fluid dynamic aspects of thin liquid film protection …3 thin liquid protection major design...

43
Fluid Dynamic Aspects of Thin Liquid Film Protection Concepts S. I. Abdel-Khalik and M. Yoda ARIES Town Meeting (May 5-6, 2003) G. W. Woodruff School of Mechanical Engineering Atlanta, GA 30332–0405 USA

Upload: phamduong

Post on 03-Feb-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

Fluid Dynamic Aspects of Thin Liquid Film

Protection ConceptsS. I. Abdel-Khalik and M. Yoda

ARIES Town Meeting (May 5-6, 2003)

G. W. Woodruff School ofMechanical Engineering

Atlanta, GA 30332–0405 USA

Page 2: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

2

Overview

Thin liquid protection (Prometheus)

•Major design questions

•“Wetted wall”: low-speed normal injection through porous surface

Numerical simulationsExperimental validations

•“Forced film”: high-speed tangential injection along solid surface

Experimental studies

Page 3: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

3

Thin Liquid ProtectionMajor Design Questions

• Can a stable liquid film be maintained over the entire surface of the reactor cavity?

• Can the film be re-established over the entire cavity surface prior to the next target explosion?

• Can a minimum film thickness be maintained to provide adequate protection over subsequent target explosions?

Study wetted wall/forced film concepts over “worst case” of downward-facing surfaces

Page 4: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

4

Wetted Wall Concept--Problem Definition

Prometheus: 0.5 mm thick layer of liquid lead injected normallythrough porous SiC structure

Liquid Injection

X-rays and Ions

~ 5 m First Wall

Page 5: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

5

Numerical Simulation of Porous Wetted WallsSummary of Results

Quantify effects of• injection velocity win

• initial film thickness zo

• Initial perturbation geometry & mode number• inclination angle θ• Evaporation & Condensation at the interface

on• Droplet detachment time• Equivalent droplet diameter• Minimum film thickness prior to detachment

Obtain Generalized Charts for dependent variables as functions of the Governing non-dimensional parameters

Page 6: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

6

Numerical Simulation of Porous Wetted WallsWetted Wall Parameters

• Length, velocity, and time scales :

[ ]L G/ ( )l g= σ ρ −ρ oU g l= o o/t l U=

• Nondimensional drop detachment time : *d o/t tτ ≡

• Nondimensional minimum film thickness : *min min / lδ ≡ δ

• Nondimensional initial film thickness : *o o /z z l≡

• Nondimensional injection velocity : *in in o/w w U≡

Page 7: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

7

Numerical Simulation of Porous Wetted WallsNon-Dimensional Parameters For Various Coolants

Water Lead Lithium Flibe

T (K) 293 323 700 800 523 723 773 873 973

l (mm) 2.73 2.65 2.14 2.12 8.25 7.99 3.35 3.22 3.17

U0 (mm/s) 163.5 161.2 144.7 144.2 284.4 280.0 181.4 177.8 176.4

t0 (ms) 16.7 16.4 14.8 14.7 29.0 28.6 18.5 18.1 18.0

Re 445 771.2 1618 1831 1546 1775 81.80 130.8 195.3

Page 8: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

8

Numerical Simulation of Porous Wetted WallsEffect of Initial Perturbation

• Initial Perturbation Geometries

Sinusoidal zo

εs

Random zo

Saddle zoεs

Page 9: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

9

Numerical Simulation of Porous Wetted WallsEffect of Evaporation/Condensation at Interface

• zo*=0.1, win

*=0.01, Re=2000

τ*=31.35

mf+=-0.005

(Evaporation)

τ*=25.90

mf+=0.01

(Condensation)

τ*=27.69

mf+=0.0

Page 10: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

10

Numerical Simulation of Porous Wetted WallsDrop Detachment Time

Page 11: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

11

Numerical Simulation of Porous Wetted WallsMinimum Film Thickness

Page 12: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

12

Numerical Simulation of Porous Wetted WallsEvolution of Minimum Film Thickness (High Injection/Thick Films)

