flow induced vibrations

10
ELSEVIER Chemical Engineering and Processing 34 I995) 289-298 hemical Engineering r i Processing Flow induced vibrations in heat exchanger tube bundles H. Gelbe M. Jahr K. Schr6der Institut fiir Prozess- und Anlagentechnik, Teck, nische Universitiit Berlin, StraJ3e des I7. Juni I35, 10623 Berlin, Germany Dedicated to Prof Dr Dietmar Werner on the occasion of his 60th birthday Abstract A review is given of the most important parameters which have to be evaluated for designing tea1 heat exchangers to withstand flow-induced vibrations. After a short description of the mechanism of excitation, stability diagrams for fluid elastic instability are discussed. The influence of non-uniform velocities in multispan exchangers and a sectional calculation of stability relations is explained by an example using a fluid-dynamic computer program. Some recommendations for structural data and design details are offered in conclusion. ynopse Rohre in Rohrbfindeln, die quer angestr6mt werden, fiihren schon bei kleinen Fluidgeschwindigkeiten st/indige Schwingbewegungen aus. Nach Art der auf das Rohr wirkenden Str6mungskr/ifte unterscheidet man drei Gruppen, die in Abb. 1 aufgelistet sind. Die Turbutenzerregung verursacht zeitlich und 6r- tlich regellose Schwankungen, so dal3 die Amplituden relativ klein bleiben. Diese Grundschwingungen k6nnen zu Langzeitsch~iden der Rohre in den Umlenkblechen durch Materialabtrag ftihren, so dab bei Flfissigkeits- und Zweiphasenstr6mungen in kritischen Apparaten u. U. der Grenzwert f~r die maximal zul~issige Amplitude die kritische Geschwindigkeit bestimmt. Periodische Anregungen werden durch in der Str6- mung auftretende Druckschwankungen hervorgerufen, die auf einen engen Frequenzbereich beschr~inkt sind. Die wichtigste ist die yore Einzelzylinder bekannte Wir- belerregung. Die Strouhalzahlen nach G1. 1) sind yon der Rohranordnung und von der Rohrteilung ab- h~ingig. Abbildung 2 zeigt beispielhaft Strouhalzahlen f~r die versetzte Dreiecksteilung nach Weaver et al. [9]. Diese nehmen mit abnehmbarer Teilung zu. Bei ~= 1,25 betr/igt die Strouhalzahl 3,6. Dam it ist die kritische Anstr6mgeschwindigkeit um den Faktor 18 kleiner als beim Einzelrohr. Die eingebrachte kinetische Energie ist zu klein, umbei Gasen eine bemerkbare Resonanzamplitude zn erzeugen. Auch bei Zweiphasen- str6mungen tritt keine Wirbelerregung auf. Dagegen mug bei Fltissigkeitsstr6mungen mit Wirbelerregung gerechnet werden und/ihnlich wie bei der Turbulenzer- regung ist zu priifen, ob der Grenzwert ffir die maximal zul/issige Amplitude iibe~schritten wird. Fluidelastische Instabilit/it entsteht aus selbsterregten Koppelschwingungen. Abbildung 3 zeigt den typischen Am plitudenverlauf bei zunehmender Anstr6mgeschwin- digkeit eines Bfindels. Whirling entsteht durch schwing- wegproportionale Kr~ifte, die die Amplituden am kri- tischen Punkt zwar steiler ansteigen lassen, es stellt sich aber Gleichgewicht zwischen aufgenommener und dissipierter Energie ein. Bei Galloping dagegen ist der Anstieg abrupt, verursacht durch schwinggeschwin- digkeitsproportionale Krfifte, die der Dfimpfung entge- genwirken und diese additiv zu Null oder negativ wer- den lassen. Es gibt eine Vielzahl yon Modellans~itzen fiir die erregenden Kr~ifte, die von C hen [1] beschrieben werden. Der filteste Ansatz, G1. 4), stammt yon Connors [16]. Verwendet man andere Kraftans/itze, unter Ein- beziehung von geschwindigkeitsabMngigen Anteilen, so erh~ilt man ffir Fluide mit geringen Dichten die gleiche Abh/ingigkeit wie in G1. 4), ftir Fluide mit grogen Dichten Flfissigkeiten) dagegen Exponenten P des Massend~impfungsparameters, die ldeiner als 0,5 sind. Die Prfifung und Anpassung der aus den Modell- ans~itzen gefundenen Abh/ingigkeiten erfolgt in Stabili- t/itsdiagrammen. Ein solches Diagramm ftir ein Bfindel mit versetzter Dreiecksteilung zeigt beispielhaft Abb. 3. Zur sicheren Auslegung ist man gezwungen, die untere

Upload: sara25dec689288

Post on 02-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 1/10

E L S E V I E R Chemical Engineering and Processing 34 I995) 289-298

hemicalEngineering

r i

Processing

Flow induced vibrations in heat exchanger tube bundles

H. Gelbe M. Jahr K. Schr6 der

Inst i tut f i i r Pro zess- und Anlagentechnik, Teck, nische Universit i it Berl in, StraJ3e des I7. Juni I35, 10623 Berlin, Germany

Ded icated to Prof Dr Dietm ar Werner on the occasion o f his 60th bir thday

Abstract

A review is g iven of the m ost imp ortant param eters which have to be evaluated fo r des igning tea1 heat exchangers to w i thsflow-induced vibrations. After a short description of the mechanism of excitation, stability diagrams for fluid elastic instabilitydiscussed. Th e influence of non -un iform velocities in multispan ex chang ers and a sectional calculation of stability relationexplained by an example us ing a f lu id-dynamic computer program. Some recommendat ions for s t ructura l data and design deare offered in conclusion.

ynopse

R o h r e i n R o h r b f i n d e ln , d i e q u e r a n g e s t r 6 m t w e r d e n ,f i i h r en s chon be i k l e i nen F lu idgeschwi nd igke i t e ns t /i nd ige Sc hw i n g bew e g unge n aus . Nac h A r t de r au fd a s R o h r w i r k e n d e n S t r 6 m u n g s k r / i f t e u n t e r s c h e i d e tma n d r e i Gr u pp e n , d i e in Abb . 1 a u fge l is t e t s i nd .

D ie Tu rb u t enz e r r egun g ve ru r s ac h t z e i t l i c h und 6 r-t l ich r ege l lo se Sch w a nkun g en , so da l 3 d i e A mp l i t u denr e l a t i v k l e in b l e ibe n . D ie se G r u ndschwingun g en k6nnenz u Langze i ts ch~ iden de r R o h re i n den Um lenkb l e chend u rch Ma te r i a l ab t r ag f t i h r e n , so dab be i F l f i s s i g ke i t s -u n d Z w e i p h a s e n s t r 6 m u n g e n i n k r it i sc h e n A p p a r a t e n u .U . d e r G renz we r t f~ r d i e m ax im a l zu l~ is si ge Am p l i t uded i e k r i t i s ch e Ge sc h wind igk e i t b e s t immt .

P e r i o d i s c h e A n r e g u n g e n w e r d e n d u r c h i n d e r S t r 6 -m u n g a u f t r e t e n d e D r u c k s c h w a n k u n g e n h e r v o rg e r u f e n ,d i e au f e i nen enge n F r equ enz b e re i c h b e sch r ~ ink t s i nd .D ie w ich t i g s te i s t d ie y o r e E inz e l zy l in de r beka nn t e Wi r-b e l e r r egung . D ie S t rouh a l za h l en na ch G 1 . 1 ) s i n d y o nd e r R o h r a n o r d n u n g u n d v o n d e r R o h r t e i l u n g a b -h ~ ing ig . Abb i ldung 2 ze ig t be i s p i e lh a f t S t r o uha l z ah l enf ~ r d i e ve r s e t z t e Dre i e cks t e i l u n g nach Weave r e t a l .[ 9 ] . D i e se n ehmen m i t abne hmba re r Te i l u ng z u . B e i~ = 1 ,25 be t r /ig t d ie S t rouh alzah l 3 ,6. Dam it i s t d iek r it i sc h e A n s t r 6 m g e s c h w i n d i g k e i t u m d e n F a k t o r 1 8k l e ine r a ls be im E inz e l r oh r. D ie e i n g e b rac h t e k ine t i s cheE n e rg ie is t z u k le i n, u m b e i G a s e n e i n e b e m e r k b a r eR e s o n a n z a m p l i t u d e z n e r z e u g en . A u c h b e i Z w e i p h a s en -s t r 6mungen t r i t t k e i n e Wi rbe l e r r e g ung au f . Da gegen

m u g be i F l t i s s i gke i t s s t r 6mu n g en m i t Wi r be l e r r e gu ngg e r e c h n e t w e rd e n u n d / i h n l i c h w i e b ei d e r T u r b u l e n z err egu n g i s t zu p r i if en , ob d e r G ren zw er t f f i r d i e max im azul / i ss ige Ampl i tude i ibe~schr i t ten wird .

