flow%analysis% - memorial university of · pdf file•...

47
Flow Analysis

Upload: phungduong

Post on 14-Mar-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Flow  Analysis  

Page 2: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Mechanical  Energy  and  Flow  •  We   are   interested   in   flow   problems   involving  pipes,  networks,  and  other  systems.  

•  As  we  saw  earlier,  this  will   involve  applica>on  of   the   extended   Bernoulli   equa>on   or   the  Mechanical  Energy  equa>on  when  pumps  are  involved:  

P1γ

+V12

2g⎛

⎝ ⎜

⎠ ⎟ −

P2γ

+V22

2g⎛

⎝ ⎜

⎠ ⎟

Total−Pr essure−Difference

= z2 − z1( )Elevation−Change

+ hlosses∑System−Losses

Page 3: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Head  Losses  or  Pressure  Drop  •  The  head  loss  or  pressure  drop  is  due  to  three  contribu>ons:  

•  Head  losses  are  categorized  as  either  minor  or  major!  

•  Care   must   be   taken   to   define   the   V   through  each   appropriately.   It   is   bePer   to   use   mass  flow  rate:    

Page 4: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Minor  Losses  •  Minor  losses  are  piping  losses  that  result  from  components  such  as   joints,  bends,  T’s,  valves,  fiSngs,  filters,  expansions,  contrac>ons,  etc.  

•  It  does  not  imply  they  are  insignificant!    

•  On  the  contrary,  minor  losses  can  makeup  the  majority   of   pressure   drop   in   small   systems  dominated  by  such  components.  

•  Minor  losses  are  modelled  two  ways:  – K    factors  – Equivalent  pipe  length    

Page 5: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Minor  Losses  •  The  K  factor  method  defines  the  pressure  drop  according  to:  

•  The  equivalent  length  method  models  the  loss  as   an   extension   of   pipe   length   for   each  component   that   yields   the   same   pressure  drop.  

•  K  factors  are  more  widely  tabulated.  

Page 6: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Minor  Losses  (Simple)  

Page 7: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Minor  Losses  (Variable)  

Page 8: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Minor  Losses  (Variable)  

Page 9: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Major  Losses  •  Major   losses   are   due   to   piping   and   due   to  major  components  such  as  heat  exchangers  or  other   device   for   which   the   flow   passes  through.  

•  Piping   losses   are   dealt   with   using   fric>on  factor   models,   while   the   major   component  losses   are   dealt  with   using   performance   data  for   the   component  or  first  principles,   i.e.   you  develop  a  model  for  it!  

Page 10: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>on  Factors  •  Fric>on  factors  depend  on  whether  the  flow  is  laminar  or  turbulent.    

•  Pipe   geometry   also   effects   the   value   of   the  fric>on  factor:  circular  or  non-­‐circular.  

•  Surface   roughness   is   also   important   in  turbulent  flows.  

•  Finally   in   laminar   flows,   entrance   effects  (boundary   layer   development)   can   be  significant  if  the  pipe  is  short.    

•  There  are  many  models  for  pipe  fric>on.    

Page 11: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>on  Factors  •  There  are  also  two  defini>ons  of  the  fric>on  factor.    •  The  Fanning  fric>on  factor  is  defined  according  to:  

•  The  Darcy  fric>on  factor  is  defined  according  to:  

•  They  are  related  through:  

Page 12: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>onal  Pressure  Drop  •  We   will   use   the   Fanning   fric>on   factor.   The  pressure  drop  is  defined  according  to:  

•  For   non-­‐circular   ducts   and   channels   we   use  the   hydraulic   diameter   rather   than   D,   but  D=Dh  for  a  tube:  

Δp =4 fLDh

12ρV 2

Page 13: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Pipe  Fric>on  

Page 14: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>on  Factor  Models  •  Laminar  Flow  Re  <  2300  

•  For  non-­‐circular  ducts  we  can    use:  

Page 15: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>on  Factor  Models  •  Developing  Flows  

L  >  10Le  for  entrance  effects  to  be  negligible!  

