food security modelling-uwi, mona - golocarsce · 2016-09-07 · note: to change the image on this...

18
A Research Proposal Submitted in Partial-fulfilment of the Requirement for the Degree of Master of Philosophy in Physics Presenter: Dale Rankine Food Security Modelling-UWI, Mona GLOBAL-LOCAL CARIBBEAN CLIMATE CHANGE ADAPTATION AND MITIGATION SCENARIOS Collaborators: Supervisory Team: Dr. Michael Taylor, Dr. Jane Cohen, Dr. Leslie Simpson, Dr. Tannecia Stephenson

Upload: others

Post on 22-Mar-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

NOTE: To change the image on this slide, select the picture and delete it. Then click the Pictures icon in the placeholder to insert your own image.

A Research Proposal Submitted in Partial-fulfilment of the Requirement for the

Degree of Master of Philosophy in Physics

Presenter: Dale Rankine

Food Security Modelling-UWI, Mona

! GLOBAL-LOCAL CARIBBEAN CLIMATE CHANGE ADAPTATION AND

MITIGATION SCENARIOS

Collaborators:  

Supervisory  Team:  Dr.  Michael  Taylor,  Dr.  Jane  Cohen,                                                Dr.  Leslie  Simpson,  Dr.  Tannecia  Stephenson                    

1.The Context: Food Security

Ø Rising prices of imported foods, especially cereals and grain legumes

Ø Food security: function of accessibility, availability, stability and utilization (FAO 2007)

Ø  Estimates of 8.3 million undernourished Caribbean residents (CARICOM 2010)

Ø Regional food import bill estimated at over USD 2.8 billion in 2011

Ø Changing environmental conditions

The Jamaican Food security Context

- Over 300,000 undernourished people (FAO 2011)

-Food import bill: over USD 1 Billion (MOA 2011)

-Imports account for over 70% of food consumed

-About 80% of food imports from the United States of America (USA) alone 2

Ø Agriculture  very  Climate  Sensi>ve  

Ø Jamaica  (Caribbean)  rainfall  is  bimodal  

Ø Timing,  intensity  of  Mid-­‐summer  drought  affects  cropping  season  

Ø Early  Season    and  late  season  crops  differ  

Ø Limited  impacts  studies  and  unreliable  data  

Figure 1. Pattern of mean monthly rainfall in the Caribbean. Source: ntsavanna.com

3

1. The Context: Climate

1. Context: Why A Root Crop?

4

Contribution of Root and Tuber crops in share by production volume -the Caribbean:

• Increased from 2% in 1961 to 9% by 2010. Comparative increase of 159% of 1961 Output

Source: ECLAC 2013

15%

1%

Roots and Tubers 2% Sweet

potato is the 6th most

important crop globally

1. The Context : Dilemma of Yield vs Climate

5

Figure 4. Annual drought index (SPI-12) versus mean annual Sweet potato yields (detrended) for Jamaica 1961-2009) Source: FAOSTAT; Climate Studies Group, Mona

-3

-2

-1

0

1

2

3

4

-3

-2

-1

0

1

2

3

1961

19

62

1964

19

66

1968

19

69

1971

19

73

1975

19

76

1978

19

80

1982

19

83

1985

19

87

1989

19

90

1992

19

94

1996

19

97

1999

20

01

2003

20

04

2006

20

08

Yiel

d (t/

ha)

SPI-1

2

SPI-12 Detrended Yield

Figure 3. Annual drought index (SPI-12) versus mean annual Sweet potato yields for Jamaica (1961-2009) Source: FAOSTAT; Climate Studies Group, Mona

0

2

4

6

8

10

12

14

16

18

-3

-2

-1

0

1

2

3

1961

19

62

1964

19

66

1968

19

69

1971

19

73

1975

19

76

1978

19

80

1982

19

83

1985

19

87

1989

19

90

1992

19

94

1996

19

97

1999

20

01

2003

20

04

2006

20

08

Yiel

d (t/

ha)

SPI

SPI-12 Yield

6

Varietal differences:

• Colour (Flesh and skin)

• Texture

•  Foliage Source: CARDI 2010

2. Methodology: Five Varieties

7

Devon

Ebony Park

Passley Gardnes

Bodles ** *

*

2. Methodology: Site Locations

2. The Methodology: The FAO AquaCrop Model

8

The Conceptual Framework

• B=WP x ΣTr [Biomass] (ET=E+T)

• WP normalised for ET and CO2 •  Y=B x HI [Yield]

• Robust, Accurate yet simple

Conceptual Framework of AquaCrop Source: Hsiao et al 2011

2. Methodology and Tools: AquaCrop Data requirements

9

   Minimum   Addi8onal  for  improved  Simula8on   Research  Data  

Crop

 

Tuber  Yield,  Harvest  Index  (HI),  Sowing  and  harves>ng  dates,  crop  life-­‐cycle  

Date  of  (90%)  emergence,  data  of  maturity,  Maximum  green  leaf  LAI,  canopy  cover  

(periodic),    Biomass  during  crop  cycle  and  at  Harvest,    

ALL  recommended    parameters.  Canopy  Cover:  Green  crop  tracker/ACE  

Clim

ate  an

d  ET    10-­‐day  or  monthly  mean  maximum  and  

minimum  temp,  or  sunshine  hours,  wind,  humidity,  la>tude  and  eleva>on  

Weekly  or  10-­‐day  mean:  daily  solar  (global)  radia>on,  or  sunshine  hours,  minimum  and  maximum  temperatures,  maximum  rela>ve  humidity,  wind  (@2  m)  Daily  rainfall,  ET  es>mated  by  long-­‐term  water  balance  