Nondimensional Initial Thickness, zo*=0.5

Nondimensional Injection velocity, win*=0.05

Nondimensional Time

Non

dim

ensi

onal

Min

imum

Thi

ckne

ss

Minimum Thickness

Drop Detachment

Page 13: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

13

Numerical Simulation of Porous Wetted WallsEvolution of Minimum Film Thickness (Low Injection/Thin Films)

Nondimensional Initial Thickness, zo*=0.1

Nondimensional Injection velocity, win*=0.01

Nondimensional Time

Non

dim

ensi

onal

Min

imum

Thi

ckne

ss

Minimum ThicknessDrop Detachment

Page 14: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

14

Numerical Simulation of Porous Wetted WallsEquivalent Detachment Diameter

Page 15: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

15

Experimental Validations

GF

ED

C

B

A

HI

J

A Porous plate holder w/adjustable orientation

B Constant-head plenum w/adjustable height

C Sub-micron filterD Sump pumpE ReservoirF CCD cameraG Data acquisition computerH Plenum overflow lineI Flow metering valveJ Flexible tubingK Laser Confocal Displacement

Meter

K

Page 16: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

16

Experimental Measurement-- “Unperturbed” Film Thickness

Water 20 ◦Cwin = 0.9 mm/sθ = 0◦

Mean Liquid Film Thickness = 614.3 µmStandard Deviation = 3.9 µm

Laser Sensor Head

Target Plateθ

10 mm

Laser Confocal Displacement MeterKEYENCE CORPORATION OF AMERICA, Model # : LT-8110

Page 17: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

17

Experimental Variables

Experimental Variables• Plate porosity• Plate inclination angle θ• Differential pressure• Fluid properties

Independent Parameters• Injection velocity, win

• “Unperturbed” film thickness, zo

Dependent Variables• Detachment time• Detachment diameter• Maximum penetration depth

Page 18: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

18

Experiment #W090 --“Unperturbed” Film Thickness

Time [sec]

Liqu

id F

ilm T

hick

ness

[µm

]

• Water 20oC, win = 0.9 mm/s, θ = 0o

• Mean Liquid Film Thickness = 614.3 µm

• Standard Deviation = 3.9 µm

+2σ

-2σ

Page 19: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

19

Experiment #W090 -- Droplet Detachment Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.33 0.36 0.40 0.43 0.46 0.50 0.53

Droplet Detachment Time [sec]

Num

ber F

ract

ion

• Water 20oC, win = 0.9 mm/s, θ = 0o

• Mean Droplet Detachment Time = 0.43 s

• Standard Deviation = 0.04 s

• Sample Size = 100 Droplets

Page 20: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

20

Experiment #W090 -- Calculated Detachment Time

Normalized Initial Perturbation Amplitude, εs/zo

Det

achm

ent T

ime

[sec

]

Mean Experimental value = 0.43 s

+2σ

-2σ

Numerical Model

Experiment

Page 21: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

21

Experiment #W090 --Equivalent Droplet Detachment Diameter

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8 8.1 8.2

Equivalent Droplet Diameter [mm]

Num

ber F

ract

ion

• Water 20oC, win = 0.9 mm/s, θ = 0o

• Mean Droplet Diameter = 7.69 mm

• Standard Deviation = 0.17mm

• Sample Size = 100 Droplets

Page 22: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

22

Experiment #W090 –Equivalent Detachment Diameter

Normalized Initial Perturbation Amplitude, εs/zo

Equi

vale

nt D

ropl

et D

iam

eter

[mm

]

Mean Experimental value = 7.69 mm+2σ

-2σ

Numerical Model

Experiment

Page 23: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

23

Experiment #W090 --Maximum Penetration Distance

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

45 47 50 53 57 62 65 68Maximum Penetration Depth [mm]