Page 16: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>on  Factor  Models  •  Turbulent  Flow,  Re  >  4000  – Blasius  Model  (Smooth  Pipes)  

– Swamee  and  Jain  Model  (Rough  Pipes)  

Page 17: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Fric>on  Factor  Models  •  Churchill  Model  of  the  Moody  Diagram  

Page 18: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Pipe  Roughness  

Page 19: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Pipe  Flow  Problems  •  There  are  three  types  of  pipe  flow  problems:  –   TYPE  I  –  Δp  (unknown):    Q,  L,  D  (known)  –   TYPE  II  –  Q  (unknown):    Δp,  L,  D  (known)  –   TYPE  III  -­‐  L  or  D  (unknown):  Δp,  Q,  D  or  L  (known)  

•  Type  I  and  II  problems  are  “analysis”  problems  since  the  system  dimensions  are  known,  and  the  pressure/flow  characteris>c  is  to  be  solved  .  

•  Type  III  problems  are  “design”  or  sizing  problems,  since  the  flow  characteris>cs  are  known,  and  the  system  dimensions  are  solved.  

•  Type  II/III  problems  are  “itera>ve”  as  the  Reynolds  number  is  unknown  when  Q  or  D  are  solu>on  variables.  

Page 20: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.1  (Problem  3.7)  •  Examine  the  system  given  below.  The  water  distribu>on  system  is  to  

be   designed   to   give   equal   mass   flow   rate   to   each   of   the   two  loca>ons,  which  are  not  of  equal  distance  from  the  source.  In  order  to  achieve  this,  two  pipes  of  different  diameter  are  used.  Determine  the   size  of   the   longer  pipe  which   yields   the   same  mass  flow   rate.  You   may   assume   that   all   of   the   kine>c   energy   is   lost   at   the  termina>ons  of   the  pipeline  and  that   the  pressure   is  atmospheric.  The  density  of  water  at  20  C  is    =  1000  kg/m3  and  the  viscosity  is  μ  =  1  x  10−3  Pa  ·∙  s.  

Page 21: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.2  (Problem  3.3)  •  Examine  the  electronics  packaging  enclosure  described  below.  Nine  circuit  boards  

are  placed  in  an  enclosure  with  dimensions  of  W  =  50  cm,  H  =  25  cm,  and  L  =  45  cm  in   the  flow  direc>on.   If   the  airflow   required   to  adequately   cool   the   circuit  board  array  is  3  m/s  over  each  board,  determine  the  fan  pressure  required  to  overcome  the   losses  within   the   system.  Assume  each  board  has  an  effec>ve   thickness  of  5  mm,  which  accounts  for  the  effects  of  the  circuit  board  and  components.  You  may  further   assume   that   the   roughness  of   the  boards   is   2.5  mm.  The  air   exhausts   to  atmospheric   pressure.   In   your   analysis   include   the   effect   of   entrance   and   exit  effects  due  the  reduc>on  in  area.  The    density  of    air  at  20  C  is    =  1.2  kg/m3  and  the    viscosity  is  μ  =  1.81  x  10−5  Pa  ·∙  s.  

Page 22: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.3  (Problem  3.9)  •  You  are   to  analyze   the  flow  through  a  flat  plate  solar  collector  system  as  

shown   in   class.   The   system   consists   of   a   series   of   pipes   connected   to  distribu>on   and   collec>on   manifolds.   Make   any   necessary   assump>ons.  Predict   the   inlet   manifold,   core,   and   exit   manifold   losses   for   the  mechanical  component  shown  below  which  is  to  be  used  in  a  solar  water  pre-­‐heater.  The  design  mass  flow  rate  through  the  system  is  to  be  5  kg/s  of  water.   The   inner   diameter   of   the   pipes   is   12.5  mm   and   there   are   10   in  total,  each  having  a  length  of  80  [cm].  Assume  a  pipe  roughness  for  copper  tubing.  You  may  neglect  fric>on  in  the  manifold.  The  density  of  water  at  20  C  is  998.1  kg/m3,  and  the  viscosity  is  1  x  10−3  Pa  ·∙  s.  

Page 23: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.4  •  Examine  the  system  sketched  below.  Water  is  to  be  pumped  from  a  

lake  at  a  rate  of  5000  L/hr  through  a  pipeline  of  30  cm  diameter,  to  an  elevated  reservoir  whose  free  surface  is  30  m  above  the  lake  surface.  The  pipe  intake  is  submerged  5  m  below  the  surface  of  the  lake  and  the  total  length  of  pipe  is  250  m.  The  pipeline  contains  four  90  degree  flanged  large  radius  elbows.    