F lu ide l a s t is ch e In s t ab i l i t/ i t en t s t eh t au s s e lb s t e r r eg t eK o p p e l s c h w i n g u n g e n . A b b i l d u n g 3 z e ig t d e n t y p i s c h eA m p l i t u d e n v e r l a u f b e i z u n e h m e n d e r A n s t r 6 m g e s c h w i nd igke i t e i nes B f i n de ls . Wh i r l i ng en t s t e h t du rch s ch wi ngw egpropo r t i ona l e Kr ~ i f t e , d i e d i e A mpl i t u den am k r it i schen Punkt zwar s te i le r ans te igen lassen , es s te l ls ic h a b e r G l e i ch g e w i c h t z w i sc h e n a u f g e n o m m e n e r u ndiss ip ie r te r Energ ie e in . Bei Gal loping dagegen i s t deAns t i eg ab rup t , ve ru r s a ch t du rch s chwing ges chwi nd igke i t sp ropo r t i o na l e Kr f i f t e , d i e de r D f i mpfung e n tgegenwi rken und d i e se add i t i v z u Nu l l ode r n eg a t i v we rden lassen .

Es g ib t e ine Vie lzahl yon Model lans~i tzen f i i r d ieer reg ende n Kr~if te , d ie von C hen [1] besch r ieben werd enDe r f il tes te Ansa tz , G1. 4) , s tam m t yon Con no rs [16]Verwend e t man ande re K ra f t an s / i t z e , un t e r E i n -bez i ehung v o n ge sch wind igke i t s abM n g ig en A n te i l en , se rh~i l t man ff i r F lu ide mi t ger ingen Dichten d ie g le ichAbh / ingigk ei t wie in G1. 4) , f t ir F lu ide mi t grog enDich t en F l f is s i gk ei te n ) dagegen Expo nen t e n P deMa ssend~ imp fungspa rame t e r s , d i e l de i n e r a l s 0 , 5 s i n d

D i e P r f if u n g u n d A n p a s s u n g d e r a u s d e n M o d e l l-ans~i tzen gefundenen Abh/ ingigkei ten e r fo lg t in S tab i l it / i tsd i ag ramm e n . E i n so l c hes D iag r am m f t ir e i n B f in demi t verse tz te r Dre iecks te i lung ze ig t be isp ie lhaf t Abb. 3Zur s i che r en Aus l egung i s t ma n ge zw u ng en , d i e un t e r

Page 2: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 2/10

29 H. Gelb e et al. ; Chemical Enghwering and Processing 34 1995) 289 -29 8

B egrenzu ng z u b enu t z en , d i e f~ r g r 613ere Wer t e de sM a s s e n d / i m p f u n g s p a r a m e t e r s d u r c h d i e C o n n o r s -G le i chun g gu t b e s ch r i eben w i r d . Im F l t is s i gke it s b e r ei chis t d ie S tab i l i t~ . t sgrenze mi t der f / . i r W irbe ler re gun g( ges t ri che l t ge ze ichn e t ) i d en t i s c h . A n de re A u to r en , z .B .P e t t i g r ew und Ta y l o r [ 15 ], z e i gen k e inen Sp r u n g ode r,z .B. Tro id l [19] , h6 here Grenz wer te .

S t ab i l i t ~ i t s d i ag ram me g es t a t t en d i e Be s t i mmung vonk r i ti s c h en S p a l t g es c h w i n d ig k e i e te n u n t e r d e r A n n a h m eidea ler Verh/ i l tn i sse , das he iBt f i i r homogene Bi indelm i t k o n s t a n t e m Q u e r s c h n i t t ( G l e i c h v e r t e i l u n g d e rR o hre , ke ine Ga s s en o d e r R ands pa l t e n ) sowie f i i r kon -s t a n te A n s t r 6 m - u n d S p a l t g es c h w i n d ig k e i t en in y - u n dz - R i c h t u n g .

In r ea l en W~r me t ibe r t r ag e r n w i rd d i e S t r6m ungd u rch E inba u t en g e s t6 r t , s o dab s i ch ung l e i ch f6 rmigeR o h r u m s t r 6 m u n g e n e i n s t e l l e n , z . B . h i n t e r d e mE i n t r i t t s s t u t z en , h in t e r P r a l l - und Umlenk b l ech en undi n f o lge von B i inde l g a s se n u n d Rand spa l t en sow ied a d u r c h b e d i n g t e r B y - p a s s - S t r 6 m u n g e n . C o n n o r s [ 2 2 ]

ha t se ine S tabi l itS . t sg le ichung (4) au f ungle ichm/ iBigeUm s t r6 m un g e rw e i t e r t und e rM l t GI . ( 7) . G l e i chun g(10) def in ie r t d ie ' / iqu iva len te ' k r i t i sche Geschwin-d igkei t , wie s ie e inem Stabi l i t / i t sd iagramm f i i r g le ich-f 6 rm i g e D u r c h s t r 6 m u n g e n t n o m m e n w e r d en k a n n .

Bei der Aus legung rea ler W~irmei iber t rager i s t o ffe i n e abschn i t t s we i s e Be re chnu n g p ro S t r 6mun g sseg -m e n t zweckmfi l3 ig , G o y d e r [ 2 3 ]. A b b i ldun g 5 v e rdeu t -l ich t d ies f t i r mehrfach ges t i i tz te Bi inde l , wobei mi tv a r i ab l en ode r m i t ' / i qu iva l e n t e n ' kons t an t enG e s c h w i n d i g k e i t e n p r o A b s c h n i t t g e r e c h n e t w e r d e nk ann . E in V or t e i l d ie s e r Vo rge h ens we i se i s t es u . a ., d abauch wei te re yon der Rohr l f inge abhf ingige Gr61?en:

M a s s e n b e l e g u n g , D i c h t e - - z . B . i n K o n d e n s a t o r e n - - ,D / im p f u n gen und dam i t auch S t ab i l it ~ . tskon s t an t en [s .G1. (11 )] be r i i ck s i ch t ig t we rd en k 6nne n , w obe i m an d i ev a r i ab l en Pa r ame t e r z we ckm f i l 3 i g p ro Abschn i t t n k on -s t a n t a nn im mt . D u r ch da s d i f fe r en ti e ll e Ene rg ie v e rh f il t -nis AS~,,, we rde n die BeitrS.ge, die d ie ein zeln enAbschni t te zur Ins tab i l i tS . t be i t ragen , gewichte t .

I n r e a l e n W S x m e i i b e r t r a g e r n k e n n t m a n n u r d i e a u fd en j ewe i l i g en S t r6mu n gsq u e r sc hn i t t b ezogene n Mi t t e l -w e r t e t i ' s . .. und h i e r m e i s t a u ch n i c h t d i e r e i n en Que r-s t r o m a n t e i l e . M o d e r n e F l u i d - D y n a m i k - P r o g r a m m eb i e t en heu t e d i e M 6 g l i chke i t , Gesc hwi nd igke i t s v e r t e i l -u n g e n i n R o h r b { i n d e l n z u b e r e c h n e n u n d R e g e l n

f i i r d i e Wah l von g ee ign e t en ko n s t an t en Ges chwind i g -k e i t en zu e n tw i ck l e n , d i e i n de r P r ax i s e i ne e in f acheD i m e n s i o n i e r u n g o h n e R e c h n e r e i n s a t z e r l a u b e n . B e id e r S c h w i n g u n g s b e r e c h n u n g m i t F l u i d - D y n a m i k - P r o -g r a m m e n m u l 3 m a n z u r B e s t i m m u n g d e s k r i t i s c h e nVo l u me n s t r om s I )'k d en Vo lum ens t rom 12 so l a ngevar i ie ren , b i s f / J r e in kr i t i sches Rohr bzw. f t i r e inenRohrspa l t s d ie in GI . (13) def in ie r te S tab i l i tS . t skenn-zahl K~ = I w i rd . D er Z/ ih le r in G1. (13) h~ingt vo mVo l u m e n s t r o m u n d d e r G e s c h w i n d ig k e i ts v e r te i lu n g , d e r

N e n n e r v o n d e n S t r u k t u r d a t e n u n d d e m K - We r t a u sde m S t ab i l i t ~ . t sd i a g ramm ab . Re chne t man ab -s chn i t t swe i s e , so e rMl t man f t h j e d en Ab sch n i t t d i ed i ffe rent ie l le S tab i l i t f i tskennza hlA K s un d Ks*. na ch Gl.( 16 ) . D urch d i e q uad ra t i s che Mi t t e l u n g do m in i e r e n d iAbsc h n i t t e m i t den g r 6 13 t en Wer t e n yonA K s .

