for enhanced laser plasma ion accelerationlaser fluence: 0.1 j/cm2 to 20 j/cm2 graphite target...

1
ADVANCED TARGETS FOR ENHANCED LASER PLASMA ION ACCELERATION Andrea Pazzaglia Supervisor: prof. Matteo Passoni CONCLUSION AND FUTURE PERSPECTIVE What I’ve done: Produced foams with ns&fs PLD Microstructured thin target Simulated the foam aggregation Developed a new EDS method to measure ultra-low densities Used foams in laser acceleration experiments ERC - 2014 - CoG No. 647554 What I will do: Explore new capabilities of fs PLD Combinate PLD deposition with HiPIMS deposition Perform new laser acceleration experiments: Foam & microstructures Laser driven ion sources fs-PLD POROUS MATERIALS PHD PROJECT MOTIVATIONS & AIMS Number of ions Ion energy Laser pulse ↑ laser-target coupling e - e - 2 nd year: New materials production with fs-PLD Laser fs microstructuring Characterization improvement 3 rd year: Improved laser acceleration experiments: Test advanced targets Exploration of laser driven ion sources 1 st year: C foam production with ns-PLD Foam modeling Laser acceleration experiments FOAM CHARACTERIZATION Toward ultra-low density ~ 10 mg/cm 3 (<10 x air density) ~ 150 mg/cm 3 ~ 2000 mg/cm 3 Higher laser fluence Higher gas pressure Virtually any kind of substrate!! Plasma plume l= 266, 532, 1064 nm Laser fluence: 0.1 J/cm 2 to 20 J/cm 2 Graphite Target Vacuum chamber Process Gas Inert (He, Ar..) Reactive (O 2 ) Composition Can be controlled with reactive gases d T-S Pulsed Laser Deposition E = 130 mJ P = 500 Pa (Ar) E = 130 mJ P = 50 Pa (Ar) E = 150 mJ P = 0 Pa (Ar) Zani, A., et al. "Ultra-low density carbon foams produced by pulsed laser deposition." Carbon 56 (2013): 358-365. Density measurement: = / Substrate e - beam Film : [ Τ 2 ] : ℎ [] Energy Dispersive X-ray Spectroscopy (EDS) = () SEM New theoretical model: t 0 t 1 t 2 t 3 www.ensure.polimi.it PhD Program in Energy and Nuclear Science and Technology Dipartimento di Energia, Politecnico di Milano, Milan, Italy [email protected] ns-PLD CARBON FOAM fs LASER MICROSTRUCTURING Solution of transport equation for electrons validated with XRR FOAM GROWTH MODELING Diffusion Limited Cluster-Cluster Aggregation (DLCA) Brownian motion of nanoparticles Irreversible sticking of nanoparticles Standard Target Deposition of aggregates on substrate Formation of an aggregate Deposition of porous materials from any element target stage laser high pressure gas fs laser induces periodical structures Younkin, R., et al. Journal of Applied Physics 93.5 (2003): 2626-2629. Interesting options: Microstructured surface targets Near-critical (ultra-low) density coatings Higher material porosity Lower plume confinement f (Z, E, I, P, Z g ) E = 5 mJ τ = 100 fs I = 1.05 * 10 12 W/cm 2 P = 100 Pa (Ar) C 2 μm E = 5 mJ τ = 100 fs I = 1.05 * 10 12 W/cm 2 P = 500 Pa (Ar) W 2 μm E = 5 mJ τ = 100 fs I = 1.83 * 10 12 W/cm 2 P = 100 Pa (Ar) Cu 2 μm Si bulk 10 μm Al 10 μm 10 μm e - Laser pulse Electron sheath Accelerated ions E ≈ tens of MeV exp. spectrum I > 10 19 W/cm 2 Simulated foam used in laser-plasma simulations! Fedeli, L., Formenti, A., Cialfi, L., Pazzaglia, A., & Passoni, M. (2018). Ultra-intense laser interaction with nanostructured near-critical plasmas. Scientific reports, 8(1), 3834. Maffiini A. Pazzaglia A., et al. , In preparation Pazzaglia A., et al. , In preparation Retrieval of 2D areal density & composition from EDS map Laser-plasma ion acceleration Challenges : Target production Target optimization Materials characterization Materials modeling Advanced Target MY PHD PROJECT Use fs laser to microstructure thick target Benchmark with literature 2 nd aim: E = 5 mJ I = 0.6 * 10 12 W/cm 2 P = 1 atm (air) v = 1 mm/s 1 st aim: Reproduce the microstructure on ultrathin target (few μm) Laser-target volume interaction

Upload: others

Post on 14-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FOR ENHANCED LASER PLASMA ION ACCELERATIONLaser fluence: 0.1 J/cm2 to 20 J/cm2 Graphite Target Vacuum chamber ProcessGas Inert (He, Ar..) Reactive (O 2) Composition Can be controlled

