3 01, 3.03, 3 04, 3.07,and Radionuclide 3.08, 3.09

Transport Saturated Zone Radionuclide 3.3.10 TSPAI 3 30, 3.31, 3 32, 3.42,4 02~~~~~TransportSauaeZoeRdnule 3.3.10 USFIC 5.01, 5.02, 5.03, 5.04,TransPort 5.05, 5.06, 5.07, 5.08, 5.09, 5.10,

l___ ____ ____ __ _ _5.11, 5.12, 5.14, 601, 6.04Igneous Activity Groundwater Release 3.3.11ProbabilityIgneous Activity Eruptive Release 3.3.11

Disruption of ProbabilityEngineered Barriers Damage to Waste Packages, Dnp IA 1.01, 1.02, 2 05, 2.10,2.18,by Igneous Activity Shields, and Cladding by Igneous 3.3.12 2.19, 2.20

IntrusionDamage to Waste Packages, DnpShields, and Cladding by Igneous 3.3.12Eruption

Volume of Erupted Material 3.3.13Atmospheric I

Transport of Erupted Particle Size and Density 3.3.13 2A 1.01, 2.01, 2.02, 2.03, 2.04,Radionuclides 2 06, 2.09

Wind Speed and Direction 3.3.13

Biosphere Dose Conversion Factors 3.3.14Biosphere IA 2.07, 2.08, 2.11, 2.12, 2.13,

Characteristics Tephra Deposit Thickness 3.3.14 2.14, 2.15, 2.16, 2.17TSPAI 3.33, 3.34, 3.35, 3 36, 3.37

Tephra Redistnbution 3.3.14. . . .

NOTES: Study section numbers without parentheses indicate sensitivity studies that bear directly on the TSPAmodel area or comp6nent. Section numbers in parentheses indicate sensitivity studies not designed toaddress the TSPA model area or component directly, but whose results can be used to supportprioritization of the model area or component.IA = Igneous activityRT = Radionuclide transportTSPAI = Total system performance assessment and integrationUSFIC = Unsaturated and saturated flow under isothermal conditions

I TDR-WIS-PA-000009 REV 01 ICN 01 T-8 August 2002

Page 59: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 4. Correlation of TSPA Model Areas and Components with KTI Agreements (Continued)

TSPA Model Area TSPA Model Component Stdy Related Agreements_________________ ~~~ ~~~Section

Postclosure Postclosure Criticality Probability and None CLST 5.03, 5.05, 5.06, 5.07Criticality Effects RT 4.03 -

CLST 5.01, 5.02ENFE 1.01, 1.02, 2.02,2.03,3.01, 3 02, 4.01, 4.08, 5.01, 5.02

_. -, . .. .. PRE 3.01, 3.02, 6.01, 6.02, 7.01,7.02, 7.03, 7.04, 7.05RDTME 2.01, 2.02, 3 01RT 4.01, 4.02

NA, NA ^, None SDS 1.01TEF 1.01, 1.02, 2.02, 2.03, 2.06,2.07

-TSPAI 1.01, 1.02, 2.01, 2.02, -. . , . W '2.03, 2.05, 2.06, 2.07, 3.38, 3.39,

. n ~~~~~~~~~~~~~~3.40, 3.41, 4.01, 4.03, 4.04, 4.05,... - 4.06, 4.07

_____ _____ _____ _____ _____ _____ _____ _____ ____ _____ U SFIC 4.05, 4.07, 5.13

NOTES: Study section numbers without parentheses indicate sensitivity studies that bear directly on the TSPAmodel area or component. Section numbers in parentheses indicate sensitivity studies not designed toaddress the TSPA model area or component directly, but whose results can be used to supportprioritization of the model area or component.CLST: = Container life and source term -ENFE = Evolution of near-field environmentNA = Not applicable -

PRE = Preclosure safetyRDTME = Repository design and thermal-mechanical effects C -

RT = Radionuclide transportSDS = Structural deformation and seismicity -

TEF = Thermal effects on flow -

TSPAI = Total system performance assessment and integrationUSFIC = Unsaturated and saturated flow under isothermal conditions

r - -

I TDR-WIS-PA-000009 REV 01 ICN 01

I

I I I !I

r 1-1 11

I - I I

, " - I -

t , I ' -

, T-9 I I I August 2002, ,

Page 60: for General Corrosion and Localized Corrosion of the Drip ...Volume 1: Scientific Bases and Analyses. TDR-MGR-MD-000007 REV 00. Las Vegas, Nevada: Bechtel SAIC Company. ACC: MOL.20010712.0062

Table 5. Example KTI Agreements

SensitivityTSPA odel Study KTI Agreement

Component Section

TSPAI 3.03-DOE will provide the technical basis for crack arrest andplugging of crack openings (including the impact of oxide wedging andstress redistribution) in assessing the stress corrosion cracking of the drip

Drip Shield shield and waste package in an update to the Stress Corrosion Cracking ofStress 3.3.4 the Drip Shield, Waste Package Outer Barrier, and the Stainless Steel

Corrosion Structural Matenal AMR (ANL-EBS-MD-000005) in accordance with theCracking scope and schedule for existing agreement item CLST 1.12 (Reamer and

Gil 2001).

TSPAI 3.19-DOE will provide justification for the use of theevapotranspiration model, and justify the use of the analog sitetemperature data. The justification will be documented in an update to theSimulation of Net Infiltration for Modem and Potential Future Climates AMR(ANL-NBS-HS-000032) and the Future Climate Analysis AMR (ANL-NBS-GS-000008). The AMRs are expected to be available to NRC in FY 2003(Reamer and Gil 2001).

USFIC 3.01-Provide the documentation sources and schedule for the

Climate and Monte Carlo method for analyzing infiltration. DOE will provide theNet 3.3.1 schedule and identify documents expected to contain the results of the

Infiltration Monte Carlo analyses in February 2002 (Reamer and Williams 2000b).

USFIC 3.02-Provide justification for the parameters in Table 4-1 of theAnalysis of Infiltration Uncertainty AMR (for example, bedrock permeabilityin the infiltration model needs to be reconciled with Alcove 1results/observations). Also, provide documentation (source, locations,tests, test results) for the Alcove 1 and Pagany Wash tests. DOE willprovide justification and documentation in a Monte Carlo analysisdocument. The information will be available in February 2002 (Reamerand Williams 2000b).

TSPAI 3.22-DOE will provide an assessment or discussion of theuncertainty involved with using a hydrologic property set obtained bycalibrating a model on current climate conditions and using that model to

Unsaturated 3.3.1, forecast flow for future climate conditions. This assessment will beZone Flow 3.3.10 documented in the UZ Flow Models and Submodels AMR (MDL-NBS-HS-

000006) expected to be available to NRC in FY 2003 (Reamer and Gil2001).

I TDR-WIS-PA-000009 REV 01 ICN 01

I

T-10 August 2002