–  Develop  the  mechanical  energy  balance  which  gives  the  pressure  rise  (or  head)  required  by  a  pump  to  overcome  all  losses  and  changes  in  eleva>on  to  get  the  water  from  the  lake  to  the  reservoir.  

–  If  the  density  of  water  is  1000  [kg/m3]  and  the  viscosity  of  water  is  0.001  [Pa  s]  at  15  C,  calculate  the  required  pump  pressure  rise  at  the  given  flow  rate.  Assume  that  the  pipe  is  a  commercial  grade  steel.  

–  If  a  pump  capable  of  delivering  a  pressure  rise  of  350  kPa  at  a  desired  flow  of  1.5  kg/s  (5400  L/hr)  is  chosen,  what  diameter  pipe  should  be  used  to  achieve  this  goal.  You  may  neglect  roughness  for  this  part  only.  

Page 24: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Pipe  Networks  •  Pipes  in  series  and  parallel  or  series/parallel:  

Page 25: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Pipes  in  Series  

Page 26: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Pipes  in  Parallel  

Page 27: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Piping  Networks  

At  any  junc>on:   Around  any  loop:  

Page 28: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.5  (Problem  3.8)  •  You   are   to   design   an   air   distribu>on   system   having   the  

following   layout:   main   line   diameter   D   =   50   cm   and   four  equally   spaced   branch   lines   having   diameter   d   =   30   cm.  Each   branch   line   is   to   have   the   same   air   flow.   To   achieve  this,   you   propose   using   a   damper   having   a   well   defined  variable  loss  coefficient,  to  control  the  flow  in  each  branch.  Determine   the   value   of   the   loss   coefficient   for   each  damper,   such   that   the   system   is  balanced.  Each  sec>on  of  duct  work  is  5  m  in  length.  A  total  flow  of  10  m3/s  is  to  be  delivered   by   a   fan.   In   your   solu>on   consider   the   minor  losses  at  the   junc>ons  KB  =  0.8,  KL=0.14,  and  exits  K  =  1.0.  What  fan  pressure  is  required?  Assume  air  proper>es  to  be    =  1.1  kg/m3,  and  μ  =  2  x  10−5  Pa  ·∙  s.  Also  assume  the  main  line  has  a  fixed  damper  with  a  K  =  25.    

Page 29: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.6  •  Consider  the  parallel  piping  system  shown  in  the  sketch  provided  in  class.  The  system  contains  two  heat   exchangers   with   different   pressure   loss  characteris>cs.  If  the  system  as  a  whole  is  limited  to   a   1   MPa   pressure   drop,   determine   the   flow  that  occurs  through  each  branch  (and  hence  each  heat   exchanger).   Consider   minor   losses   for   all  piping   elements   and   pipe   fric>on.   The   working  fluid  is  water  at  standard  temperature  condi>ons.    Also  discuss,   how   the   “equivalent”   system  curve  can   be   developed   for   this   system.   That   is   a   the  pressure  drop  versus  total  flow  rate.    

Page 30: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.7  •  Consider  the  three  reservoir  pumping  problem  sketched   in   class.   Develop   the   necessary  equa>ons  and   solve  using  a  direct   solver  and  Newton-­‐Raphson  method.    

Page 31: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.8  (Problem  3.6)  •  Water  flows  in  a  pipe  network  (described  by  a  sketch  in  

class.  The  pipes  forming  the  network  have  the  following  dimensions:  L1  =  1777.7  m,  D1  =  0.2023  m,  L2  =  1524.4  m,  D2  =  0.254  m,  L3  =  1777.7  m,D3  =  0.3048  m,  L4  =  914.6  m,  D4  =  0.254  m,  L5  =  914.6  m,  and  D5  =  0.254  m.  If  the  mass  flowrate  entering  the  system  is  mA  =  50  kg/s  and  mB  =  25  kg/s  and  mC  =  25  kg/s  are  drawn  off  the  system  at  points  B  and  C,  compute  the  pressure  drops  and  flow  in  each  sec>on  of  pipe.  Ignore  minor  losses  and  assume  that  each  junc>on  is  at  the  same  eleva>on.  

Page 32: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows  •  Two   phase   flows   occur   when   gas/liquid,  liquid/liquid,  or  solid/liquid  flow  together.  

•  Most   calcula>ons   are   done   with   simple  models,   but   more   accurate   predic>ons   use  phenomenological  models  (models  for  special  types  of  flow).  