ADVANCED TARGETSFOR ENHANCED LASER PLASMA ION ACCELERATION

Andrea PazzagliaSupervisor: prof. Matteo Passoni

CONCLUSION AND FUTURE PERSPECTIVEWhat I’ve done:

• Produced foams with ns&fs PLD• Microstructured thin target • Simulated the foam aggregation• Developed a new EDS method to

measure ultra-low densities• Used foams in laser acceleration

experiments

ERC-2014-CoG No. 647554

What I will do:• Explore new capabilities of fs PLD• Combinate PLD deposition with

HiPIMS deposition• Perform new laser acceleration

experiments:→ Foam & microstructures→ Laser driven ion sources

fs-PLD POROUS MATERIALS

PHD PROJECT

MOTIVATIONS & AIMS

↑ Number of ions↑ Ion energy

Laser pulse

↑ laser-target coupling

e-

e-

2nd year:• New materials production

with fs-PLD• Laser fs microstructuring• Characterization improvement

3rd year:• Improved laser acceleration

experiments:→ Test advanced targets→ Exploration of laser driven

ion sources1st year:

• C foam production with ns-PLD• Foam modeling• Laser acceleration experiments

FOAM CHARACTERIZATION

Toward ultra-low density

~ 10 mg/cm3 (<10 x air density)~ 150 mg/cm3~ 2000 mg/cm3

Higher laser fluence Higher gas pressure

Virtually any kind of substrate!!Plasma plume

l= 266, 532, 1064 nmLaser fluence: 0.1 J/cm2 to 20 J/cm2

Graphite

Target

Vacuum chamber

Process Gas

Inert (He, Ar..)Reactive (O2)

CompositionCan be controlled with reactive gases

dT-S

Pulsed Laser Deposition

E = 130 mJP = 500 Pa (Ar)

E = 130 mJP = 50 Pa (Ar)

E = 150 mJP = 0 Pa (Ar)

Zani, A., et al. "Ultra-low density carbon foams produced by pulsed laser deposition." Carbon 56 (2013): 358-365.

Density measurement:𝝆 = 𝝉/𝒕

Substrate

e-b

eam

Film𝑡

𝜏: 𝐴𝑟𝑒𝑎𝑙 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 [ Τ𝑔 𝑐𝑚2]

𝑡: 𝑇ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 [𝑐𝑚]

Energy Dispersive X-raySpectroscopy (EDS)

𝐼𝑓𝑖𝑙𝑚

𝐼𝑠𝑢𝑏= 𝑓(𝝉)

SEM

New theoretical model:

t0 t1

t2 t3

www.ensure.polimi.it

PhD Program in Energy and Nuclear Science and TechnologyDipartimento di Energia, Politecnico di Milano, Milan, Italy

[email protected]

ns-PLD CARBON FOAM

fs LASER MICROSTRUCTURING

Solution of transport equation for electrons→ validated with XRR

FOAM GROWTH MODELING

Diffusion Limited Cluster-Cluster Aggregation (DLCA)Brownian motion of nanoparticles

Irreversible sticking of nanoparticles

Standard Target

Deposition of aggregates on

substrate

Formation of an aggregate

Deposition of porous materials from any element

target stage

laser

high pressure gas

fs laser induces periodical structures

Younkin, R., et al. Journal of Applied Physics 93.5 (2003): 2626-2629.

Interesting options:• Microstructured surface targets• Near-critical (ultra-low) density coatings

Higher material porosityLower plume confinement f (Z, E, I, P, Zg)

E = 5 mJτ = 100 fs

I = 1.05 * 1012 W/cm2

P = 100 Pa (Ar)

C

2 µm

E = 5 mJτ = 100 fs

I = 1.05 * 1012 W/cm2

P = 500 Pa (Ar)

W

2 µm

E = 5 mJτ = 100 fs

I = 1.83 * 1012 W/cm2

P = 100 Pa (Ar)

Cu

2 µm

Si bulk

10 µm

Al 10 µm

10 µm

e-

Laser pulse

Electron sheath

Accelerated ions

E ≈ tens of MeVexp. spectrumI > 1019 W/cm2

Simulated foamused in laser-plasma simulations!Fedeli, L., Formenti, A., Cialfi, L., Pazzaglia, A., & Passoni, M. (2018). Ultra-intense laser interaction with nanostructured near-critical plasmas. Scientific reports, 8(1), 3834.

Maffiini A. Pazzaglia A., et al. , In preparation

Pazzaglia A., et al. , In preparation

Retrieval of 2D areal density & composition from EDS map

Laser-plasma ion accelerationChallenges:• Target production• Target optimization• Materials characterization• Materials modeling

Advanced Target

MY PHD PROJECT

Use fs laser to microstructure thick target → Benchmark with literature

2nd aim:

E = 5 mJI = 0.6 * 1012 W/cm2

P = 1 atm (air)v = 1 mm/s

1st aim: Reproduce the microstructureon ultrathin target (few µm)

Laser-target volume interaction