Abb i ldung 6 ze ig t b e r ech n e t e Ge s chwind igke i t sv e r

t e i l ungen f i i r den gemesse nen k r i t i s chen Vo lumen-s t rom in e ine m Ver suchs wf i rme t ibe r t r age r m i t 2 Uml enkun ge n , U rbas e t a l. [ 24 ] . Es wu rd e e in e ab sch n i t t swe i s e Be re chn ung d e r zXK ~ -Wer te du r chge f t i h r t , e i n mami t k on s t a n t e n Ge schw ind igke i t en ~V's.,, u nd zu m ande ren mi t be r e chne t en Ges chw ind igke i t e n . Da s E rge bn i s en tMl t d i e Tabe l l e i n Abb . 7 . D ie k r i t i s c heRoh r r e ihe 2 w i rd mi t K* = 0 ,90 b ewe r t e t , b e i G t i lt i g kede r Re chenvo r seh r i f t Mt t e man 1 ,0 e rwa r t e t . E inGrund f t i r d i e A b we ichung k6n n t e i n d e r r i c h t i ge nBezugs g r6Be f ii r d i e G e sehwind igke i t l i e ge n, D ie be id eSpa l t ge s chw ind igke i t en ft ir e in Ro h r i n 2. Re ih e s i n dun t e r s c h i ed l i ch und d i e Ans t r6 m g e se h w ind igke i t aude m Spa l t de r d a v o r l i egend en Re i h e i st g r613 e r. Ve rs u chswe i se w urde f t i r d i e 2 , Re ihe n u r m i t d e r Sp a l tge schwind igke i t de r da v o r l i egend e n Re ihe , d . h . m ide r A ns t r 6m g eschw in d igke i t , g e r ech n e t . Das E rgebn ii s t K ~= 1,07 , d . h . de r M i t te lw e r t au s den be id enGrenz ff i l l en ze ig t e i ne gu t e Obe r e in s t immu ng vo nM o d e l l r e c h n u n g u n d E x p e r i m e n t .

F t i r i dea l e La g e rb ed ingu ngen l a s s en s ieh E igen -f o r m e n u n d - f r e q u e n z e n y o n E i n z e l r o h r e n i n L u fana ly t i s ch be r echne n . W~ih rend d i e be r echn e t en F r equenz en mi t den i n B{ ind e ln au f t r e t enden r ec h t gui i be r e in s timme n , k 6nn en d i e Ampl i t u d e nv e r lS .u f e we gen i c h t b e k a n n t e r L a g e r d f i m p f u n g e n u n d u n t e r -s ch i ed l i c h e r Las t enve r t e i l un g en i n e i n ze ln en A bsc hn i tten s t~ i rker var i ie ren . Bei Rohren mi t un terschiedl icheS t i it z l /i n g en (Fen s t e r roh r e ) i s t i n a l le n Ab sch n i t t e n mie inem e i nhe i t l ichen We r t f , zu r e ehne n , L eyh [2 9 ] konnt e z e ige n , dab s e l b s t i n Ve r suehe n mi t s eh r k l e i ne nLage r sp i e l en von 0 ,15 mm i n de n S t t it z b l ec he n de r e r s tS c h w i n g m o d e - - a u c h i n d e n A b s c h n i t t e n m i t d e n g er i ngs t en S t i i t zw e i t en - - dom in i e r t e .

Be i d en D / i mpfungen s i nd d r e i An t e i l e zu un t e r s che iden : M a te r i a l d f impfung , v i s kose D ' a m p fung un d S t rukt u rd / im pfung . D ie S t ru k tu rd /hnp f u n g l i e f e r t i n r e a l eA p p a r a t e n d e n g r 6 B t e n A n t e i l u n d w i r d v e r u r s a c h

d u r c h m e c h a n i s e h e u n d v i s k o s e R e i b u n g d e r R o h r e ide n Bohr u n gen d e r S t t i t z b l eehe sow ie du r ch S t6 B e ide n B lec h en . J ah r [ 3 2 ] kon n t e z e i g e n , da b d i e Ma t e r i a ld / imp fun g f i ir f e s t e in geschwe iB te R o h r e un abh f ing ivon de r Amp l i t ude i s t , d ab j edo ch be i a x i a l be -weg l i che n , d u rch Gummi r inge f i x i e r t en L age rn e ins t a rke Ampl i t ude nabh ~ i ng igke i t a u f t r a t . D i e S t ru k tu rd S . m p fu n g z e ig t e si ch s o w o h l v o n d e r L a g e r b r ei t e u n dLage r to l e r anz a l s auch vo n den Ampl i t ud en ab h{ i ng igS i e n im mt au l3e rdem zu , we nn d i e S t t i t zb l eehe n i ch t i

Page 3: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 3/10

H. G eIbe eta / . / Chemical Engineering and Processing 34 I995) 289- 298 291

den Schwingungsknoten ( f iquid is tan te S t f tzs te l Ien)angebracht werden .

Aus GI. (22) lassen sich die folgenden konstruktivenMal3nahmen entnehmen: Die Rohre inspannl f inge L ha tden sff irksten Einflul3 auf die Stabil i t / i tsgrenze, gefolgtv o m mi t t l e r en Ro h rd u rc hme ss e r m mit e inem Expo-nenten 1 ,5 . Die W anddicke s geht wie der E last izi -

t~itsmodul E m it der W urzel ein. D er Einflul3 der M assem is t ff r P -~ 0 ,5 vernachl/ i ssigbar. Du rch Erh6 hung derD~impfung Ai l~il3t s ich Ws,k erh6h en, wob ei brei tereLager, kleinere Lagerspiele, ungleiche Stftzabstf indeoder zus~itzl iche D/impferelemente, die den Str6mungs-querschnit t m6glichst wenig versperren sollen, helfenk6nnen. G assen im Bfnde l s ind zu vermeiden oderdurch Dichts t re i fen bzw. Verdr~ingungsk6rper zuversperren.

Bei Rohrbfndeln mi t g le ichen St f tz l f ingen i s t derEin t r i t t sbere ich unter dem Stu tzen der kr i t i sche . Daheri s t d ie Gf te der Ein t r i t t sverte i lung entsche idend ff r denGrenzvo lumens t rom . H i l fe s ind Ja lous ie-Ver te ile rb leche

(ke ine P ra ltb leche ) in Verbind ung mi t e inementsprechend gr61?eren f re ien R aum f iber dem Bf indeloder d ie Anbr ingung gr61?erer oder mehrerer S tu tzenam E in t r it t . Der A bs tand zwischen Stu tzenaus t r i t t understem Rohr soll te nicht kleiner als zweimalRohrd urchm esser sein, Jah r und Gelbe [26] . DerEinf lu l? von Pra l lb lechen w urde von Leyh [29] unter-sucht . Als E rgebnis is t festzuhalten, dal3 Prallblechenicht g eeignet sind, die S chwingung sanffi l l igkeit zuverbessern , so ndern in den meis ten F ~i l len d ieseentsche idend verschlechtern .

1 I n t r o d u c t i o n

Tub e bundles subjec ted to a c ross- flow vibrate evenat low fluid velocities. These f lo w-indu ced vibrat ionsare caused by t ime-dependent forces , which can bedetermined by m easur ing the pressure f luc tua tion a t thetube sur face . In order to des ign rea l hea t -exchangertube bundles capable of w i ths tanding cr i t ica l v ibrat ions ,i t i s necessary to obta in inform at ion about a num ber ofinf luencing parameters .

2 E x c i t a t i o n m e c h a n i s m i n t u b e b u n d l e s

Three g ro u p s o f m ec h an i s m hav e bee n advanced byChe n [1], Pa '/doussis [2] , and W eaver a nd Fitzpa tr ick[3]. They are depicted in Fig. 1.

Turbulent exc i ta t ions ex is t even a t low ups t reamveloc i ties. The y are somet imes super im posed by per iod-ical forces, e .g. by vortex excitat ion. The result ingvibrat ions provide the basis for f luid elast ic instabil i tyarising from self-excited forces.