•  For  gas/liquid  two  phase  flows,  we  frequently  use  flow  maps  to  determine  the  type  of  flow.  

•  For   pressure   drop   calcula>ons   we   will   use  simple  models.  

Page 33: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows  (Ver>cal)  

Page 34: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows  (Ver>cal)  

Page 35: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows  (Horizontal)  

Page 36: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows  (Horizontal)  

Page 37: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows:  Models  •  Two  phase  flow  pressure  drop  is  composed  of  three  contribu>ons:  

– Fric>on  (due  to  mixture  shear  stress  at  wall)  – Accelera>on  (due  to  changes  in  density)  – Gravita>onal  (due  to  eleva>on  changes)  

Page 38: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows:  Models  •  We  must  consider   the  basic   rules  of  mixtures  for  undertaking  calcula>ons:  

Phase  Velocity  

Mass  Flux  

Mixture  Density  

Void  and  Liquid  Frac>ons   Mixture  Quality  

Page 39: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows:  Models  •  Two  phase  flow  models  u>lize  the  concept  of  a  “mul>plier”  to  

correct  a  reference  pressure  drop  or  pressure  gradient:  

•  Based  on  component  (phase)  mass  flow:  

•  Based  on  an  individual  phase  but  with  total  mass  flow:  

Page 40: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Two  Phase  Flows:  Models  •  Three  common  models  used  in  prac>ce:  – Lockhart-­‐Mar>nelli  (simplest)  – Chisholm  (more  complex)  – Freidel  (even  more  complex)  

•  Other  more  complex  models  exist,  but  should  only  be  used  when  you  know  the  type  of  flow  that  you  have,  i.e.  slug,  stra>fied,  annular,  etc.  

•  There  is  great  uncertainty  in  all  models  due  to  the  complex  nature  of  the  flow.  Expect  +/-­‐  20  %  error  for  a  good  model,  +/-­‐  50%  or  more  for  a  simple  model  

Page 41: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Lockhart-­‐Mar>nelli  Model  •  The  simplest  (and  first  model):  

Page 42: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Lockhart-­‐Mar>nelli  Model  

Page 43: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Chisholm  Model  •  The   Chisholm   model   is   more   complex   (and  accurate  to  some  extent):  

Page 44: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Freidel  Model  •  The  Freidel  model  is  yet  more  accurate  (based  on  25,000+  datapoints):  

Page 45: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Model  Selec>on  Criteria  •  Choose   models   based   on   the   following   for  greater  accuracy:  

•  Otherwise   can   use   other  models   to   es>mate  limits  or  bounds  on  parameters.  (see  notes)  

Page 46: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.9  •  Air  and  water  flow  in  a  three  inch  diameter  pipe.  The  mass  flux  is  G  =  500  kg/s/m2  and  the  quality  is  x  =  0.1.  Determine  the  fric>onal  pressure  gradient  required  to  move  the  flow  using  the  Lockhart-­‐Mar>nelli,  Chisolm,  and  Friedel  models.  Assume  T  =  30  C.  

Page 47: Flow%Analysis% - Memorial University of  · PDF file• The%equivalentlength%method%models%the%loss% ... • Type%Iand%IIproblems%are%“analysis”%problems% ... Pipe%Networks%

Example  3.10  •  Oil  and  gas  flow  in  a  ver>cal  oil  well  approximately  1000  m  deep  

and  roughly  4  inches  in  diameter.    Once  at  the  surface  the  mixture  is  separated  and  it  is  determined  that  the  oil  flow  rate  is  150,000  L/hr  (roughly  1300  barrels/hr)  and  the  gas  flow  rate  is  285,000  L/hr  (roughly  10,000  {3/hour).  The  density  and  viscosity  of  the  oil  phase  are  approximately  920  [kg/m3]  and  0.12  [Pa  s]  while  the  density  and  viscosity  of  the  gas  phase  at  surface  condi>ons  are  approximately  0.68  [kg/m3]  and  0.0001027  [Pa  s].  Determine:  

–  the  phase  quality  of  the  mixture,  i.e.  “x”    –  the  mixture  density  –  the  fric6onal  pressure  gradient  of  the  two  phase  mixture  in  the  well  –  the  pressure  at  the  boPom  of  the  well  assuming  that  the  quality  

remains  constant  throughout  the  flow  to  the  surface  and  the  pressure  in  the  separator  is  300  kPa