Num

ber F

ract

ion

• Water 20oC, win = 0.9 mm/s, θ = 0o

• Maximum Mean Penetration Depth = 55.5 mm

• Standard Deviation = 5.1 mm

• Sample Size = 100 Droplets

Page 24: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

24

Experiment #W090 --Calculated Penetration Distance

Normalized Initial Perturbation Amplitude, εs/zo

Max

imum

Pen

etra

tion

Dep

th [m

m]

Mean Experimental value = 55.5 mm

+2σ

-2σ

Numerical Model

Experiment

Page 25: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

25

Experiment #W090 --Evolution of Maximum Penetration Distance

Time [sec]

Pene

tratio

n D

epth

[mm

]

Simulation

Experiment

Page 26: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

26

Wetted Wall Summary• Developed general nondimensional charts applicable to a

wide variety of candidate coolants and operating conditions

• Stability of liquid film imposesLower bound on repetition rate (or upper bound on time between shots) to avoid liquid dripping into reactor cavity between shotsLower bound on liquid injection velocity to maintain minimum film thickness over entire reactor cavity required to provide adequate protection over subsequent fusion events

• Model Predictions are closely matched by Experimental Data

Page 27: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

27

Forced Film Concept -- Problem Definition

Prometheus: Few mm thick Pb “forced film” injected tangentially at >7 m/s over upper endcap

First Wall

Injection Point

DetachmentDistance xd

Forced Film

X-rays and Ions

~ 5 m

Page 28: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

28

Forced Film Parameters

Contact Angle, αLS

Glass : 25o

Coated Glass : 85o

Stainless Steel : 50o

Plexiglas : 75o

• Weber number WeLiquid density ρLiquid-gas surface tension σInitial film thickness δAverage injection speed U

• Froude number FrSurface orientation θ (θ = 0° ⇒ horizontal surface)

• Mean detachment length from injection point xd

• Mean lateral extent W

• Surface radius of curvature R = 5 m

• Surface wettability: liquid-solid contact angle αLS

• In Prometheus: for θ = 0 – 45°, Fr = 100 – 680 over nonwetting surface (αLS = 90°)

2ρ δ≡

σUWe

(cos )≡

θ δUFr

g

Page 29: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

29

Experimental ApparatusA Flat or Curved plate

(1.52 × 0.40 m)B Liquid filmC Splash guardD Trough (1250 L)E Pump inlet w/ filterF PumpG FlowmeterH Flow metering valveI Long-radius elbowJ Flexible connectorK Flow straightenerL Film nozzleM Support

frame

AB

C

DEF

G

H

IJ K

L MAdjustable angle θ

xz

gcos θg

Page 30: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

30

Liquid Film Nozzles

AB C

x yz5 cm

δ

• Fabricated with stereolithography rapid prototyping

• δA = 0.1 cm; δB = 0.15 cm; δC = 0.2 cm

• 2D 5th order polynomial contraction along z from 1.5 cm to δ

• Straight channel (1 cm along x) downstream of contraction

Page 31: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

31

• Independent VariablesFilm nozzle exit dimension δ = 0.1–0.2 cmFilm nozzle exit average speed U0 = 1.9 – 11.4 m/sJet injection angle θ = 0°, 10°, 30° and 45o

Surface inclination angle α (α = θ)Surface curvature (flat or 5m radius)Surface material (wettability)