~ b : l c Shed ~c l / TL~b . l. en [ ~ fe fingwlfh a smaLl . [ M th a br~ : l

F P e : ~ n c y S p e c tr um F r ~ q u a ~ S p e c tr umR u ~ a s t l c

~ ~ g

cou st ic esonanceI ~ 1 5 a t t ~ n c j k

Fig 1 V ibration excitation mecha nisms in tube bundles

2 1 Turbulence excit ation

The h igh f low turbulence in a tube bundle i s thecause o f this form of excitat ion [4]. Since the f luctua-t ions are irregular in space and t ime, their ampli tudesare relat ively small . N evertheless they may be the origin

of long- te rm dam age ar i s ing f rom mater ia l abras ion , sot ha t t he m a x imum a l lowab le am p l i tude ma y de t e rminethe cri t ical velocity for l iquid and two-phase f low.Semi-empirical models have been devised to calculatethese ampli tudes [5,6] .

2 2 Periodical excit ation

Per iodica l pressure f luc tua t ions l imi ted to a nar rowfrequency range , as know n f rom s ingle- tube vor texexci ta t ions , a re the reason for the second mechanism.This phe nom enon ma y exc ite v ibra t ion in l iqu id f low oracoustic resonance in gas f low.

The St rouhal num ber [Eq. (1) ] depends on the tubear ray and on the p i tch ra t io of the bundle :

S r = f w ' D (1 )Woo

Undisturbed K~irmfin vortex streets can only developwhen la rge p i tch ra t ios a re involved; wi th smal l p i tchrat ios, i .e . 1.1 < ~ < 2.0, which are of greater interestf rom a technica l po in t of v iew, vor tex format ion i simpeded by ne ighbour ing tubes . S t rouhal numbers de-pend on the pos i t ion of the tube in the bundle and onthe ex is t ing flow condi t ions ( turbulence , Reynolds nu m-ber, acous t ic resonance) . The ex is tence of two S t rouhal

num bers has been d emo nst ra ted in square- in- l ine a r rayswi th la rge p i tch ra t ios [7] , and d i ffe rent S t rouhal num -bers were measured in the f i r s t and second row ofrota ted sq uare arr ays with r > 1.31 by W eaver et al . [8] .Normal ly, wi th smal l p i tch ra t ios , on ly the second andth i rd rows are endangered by vor tex shedding . Beyondthe th i rd row the per iodic i ties a re neglig ib le comparedto broad-band turbulence . S t rouhal numbers for thenormal tr iangular array [9] are depicted in Fig. 2. Theyincrease with decreasing pitch rat io.

Page 4: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 4/10

2 9 2 H. Gelbe et al. / Chemical Engineering and Processhlg 34 1995) 289-2 98

.Q

E

z

£

7 . . . . . . . . . i . . . . t .

6 - - S r= 111.73 (>1)---Zukauskas Katinas [15]

resent Results

5 + o [31 [151 ,, [251• [ 5 ~[ 6o [ 1 0 ] o [ 2 4 ]

4

\ ~ , B yW e a v e r t al [91

2 \ ' , , I S r = J ~

1 , %.._ .. . . u______ _ _

0 ? 1 I I I I r T [] f f t r I i [ I I I I

1 ( 1 . 5 2 . 0 2 . 5 3 . 0

P i t c h R a t i oz

F i g . 2 . S t r o u h a l n u m b e r s f o r n o r m a l t r i a n g u l a r a r ra y s .

3 .5

Measu rem en t s w i t h p r e s su re r e ce ive r s o r ho t w i r e s[ 9 , 10 ] have con f i r med t he va l i d i t y o f t he uppe r cu rv ed e r ived by Zuka u ska s an d K a t i na s [ 11 ] . S ince t heS t r ouha l num b er i s 3 . 6 f o r z - - 1 . 25 , i t f o l l ows t ha t t hecr i t ica l up s t re am veloc i ty ca lcu la ted wi th fw = . / '1 is 18-t i mes sma l l e r t ha n fo r a s i ng l e t ub e . Thus t h e k ine t i ce ne rgy i n ga s f l ow i s t o o sma l l t o c ause an obs e rvab l er e s onance amp l i t ude . Vor t ex exc i t a t i on a l so d o es no ta ppea r i n t wo-ph ase f l o w. On ly i n l i qu i d f l ow ha s i tb e en obse rved . I n t h a t c a s e i t h a s t o be checkedw h e t h e r t h e t h r e s h o l d v a l u e f o r t h e m a x i m u m a m p l i -tude i s exceeded .

2.3. F luid elast ic instabi l i ty

A typ i ca l r e spons e fo r i n c r ea s i ng f r ee - s t re am ve loc i tyin a bundle i s shown in F ig . 3 . At low ve loc i t ies ,v i b r a t i o n s r e s u l t f r o m t u r b u l e n c e a n d s u p e r i m p o s e dvor tex e xc i ta t ion . Ad di t io na l forces , i .e . g3 andg4, o c c u ra t the c r i t ica l ve loc i ty a t which f lu id e las t ic ins tab i l i tyco mmences . T hes e fo r ce s a r e p ro p o r t i ona l t o t he amp l i -t ude s x a n d y, t o t he r e s pec t i v e v i b r a t i on ve loc it i es 2an d ) :,, and t o t he r e spe c ti v e ac ce l e r a ti ons 2 an d / ; :

m j J + d v . f ' + C y . y = g , ( t ) + g 3 ( y , S , , y , x ) (2)

. , <

- Y q x~b~ent [~.¢fet~qg ftuide{astic instaNily

g.O c r i f ~ t

DF L o w V e L o c i t y

F i g . 3 . Ty p i c a l a m p l i t u d e r e s p o n s e .

m • 2 + d , . . 2 + c x x = & ( t ) + /, ' 4 (2 , 2 , x , y ) ( 3 )

Acce l e r a t i on fo r ce s a r e t aken i n to a c coun t by a dd inf l u id m ass [ 1 ] , l e ad ing t o a r educ t i o n i n t he na t u r af requencies .

W h i r l i ng o r so f t s e l f - exc it a t ion [1 2 ] o ccu r s w he n p r eva i l i n g amp l i t ude -p ropo r t i ona l f o r c e s a c t a ga in s t t hs t i f f ne s s . The y a r e a f f ec t ed by t he mo t io n o f t h e t uba n d o f n e i g h b o u r i n g t u b e s l e a d in g t o e v a d i n g m o t i o n sThe e f f ec t o f hyd rodynamic coup l i n g i nc r ea se s w i th igher s ta t ic pressure in a gas as wel l as in l iqu id f low[13 ] . How eve r t he i n f l uence o f damp ing bec omes domnan t f o r l i qu id s [ 1 ] . A t t he s t a r t o f wh i r l in g , an equ il i b r i um ex i s t s be t ween t he a b so rbe d and d i s s i pa t edenergy.

In con t r a s t , t h e amp l i t ude ca u sed by ga l l op ing , a l soca l led hard se l f -exc i ta t ion [12] , increases abrup t ly. S incthe fo r ce s a r e p r o po r t i ona l t o t he v i b r a t i o n ve lo c i t ythe y a c t aga in s t da mp ing and ma k e t h e r e su l t an t f o r ceze ro o r n ega t i ve [2,14 ]. The m o t ion o f a t ube ex c i te d bg a l lo p i n g is i n d e p e n d e n t o f t h e m o t i o n o f n e i g h b o u r i ntub es . Usua l l y wh i r l i ng and ga l l op i n g a r e su pe r imp oseand f l u id e l a st i c v ib r a t ions co mm e n c i n g w i th w h i r li nch ange t o ga l l op in g a t a c e r t a i n p o i n t . F rom expe r ien ce , wh i r l i ng domina t e s i n a ga s f l o w th rough d i sp l a c e d t u b e b u n d l e s a n d g a l l o p i n g o f t e n d o m i n a t e s il i qu id f l ow th rough i n - l i n e t ube bund l e s . Th us , f o r apa r t i cu l a r d e s ig n , i t is im p o r t an t ( a ) t o k no w th e c r i t i cave loc i ty for f lu id e las t ic ins tab i l i ty and avoid i t , (b) tde mons t r a t e t he admi s s ib i l i t y o f t he am p l i t u de s r e acheby t u rbu l e n t bu ff e t i ng ( fo r l i qu i d a n d tw o-p ha se f l o w)(c) to ca lcu la te and check the c r i t ica l ve loc i ty and thma t ch ing amp l i t ude a t t he s t a r t o f vo r t ex e xc i t a t i o n(bu t on ly fo r l i qu id s ) a n d (d ) t o dem o n s t r a t e t he po s s ib l e i nvo l vem en t o f a co u s t i c r e son anc e ( bu t on ly fogases) .