All  except  for  Solar  radia>on  was  not  available.                                                        

ET  calculated  by  FAO  ETo  calculator    

Soil  an

d  Fer8lity  

 Textural  Class  and  varia>on  with  depth,  land  slope,  water  holding  capacity,  na>ve  

fer>lity  of  soil,  fer>liza>on  prac>ce  

Texture  of  different  soil  horizons,  restric>ve  soil  layers,  type,  rate,  and  date  of  fer>liza>on  

Soil  sampling  done  @  15  and  30cm:  Moisture,  OM,  N,P,K  

Irriga8

on  and

 water  in  Soil  

   Irriga>on  method  and  schedule,  idea  of          soil  water  content  (recent  rainfall)  @  

plan>ng  

Actual  Irriga>on  dates  and  amount,  es>mate  of  soil-­‐water    @  plan>ng  (Measured)  

Daily  rainfall  measured,  daily  irriga>on  amount  and  

schedule  

2. Methodology: Green Crop Tracker Software (Liu & Pattey, 2010)

10

Canopy Cover Measurement a.  Overhead Photo b. Photo sub-frame C. Magnified gap fraction

(a)

(b) Answer

CC= 53.76 % LAI= 1.54

C

3. Results: Model Parameterization (Devon vs Ebony Park)

11

0.000 2.000 4.000 6.000 8.000

32 65 96 137

Yiel

d (t/

ha)

DAP

Ebony Park-Rainfed (2013)

Measured Simulated

3. Results: 2012/2013 Parameterization(Summarised)

12

Year Treatment Canopy Cover Biomass Yield Devon RSME (%) E RSME (t/ha) E RSME (t/ha) E

2012 Irrigated 44.32 -­‐8.69 20.33 -­‐1.09 3.77 0.13 Rainfed 31.21 -­‐0.97 9.73 -­‐1.02 6.40 -­‐0.13

2013 Irrigated 3.37 0.99 2.95 0.67 2.29 -­‐0.05 Rainfed 8.01 0.91 4.18 0.35 1.22 0.75

Ebony Park

2013 Irrigated 29.88 -­‐1.14 8.87 0.12 2.59 0.63 Rainfed 21.86 0.38   2.08 0.84   3.69 -­‐14.02

• Improvement in model parameterization (2012 vs 2013)

• Enhanced model performance (in 2013): prediction of yields for both Rainfed (Devon) and Irrigated (Ebony) plants

∑∑

=

−=

−−=

N

i i

N

i ii

OO

SOE

12

12

)(

)(1

3. Results: Model Performance Summarised

13

    Final  (Total)  Biomass  (t/ha)   Tuber  Yield  (t/ha) Year Treatment Measured Simulated Devia8on   Measured Simulated Devia8on Devon

2012 Irrigated 17.6  ±  7.4 9.0 -­‐48.8 13.1  ±  5.7 6.4 -­‐51.1 Rain  fed 25.2  ±  13.8 7.9 -­‐68.5 17.7  ±  11.4 5.6 -­‐68.1

2013 Irrigated 16.9  ±  5.7 11.5 -­‐32.0 6.7  ±  4.9 7.9 27.2 Rain  fed 17.8  ±  2.4 11.5 -­‐36.2 6.7  ±  2.0 7.9 19.6

Ebony  Park

2013 Irrigated 27.8  ±  2.8 11.2 -­‐59.8 11.1  ±  5.8 7.8 -­‐28.5 Rain  fed 14.6  ±  4.2 10.6 -­‐27.5   2.6  ±  1.4 7.2 185.3

• Deviation = {(simulated- Measured)/Measured} *100

•  Rainfed Biomass estimation within 20-35% of ‘actual’ values

• Best irrigated and rainfed yields within 20-30% of measured values

This Research Project will make an original contribution in

at least three ways:

1.  Crop Model parameterization for Caribbean Sweet potato-1st Root Crop in AquaCrop

2.  Robust yield predictions of Sweet potato in different agro-ecological zones

3.  Climate change impact assessment (of suitable scale) on root Crops

14

3. Results Contribution of the Research to Food Security

4. Next Steps: Climate Change Considerations

15

Future Context Assessment:

• Climate change and water limited scenarios of scale

• End of Century Projections: much drier Caribbean (JJA); implications

• Couple climate and crop model outputs Climate Change Impact Assessment: 1.  Downscaled climate change data 2. Yield Projection-Irrigated and Rainfed

Fractional change in Precipitation changes over the Caribbean from the A1B simulations 1980-1999 vs 2080-2099. Source: AR4 (IPCC, 2007). 21 model ensemble. http://www.ipcc.ch

Preliminary Conclusions

16

I.  AquaCrop is user-friendly type model featuring a good balance between robustness and simplicity.

II.  Its ability to work with a relatively small number of parameters makes it ideally suited to the Caribbean

III.  The results confirm: model can be used to estimate yields within 20-30% of actual values and the ‘framework ‘is transferable to other crops/locations

Preliminary Conclusions

17

IV. Great potential to: q  Improve cultivar selection, q  Enhance yield optimisation,

q  Conduct sensitivity analyses under water limited/climate change scenarios.

V. Results will help to: q  Identify, prioritise and

implement effective adaptation measures in a timely manner…

q  Inform Policy Options

THANK YOU

18