• Dependent VariablesFilm width and thickness W(x), t(x)Detachment distance xd

Location for drop formation on free surface

Experimental Parameters

Page 32: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

32

Detachment Distance

1 mm nozzle8 GPM10.1 m/s10° inclinationRe = 9200

Page 33: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

33

xd / δ vs. Fr: Wetting Surface

0

400

800

1200

1600

2000

0 20 40 60 80 100 120

• Water on glass: αLS= 25o

• xd increases linearly w/Fr

• xd↑ as θ↑

• xd↑ as δ↓

Fr

x d/δ

θ = 0°θ = 10°θ = 30°θ = 45°

δ = 1 mm 1.5 mm 2 mm

= −

wetd

min

11.56 16.1δx Fr

Design Window:Wetting Surface

Page 34: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

34

xd / δ: Wetting vs. Nonwetting

0

400

800

1200

1600

0 20 40 60 80 100 120

• Wetting: glass; αLS = 25o

• Nonwetting: coated glass; αLS = 85o

• Nonwetting surface ⇒smaller xd, orconservative estimate

• xd indep. of δ

Fr

x d/δ

Open symbols NonwettingClosed symbols Wettingδ = 1 mmδ = 1.5 mmδ= 2 mmθ = 0°

= −

nwd

min

9.62 45.9δx Fr

Design Window

Page 35: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

35

xd: Wetting vs. Nonwetting

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000

We

x d[c

m]

• Wetting: glass (α= 25°)

• Nonwetting: Rain-X® coated glass (α = 85°)

GlassRain-X® coated glass

δ = 1 mm 1.5 mm 2 mm

θ = 0°

Page 36: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

36

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000We

x d[c

m]

δ = 1 mm 1.5 mm 2 mm

θ = 0°θ = 10°θ = 30°

Effect of Inclination Angle(Flat Glass Plate)

Page 37: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

37

Detachment Distance Vs. Weber Number

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000

We

x d[c

m]

θ = 0°

Glass (αLS=25o)Stainless Steel (αLS=50o)Plexiglas (αLS=75o)Rain-X® coated glass (αLS=85o)

δ = 1 mm

Page 38: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

38

Effect of Weber Number on Detachment Distance(Flat and Curved Surfaces, Zero Inclination)

0

20

40

60

80

100

120

140

160

180

0 500 1000 1500 2000 2500 3000

Plexiglas(αLS = 70°)

We

x d[c

m]

FlatCurved

δ = 1 mm 1.5 mm 2 mmθ = 0°

Page 39: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

39

Effect of Inclination Angle(Curved Plexiglas)

0

50

100

150

200

0 500 1000 1500

• Curved nonwettingsurface: Plexiglas (α = 70°); R = 5 m

• xd↑ as θ ↑

• xd↑ as We ↑

• xd values at θ = 0°“design window”

x d[c

m]

δ = 1 mm 1.5 mm 2 mm

θ = 0°θ = 10°θ = 30°

We

Page 40: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

40

W / Wo: Wetting vs. NonwettingWetting (αLS = 25o)

• Marked lateral growth (3.5×) at higher Re

Nonwetting (αLS = 85o )

• Negligible lateral spreadContact line “pinned”at edges?

• Contracts farther upstream

x / δ

W/W

o

0

1

2

3

4

0 200 400 600 800

δ = 2 mmθ = 0°

Re = 380015000

Open NonwettingClosed Wetting

Page 41: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

41

Cylindrical Dams

• In all cases, cylindrical obstructions modeling protective dams around beam ports incompatible with forced films

• Film either detaches from, or flows over, dam

x

y

x

y

x

y

Page 42: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

42

Forced Film Summary• Design windows for streamwise (longitudinal) spacing

of injection/coolant removal slots to maintain attached protective film

Detachment length increases w/Weber and Froude numbers

• Wetting chamber first wall surface requires fewer injection slots than nonwetting surface ⇒ wetting surface more desirable

• Cylindrical protective dams around chamber penetrations incompatible with effective forced film protection

“Hydrodynamically tailored” protective dam shapes

Page 43: Fluid Dynamic Aspects of Thin Liquid Film Protection …3 Thin Liquid Protection Major Design Questions • Can a stable liquid film be maintained over the entire surface of the reactor

43

AcknowledgementsGeorgia Tech• Academic Faculty : Damir Juric• Research Faculty : D. Sadowski and S. Shin• Students : F. Abdelall, J. Anderson, J. Collins, S. Durbin, L. Elwell, T.

Koehler, J. Reperant and B. Shellabarger

DOE• W. Dove, G. Nardella, A. Opdenaker

ARIES-IFE Team

LLNL/ICREST• R. Moir