3 . Es t im a t ing the c r i t ica l ve loc i ty fo r f lu id e l a s t i cins t ab i l i t y

A n u m b e r o f m o d e l s a n d t h e o ri e s h a v e b e e n p r o -p osed , a s d e sc r i bed b y Chen [ 1 ] and Pe t t i g r e w a ndTay l o r [ 15 ]. Th e f i rs t wa s advanc ed b y Co nno r s [ 16] . Has sumed an equ i l i b r i um be twe en t he e x c i t i ng f o r c e , t hfo r c e coe ff i ci en ts depe nd in g on t he am p l i t ud es x an d y

an d t he dam p ing fo r ce . F r om th i s he de r i ve d t h e f o llowing s tab i l i ty c r i te r ion for whi r l ing :

WS.k __ K . _I/@ 'A (4)w ~. = f . D ' 4 P D -

wh ich i nc l udes t he d im ens i o n l e s s c r i t i c a l ve lo c i t y w ~=,t h e m a s s d a m p i n g p a r a m e t e r ( m . A ) / ( p . D 2 ) a n d t h ef ac to r K wh ich i s o f t e n ca l l ed t he s t ab i l i t y c on s t a n t .

T h r o u g h t h e u s e o f o t h e r f o r c e m o d e l s f o r t h ef u n c t i o n s & a n dg4, inc luding the force coeff ic ien t

Page 5: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 5/10

H. Gelb e et al. / Chemical Engineering and Processing 34 1995) 289 -29 8 2 9 3

O i m e n s i o n t e s s E r i t iz a { V e t o c i t yw~

1 0 0 . . . . . . . . I . . . . . . . . i . . . . . . . . L• ~ h ~ AV E R ~ 8 1 ) o v

V K~RTI~1974 ~ l~- ~R t~80t

* HBJCR VII:~4T 1S8¢1

f l 0 - i ~ , , m - n a ~ e , t a ~ m ~ I ° / .

F o p ' r = 1 , 3 7 5 : - • ,y r o i d t

lVu d e x S h e d d , - , . -

S t = 0 , : 8 1 , , , . . . . I . . . . . . . . I . . . . . . . . ] i

0 , 1 1 1 0 I 0 0

M a s s D a m p i n g P a r a m e l e P m ._ AAp D 2

Fig. 4. Stability map obtained by Chen [1] using the C onnors equa-tion.

depe nd on the vibr at ion velocity (galloping) [17], thesame dependence as expressed in Eq. (4) for f luidswi th a low dens i ty has been obta ined . However forf luids wi th a h igh dens i ty, the exponent o f the massdamping parameter in Eq. (4) becomes smal le r than0.5. For high f luid densit ies, correlat ions are often usedwhich make i t poss ib le to cons ider the damping sepa-rately:

= K . • A P 5 )

The s tab i li ty cons tan t K i s a func t ion of the model , thebundle geometry, the p i tch ra t io and the d imens ionlessvelocity. A l is t summarizing the published values ofKc~ and /? can be fo und in the pa pers of Ch en [1] andAndjeli6 [12].

F i t t ing the exper imenta l da ta and ver i f ica t ion of themodels m ay be achieved by mean s of s tab i l ity :maps , in

which va lues for we are p lo t ted aga ins t the mass dam p-ing parameter. Chen [1] has publ i shed maps for fours tandard bundle a r rays . The two s taggered ar raysdem onst ra te a dependence on p i tch [18] . As an exam-ple , a map for a bundle wi th a normal t r iangular a r rayis shown in F ig . 4 . The measured va lues a re va l id for

= 1 .375 and were conver ted us ing the equat ion:

w ¢ Owe (r = 1.375) = (6)

2.105 (z - 0.9)

The s t ruc tura l da ta m, A a nd f ma y be de l :e rminedeither in air or in a non-turbulent f luid. Chen hasrem arked tha t the va l id ity of Eq. (6) has only been

dem onst ra ted for gases.From Fig. 4 i t wil l be seen that variat ion in the

measurement va lues i s qu i te ex tens ive and can be ex-p la ined by s t ruc tura l in f luences , unknown boundarycondi t ions , non-cons is ten t use or inexac t va lues in thes t ruc tura l da ta, o r incom ple te docum enta t ion . For apractical design, i t is necessa ry to use th e low l imitwhich i s wel l descr ibed by the Connors equat ion forh igher mass dam ping param eters . C hen [1] has ver i fiedtha t a d iscont inui ty occurs in the s tab i l i ty curve on

changing f rom a compress ib le to an incompress ib lemedium. I t can be seen f rom Fig . 4 tha t the lowerstabil i ty threshold in the l iquid range is identical withtha t for vor tex exc i ta t ion (dot ted l ine) . Other au thors ,e.g. Pett igrew and Ta ylor [15], have n eglected this dis-cont inui ty or have measured h igher thresholds , e .g .Tro idl [19]. I t is assum ed that the extensive scattering of

measurement va lues in the l iqu id reg ion resu l t s f romthe overlapping l imits for vortex excitat ion and fluidelast ic instabil i ty. Thus, for a safe design, the lowestcurve should be used . Turbulence exc i ta t ion and f lu idelast ic instabil i ty in two-phase f lows have been investi-gated b y Jatzlau [20] and Che n [21].

Cri t ical velocit ies determined from stabil i ty maps areonly va l id for idea l condi t ions , i . e . homogeneous bun-dles with a constant overall cross-section, with no side-passages and wi th cons tan t ups t ream and gap ve loc i tiesin any cross-section. Such condit ions can only beachieved in wind tunnels . The use of da ta obta inedfrom a s tab i l ity map in the des ign of a rea l hea t

excha nger will be described in the following sections.

4 . C o n s i d e r a t i o n o f a n o n - u n i fo r m v e l o c i ty d i s t r i b u ti o n

In rea l hea t exchangers , the f low through the bundleand around the tubes i s d i s t r ibu ted behind the in le tnozz les , by impingement p la tes, ba nes and by-passgaps . This leads to ax ia l and rad ia l s t ream componentswhich cause a n on-un i form f low field a roun d the tubes .

Con ners [22] imp roved his stabil i ty equation (4) fornon-u ni form f low fields , bu t m ain ta ined the assum pt ionof whi r ling . The ex tended Conno rs eq uat ion i s then:

~ L 1 / 2

j m ( z ) ' @ [ ( z ) d zw* =f..~)S'kD = K ' ~-7'Ai 0

/ ~ z~ p ( z ) V s ( z ) @ } ( z )dzd

7)

In this e quation, ~)S,k is the cri t ical gap velocity of th ebundle normal to the tube , @i(z) the i th v ibra t ionmode , Ss(Z ) the re la t ive ve loc i ty func t ion and L thetube length.

I f the tube mass and f lu id dens i ty a re cons tan t , i tfol lows from Eq. (7) that:

~)S.k= K . A/A-~'mf .D JD2.pwith the energy rat io:

z) • @7° . )d z-

S i ~

0L@ (z) dz

and w he r e th e p rodu c t

8 )

(9)

Page 6: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 6/10

294 H . G e l b e e t a l . / C h e m i c a l E n g i n e er i n g a n d P r o c e s s h l g 3 4 1 9 9 5 ) 2 8 9 - 2 9 8

rl=

9 z) O z)" / r ' - I "

------ ki_ImLk

1 , l 1 10 l~ % t~, t~=t~, ~ l~ l~I i 3 4

, _ A l l _,

Fig. 5. Sectional calculat ion undertake n in stages.

~?'S,k ~ , = ff'S,k= WS,k (10 )i s the ' equiva len t ' c r i t ica l ve loc i ty ~?S,k , wh ich s hou ld b et he s ame a s t ha t ob t a i n ed f r o m t h e s t ab i l i t y map fo runi form f low, due to Eq. (4) .

When de s ign in g a r e a l h ea t exc hange r, i t i s r e com-m e nded t ha t eve ry s ec t i on n be c a l cu l a t e d s ep a ra t e ly[ 23 ] . Th i s i s sho wn in F ig . 5 f o r a mu l t i span b u nd l e .Th e ca l cu l a t i on ma y b e ba sed on va r i ab l e o r on ' equ i v -a len t ' cons tan t ve loc i t ies per sec t ion .

T h e a d v a n t a g e o f th i s m e t h o d i s t h a t a d d i t i o n a lp a r ame te r s wh ich a r e dep ende n t o n z , e . g . mas s pe ru n i t l eng th , d ens i t y, da mp ing a nd s t ab i l i t y cons t an t s ,c a n be cons id e r ed . F o r t h i s pu rpos e , i t i s u se fu l t oa s sume mean v a lue s w i t h i n a g iven s ec t i o n n :

w * = / , ,~ , K '2 • (11):7D 2 jw h e r e P i s t h e e x p o n e n t o f th e m a s s d a m p i n g p a r a m e -t e r i n t he s t ab i l i t y equa t i o n . Th e d i f f e r en t i a l ene rgyra t io :

~ ~ s ( Z ) ' * } ( z ) d zAS i.,, _ l~

foL ¢ ~ z )dz

i 2 (z) dz ~ (z) dz~ . z . ~ J g .

= V ~ , . g = R J ~ , . ( 1 2 )

f ~ @ ~ ( z ) d z f ? O ~ ( z ) d z

d e f ine s t he p ropo r t i on o f i n s t ab i l i t y i n e v e ry s e c t i o n .T he quan t i t y q s , , , i s t he ' equ iv a l en t ' c o n s t a n t ve loc i t yr a t i o f o r s ec t i on n , kno w l edg e o f wh i ch i s nece s s a ry fo ra s a f e appa ra t u s d e s ig n , a t l e a s t f o r s e c t i o ns w i t h t helo nges t span l e n g t h . Norma l l y i n r e a l hea t ex change r s

o n ly t he m ean v a lue R Js, ,,, d e t e rm i ne d f r om t he vo l ums t r eam d i v ided by an a s sumed c ro s s - s e c t i on , i s know nHow ev e r, w i th mod e rn f l u id -dynamic p r og rams , i t iposs ib le to ca lcu la te ve loc i ty f ie lds in tube bundles . Othe ba s i s o f t he se ca l c u l a t i ons and u s ing t he eq ua t i o ng ive n above , i t s hou ld b e pos s ib l e t o de r i ve ru l e s f osugge s t i n g ' e qu iva l en t ' co n s t an t ve l o c i t i e s wh ic h m ak

s imp l e d e s ig n s p os s i b l e w i t h ou t t he h e l p o f co m pu te r sUsing Eq. (8) or (11) , i t i s poss ib le to ca lcu la te the

m ax imum gap ve l o c i t y. H o we ve r, t he d e s i gn e r n eed s t oknow the c r i t i c a l vo lume s t r e am fo r a g iven hea t exchan g e r. Us ing f l u id -dyna mi c p ro g r am s , t h e vo lum est ream has to be var ied unt i l for a c r i t ica l gap re la t ivto a c r i t ica l tube the s tab i l i ty re la t ion K~ def ined in Eq(13) beco mes equ al to 1 .0 . I t fo l lows f rom Eqs . (4) and(8) tha t th e pote nt ia l r i sk of ins tab i l i ty re la tive to ths t a b i l i t y c o n s t a n t K can be exp re s s ed a s :

K = __ ~ s~ = f ( f O 1 3 )Ws.k f (O , p , A i , f , m , K)

The numer a to r i n Eq . ( 13 ) de pends o n t h e i n l e t v o l umst ream I: and the ve loc i ty d is t r ibu t ion , whi le the den o m i n a t o r d e p e n d s o n t h e s t r u c t u r a l d a t a a n d t h e Kva lue e x t r a c t ed f rom t h e s t ab i l i t y ma p . T he s t ab i l i t ythre sho ld va lue i s K* = 1 . In tha t case I~ '= ~ ;'k and~¢'s = *¢'s.k.

I n t he s imp l e s t c a se , i f a ll p a r am e t e r s a r e cons t an tover z , Eq . (8) can be used wi th :

NS ,= Z AS,-.,, (14)

I x

When ca l cu l a t i ng s e c t i o n pe r s ec t i o n , one ob t a in s ad i ffe rent ia l s tab i l i ty re la t ionship for each sec t ion:

a x e , , , = 1 : )WS ka

wi th

K * = ~,~,=, AK~.,~ (16)

Bec ause o f t he sq u a re r o o t va lue , se c t i o ns w i th t heh i g h e s t A K * , v a l u es d o m i n a t e .

The v e loc i ty d i s t r i bu t i on ca l cu l a t e d f o r t he measu redc r i t i c a l vo l ume s t r e am in an exp e r im en t a l h ea t ex -cha nge r wi th tw o baff les i s shown in F ig . 6 [24] . Also

shown wi th do t t ed l i ne s a r e t he a s s u m ed c ons t a n t veloc i t ies . In th i s f igure , the f i r s t th ree rows behind then ozz l e a r e w indow tubes an d a r e t h e r e f o r e n o t sup -p o r t e d be tween s ec t i ons 4 a nd 5 . S e c ti o ns 1 and 2 a r en o t on - s t r e a m.

Sect ion a l ca lcu la t io ns of the AKs*. va lues have beenma d e , ba s ed f i rs t o n t he a s sum pt io n o f con s t an t ve loci t ies ~ :' s, , for the ra t io b e twee n the v olum e s t ream andt he f r ee c ro s s- s ec t ion o f t he bu n d l e ( in Se c t i on 3 t h e f r ec ro s s - s ec t i o n be low the nozz l e ) . S e cond ly, c a l cu l a t ed

Page 7: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 7/10

H. Ge lbe e t a I . / Chemic a l Eng inee r ing and ProcessO*g34 I995)2 8 9 - 2 9 8 295

g a p v e l o c i t y i n m / sI O 0

50

0

5 0

1 0 0

1 5 0

n = 1

,,, , I,,

t

2 3 4 5

Fig. 6. Calculated gap veloci t ies and mo de shape.

. . . . . . . . . 1 . r o w

. . . . 2 r o w- - 3 r o w

Fig. 7. Stability relationships for a real heat exchanger.

Gap K~ fo r assumed K~ fo r ca lcula tedconstant veloci t ies gap veloci t ies

10 4-I 05 0.58 1.14 1.28 0.23 0.68 0.72

205 -20 6 0.58 1.04 1.19 0.19 0.88 0.90305 -30 6 0.58 0.95 1.11 0.17 1.13 1.14

with K = x/zXK 2 + AK~,~+s and K = 2.48.

velocit ies have been used. The results are shown in Fig.7 [25].

The cons tan t ve loc i ty model predic ts va lues whichare too high because:

1. The a ssum ed velocity behin d the nozzle in section 3was too high (AK*,s = 0.53 instead of 0.23, 0.19 and0.17, respectively); how ever, this has no ma jor effectdue to the dominat ing inf luence of the~ K ~ , 4 + 5

values.2. For the f irst three tubes in the window, the full

volum e f low was ass umed to be a c ross- flow. In fac t ,for the f irst row the potential r isk of instabil i ty isleast because of the greater axial f low (0.68 insteadof 1 .14) whi le the h ighes t i s found in the th i rd row(1.13 in comparison to 0.95).

For cri t ical row 2, the value K* is 0.90 instead of 1.0 aswould have been expected . There i s an impor tan t rea-son for th i s devia t ion: for non-uni form f low around atube , the qu es t ion ar i ses which i s the r ight da tum valuefor the velocity. Thus, the two gap velocit ies for a tube

in a row can d i ffer. Addi t iona lly, the ups t ream veloc ityof a tube in the gap of the preceding row can be h igherthan tha t in the same row. This was the case for thesecond row in the sections 3, 4 + 5. For this reason, ame an va lue should be es tab l i shed to a l low the force onthe tube to be modelled exactly. Stabil i ty relat ions forthe second row were ca lcu la ted us ing the gap ve loc i tyof the row before , i . e . wi th the ups t ream veloc i ty. Theresul t was K* = 1 .07 . Thus , i t may be concluded tha tthe model approximate ly f i t s wi th the measurements .

Fur th er va l ida t ions of the ex tended Conno rs equat ionhave been d escr ibed by J ahr and Gelbe [25 , 26].

The h igher va lues of K* ( th i rd row) re la t ive to thesecond row are surpr is ing . This can be expla ined by thefac t, tha t the ca lcu la t ion model ignores by-pass s t reamsin the holes of the tube suppor t p la te . These lower theveloc ity ma xim um in the th i rd row and hence wil l

reduce the K* value in practice.

5 Inf luence of st ructure and design

5 1 Structure data

For the de terminat ion of c r i t ica l ve loc i ties f rom s ta -b i l ity d iagrams, a good knowledge of the fo l lowings t ruc ture da ta i s requi red : v ibra tion f requency ~ . ) ;damping (A;) ; and mass per uni t l ength (m) . Amongsto ther th ings , they depend on the des ign de ta i l s of thehea t exchanger, par t icu lar ly on the suppor t condi t ions

of the tubes and o n the num ber and des ign of thebaffles.The f requen cy and m ass per uni t l ength ma y be

ca lcu la ted wi th a reasonable degree of exac tness . How-ever, a goo d es t imat ion of the dam ping va lues is no tposs ib le and they have to be d e termined af te r cons t ruc-t ion of the appara tus . An other problem is , tha t depend -ing on the s tab i l i ty equat ion used , the s t ruc ture da tament ioned above are needed for d i ffe ren t boundarycondit ions , i .e. ( i ) in the absence o f the influence ofa fluid (vacuum), (ii) in a static fluid for (a) a singletube (wi thout in te rac t ions) and (b) a tube bundle (cou-p led v ibra t ion m odes) , and ( i i i ) wi th f lu id-coupled

forces, al l under real ist ic support condit ions. Becausebo un dar y con dit ion ( i) is the easiest to real ise, Che n [1]referre d his stabil i ty diagram s to this state. S tate ( i i)(a)is also often used as a boundary condit ion (e.g. Pett i-grew an d T aylo r [15]) , while condit ions ( i i )(b) and( i ii ) a re se ldom used . Chen [27] dem onst ra ted th a ti t i s permiss ib le to choose one or o ther of boundarycon ditio ns (i) or (ii)(a) if this is also done for all threeparameters .

5 I i Frequency and vibration mo deI f a very smal l deform at ion is assumed, the fo l lowing

equat ion can be der ived f rom the par t ia l d i ffe ren t ia l

equat ion for the f ree v ibra t ion of a homogeneous rod[28]:

22 x / -~ (17)= 27cL2

In th is equat ion , the2i quant i t ies a re the e igenvaluesfor the v ibra t ion modes @i and d epend on theboundary condi t ions . Trac t ive forces (e .g . for f ixedsuppor ts ) increase the na tura l f requency, while pressureforces (e.g. due to heat extension) lower i t .

Page 8: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 8/10

296 H. Gelbe et al. / Chem ical Engineerhlg and P rocesshlg 34 (I995) 289-29 8

For ideal support condit ions, i t is possible to calcu-la te the na tura l modes and f requencies of s ingle tubesin a i r ana ly t ica l ly. Al thou gh the ca lcu la ted f requenciesf i t very wel l wi th the measured va lues , the ca lcu la tedampl i tude curves d i ffe r as a resu l t o f unkn own suppor tdamping and different loads in the bundle section [29].The na tura l f requency for f lu ids of h igher dens i ty de-

creases due to the addi t iona l f lu id mass to be moved.The inf luence of dens i ty and v iscos i ty has been de-scribed by Stockmeier [30].

The same va lue off . has to be used in a l l sec t ions fortubes wi th d i ffe rent span length fu l l on s t ream. Leyh[29] showed that , even in experiments with a very smallbaff le c learance of 0 .15 mm , the f i r s t mode dom inatedfor sections with the shortest span length. The f irstmode usually leads to the lowest cri t ical velocity. How-ever, i f other modes are excited due to the f low field, ah igher mode can become cr i t ica l . This may happen i fmo re than one in le t nozz le is used or i f the bundle i sonly part ial ly subjected to cross-flow.

Baffle clearances are also very important . The f irstmo de i s the only one wi th the lowes t f requency whenthe clearances are sufficiently small and t he sup ports areac t ive . Whether tubes may v ibra te in the mode of aninac t ive suppor t wi th a cor responding low f requency,which could reach the ins tab i l i ty a rea before the sup-por t becomes ac t ive wi th increasing ve loc ity and ampl i -tude , needs to be demonst ra ted . A repor t aboutv ibra t ions in a condenso r due to inac tive suppor ts wi thc learances in the a rea of technica l use be tween 0 .4-0 .6mm has been publ i shed by Yeh and Chen [31] .Long- te rm damag e occurred caused by increased ampl i -tudes at relatively low velocities.

5 .1 .2 . DampingDamping may be def ined by the logar i thmic decre-

ment :

A = 2 n ( (18)

or by the damping ra t io :

d(19)

~ = 2,v/-

Three d i ffe rent types of dam ping need to be d is tin-guished:

1 . Mate r ia l damping ,which occurs main ly in the sup-ports and is not significant.

2 . Viscos i ty o r f lu id dam ping ,which cannot be neglec tedfor f luids with higher density and viscosity.

3 . S t ruc tu ra l damping ,which i s the main type in rea lhea t exchangers . I t i s caused by mechanica l andviscous fr ict ion of the tubes in the baffles and also byimpact forces.

Dam ping genera l ly depends on am pl i tude and hence onthe v ibra t iona l mode . Impact forces due to la rger sup-

por t c learances can cause non- l inear behaviour andhys teres i s pheno men a. Jahr [32] dem onst ra ted tha t m a-te r ia l dam ping fo r weld ing fixed tubes does not dependon the ampli tude. In contrast , axial f i 'eely supportedtubes , which are only suppor ted by O-r ings, have a h ighampl i tude dependence . S t ruc tura l damping var ies wi ththe width an d the c learance to le rance of the suppor t . I t

increases if the baffles are not f ixed in the vibrat ionnode poin ts (no equid is tan t suppor ts , see Jendrze jczyk[33] and Chen [1]).

Values for s t ruc tura l damping have been g iven byPett igrew et al . [34]. Fo r gase ous med ia, A = 0.044 hasbeen recom men ded as a safe va lue , whereas for l iqu idsA = 0.062 if f > 100 Hz; for low er frequencies, high erva lues a re recomm ended. However, the damping canalso be up to f ive-t imes higher and c an differ by a facto rof ca . 2 wi th in the same bundle .

5 .1 .3 . M as s pe t un i t l eng thThe m ass damp ing pa r a me te r and t he f r equency a r e

usual ly ca lcu la ted us ing the mass per un i t l ength of thetube plus the f luid mass inside. The effect of the hydro-dynam ic mass on a s ingle tube in inf in i tely expandedmedia has a l so to be cons idered:

1m ~ = -~ zrpD 2 2 0 )

Fo r air a nd l ight gases, this effect can be n eglected. Th eaddit ional mass increases for tubes near to the wallsand for tubes vibrat ing in a bundle. Chen [1] hasdefined a coefficient C,, for th e effective addit io nal mass:

c.m , = -- ~ n p D (21 )

and has suggested l imit ing values as a function of thepitch rat io. For low ampli tude values, C, usually isassumed to be uni ty.

5 .2 . h ~ u e n c e o f d e s ig n

I f the mom ent of inert ia, which depends on thediameter D and the wal l th ickness s of the tube , i sintroduced into Eqs. (17) and (4), an expression for thecri t ical velocity for f luid elast ic instabil i ty can be ob-tained:

D2 AfWS,k K('c) • 2~ • E 0'5' s 0'5'L2 m O , 5 _ i , 2 2 )

The fo l lowing des ign sugges tions can be der ived f romthis equation. The span length L has . the greatest influ-ence on the s tab i l ity of the bundle and the longes t spanlength is the most imp or tan t (window tubes) . In c r i t ica lhea t exchangers , window tubes must be avoided . Theinf luence of the mean d iameter Dm of the tubes i s ofnext impor tance . Tubes wi th smal l d iameters (conden-sors ) cause more v ibra t iona l problems. The wal l th ick-

Page 9: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 9/10

H. Gelbe et al. / Chemical Engineering and Processing 34 1995) 289 -29 8 297

h e s s s a n d t h e m o d u l u s o f e l a st i c it y E h a v e a n i n f lu e n c ew h i c h i s p r o p o r t i o n a l t o t h e i r s q u a r e r o o t . T h e i n f lu e n c eo f t h e m a s s m c a n b e n e g l e c t e d f o r P ~ - 0 . 5 . I f t h edam ping A,. i s inc reased , the c r i t i ca l ve loc i ty can beh igher. To ach ieve th i s e ffec t , b roader suppor t s , lowers u p p o r t c l e a ra n c e s , n o n - e q u i d i s t a n t s p a n l e n g t h s o r a d -d i t i o n a l d a m p e n e r s , w h i c h s h o u l d h a v e n o i n f l u e n c e o n

the f low f ield, are useful .F o r n o r m a l t r i a n g u l a r a r r a y s a n d r o t a t e d s q u a r e

a r rays , Soper [18] d i scovered th a t the c r i t i ca l ve loc i tyWS,k inc reases w i th inc reas ing p i t ch ra t io ~ . Ga ps wi th inthe bundle mu s t be avo ided o r c losed by us ing sea l s t r ipso r d i s p l a c e m e n t b o d i e s . O n t h e o n e h a n d b y - p a s ss t reams reduce the ve loc i ty in the bundle , whi le on theo t h e r h a n d t h e f l u i d v e l o c i ty i n t h e g a p s c a n b e c o m e s oh igh tha t a d jacen t tubes beg in v ib ra t ing , e specia] ily whe nthe f low i s fo rced back in to the bundle a t obs tac les .

F o r t u b e s w i t h e q u i d i s t a n t s p a n l e n g t h s , t h e i n f l o warea beh ind the nozz le i s c r i t i ca l . The c r i t i ca l vo lumes t r e a m c a n b e i n c r e a s e d i n p r o p o r t i o n t o t h e r a t i o o f th e

nozz le to the f ree bundle c ross - sec t ion . Hence the l imi t -i n g v o l u m e s t r e a m d e p e n d s o n h o w w e l l f l o w i s d i s -t r i b u t e d b e f o r e e n t r a n c e i n t o t h e b u n d l e . T h i s c a n b ea c h i e v e d b y u s i n g f l o w d i s t ri b u t o r s b e h i n d t h e n o z z l e o rby us ing severa l o r b igger in le t nozz les . The d i s tanceb e t w e e n t h e n o z z l e o u t l e t a n d t h e f i r s t t u b e r o w s h o u l dno t be smal le r than two tube d iamete rs [26] .

The in f luence o f impinge me nt p la tes has been inves t i -ga ted by Le yh [29] . In co n t ras t to f low d i s t r ibu tors ,p l a t es a r e n o t c a p a b l e o f i m p r o v i n g t h e v i b r a t i o n r e si s-t ance . In fac t , the c r i t i ca l ve loc i t i e s were lower in mos tof the cases s tud ied . I f i t i s no t poss ib le to avo id p la tes ,t h e i r d i a m e t e r s h o u l d b e b i g g e r t h a n t h e d i a m e t e r o f t h e

i n l e t n o z z l e . T h e d i s t a n c e b e t w e e n t h e i m p i n g e m e n tp la te and the she l l shou ld be o f a s i ze su ff i c ien t Lo avo idh i g h r a d i a l v e l o c i t y c o m p o n e n t s f r o m t h e e d g e o f t h ep la te ac t ing on the tubes .

6 Conclusions

An overv iew is g iven o f the pa ram ete rs which a ffec tt h e v i b r a t i o n a l e x c i t a t i o n i n a t u b e b u n d l e h e a t e x -changer as we l l a s ru les fo r avo id ing the i r nega t ivein f luence on the c r i t i ca l ve loc i ty. The app l icab i l i ty o fs tab i l i ty maps wi th rea l a ppa ra tus has bee n inw,~s tiga tedin de ta i l , a s we l l a s the in f luence o f the ve loc i ty f i eld andt h e s t r u c t u r a l d a t a . I t h a s b e e n d e m o n s t r a t e d t h a t aconserva t ive sa fe des ign i s poss ib le , bu t tha t someim por tan t p rob lem s e .g. dam ping va lues ) s t il l r equ i reresearch .

Nomenclature

c spr ing cons ta n t , kg s -2Cp forc e coef ficien t, -

dDE

Sfwgl ...4I

KK *L177

n

NPS

SiASi,,,S rt

9k

W ~

W S

WS,k

}VS,k

WS,kW

X, y

2 , 22 , 2Z

CA

P

21A i

PC

~ s

v e l o c i t y - p r o p o r t i o n a l d a m p i n g , k g s - td i a m e t e r o f tu b e , mm o d u l u s o f e l a s t i c it y, k g m - I s - 2n a t u r a l f r e q u e n c y o f t u be s , s - 1v o r t e x s h e d d i n g f r e q u e n c y, s -ex te rna l fo rces , kg m s -2m o m e n t o f i n e r t i a ,m 4

s tab i l i ty cons tan t , -s t ab i l i ty re la t ion , -span l eng th , mmass pe r un i t l eng th , kgm - 1

num ber o f a span sec t ion , -num ber o f a l l span sec t ions , -e x p o n e n t o f m a s s d a m p i n g p a r a m e t e r, -tube wal l th ickness , menergy f rac t ion , -d i ffe ren t ia l energy f rac t ion , -S t r o u h a l n u m b e r, -t ime, sv o l u m e s t r e a m ,m 3 s -~

cr i t i ca l vo lum e s t ream, m 3 s -f ree in f low ve loc i ty, m s -1gap veloci ty, m s -1c r i t i ca l gap ve loc i ty, m s -m axi mu m cr i t ica l gap ve loc i ty, m s -~equ iva len t c r i t i ca l gap ve loc i ty, m s -1d imens ion less c r i t i ca l ve loc i ty, -a m p l i t u d e s , mvibra t iona l ve loc i t i e s , m s -v ib ra t io na l acce le ra t ions , m s -2c o o r d i n a t e a l o n g t h e t u b e , m

expo nen t in s t ab i l i ty equa t io n , -d a m p i n g e x p o n e n t i n s t a b i l i t y e q u a t i o n , -d a m p i n g r a t i o , -e igenvalues, -l o g a r i t h m i c d e c r e a s e i n d a m p i n g , -dens i ty, kgm - 3

pi tch ra t io , -n o r m a l i z e d a m p l i t u d e f u n c t i o n , -normal ized ve loc i ty d i s t r ibu t ion func t ion , -

ndices

ikn

S

n u m b e r o f m o d ecr i t i ca l va luessec t ion o f a bundleg a p

References

[I] S.S. Chen,Flow-induced Vibration of Circular Cylindrical Struc-tures, Hemisphere Publ i sh ing Corpora t ion , W ashing ton , DC,I987.

[2] M.P. PaYdoussis , Flow -induced Instabil i t ies of Cylindrical Struc-tures, Appl. Mech. Rev., 401987) 163-175.

[3] D.S. Weaver and J.A. Fitzpatrick, A review of flow-inducedvibration in heat-exchangers,Proc. Int. Conf. Flow-induced

Page 10: Flow Induced Vibrations

8/11/2019 Flow Induced Vibrations

http://slidepdf.com/reader/full/flow-induced-vibrations 10/10

298 H. Gelbe et al. / Che mical Engineer#1g and Processing 34 (I995) 28 9-29 8

Vibration, Bowness-on-I~Sndermere, UK, I98 7,paper A1, pp.1 - i 7 .

[4] P.R, Ow en, Buffeting excitation of bo iler tube vib ration, J.Mech. Eng. Sei., 7(I965) 431-439.

[5] M.P. Pa idoussis, A review of flow-induced vibra tions in reac-tors and reactor components,Nuel . Eng. D es . , 74(I982) 31-60.

[6] F. Axisa, J. Antunes, B. Villard and M. Wullschleger, Randomexcitation of heat exchanger tubes by cross-flow,Int. Syrup.Flow-h~dueed Vibration and Noise, Flow-induced Vibration ofCylinder Arrays in Cross-Flow, Chicago, 1988,Vol. 2, pp. 23-46.

[7] S. Ziada and A. Oengoeren, Vortex shedding in an in-linetube bundle with large tube spacing,hit. Syrup. Flow-hulueedVibration and No ise, Flow-indu ced Vibration of CylOlderArrays #z Cross-Flow, Anaheim , I992,HTD Vol. 230 , pp . 1-28.

[8] D.S. Weaver, H.Y. Lian and X.Y. Huang, Vortex shedding inrotated square arrays,hzt . Symp. Flow-hzduced Vibration attdNoise, Flow -induced Vibration of C ylinder Arrays #z Cross-Flow,Anaheim, 1992,HTD VoI . 230 , pp. 39-54 .

[9] D.S. W eaver, J.A. Fitz patrick and M. E1 Kashlan, S trouhalnumbers for heat exchanger tube arrays in cross flow,A S M EPVP Conf. Exhib., Chicago, 1986,ASM E, New Y ork, 1986, Vol.

104, pp. I93-200.[10] W. Gog, U ntersuchungen der Erregerrnechanismen am E inzel-rohr und a m querangestr6mten sehwingenden Rohrbfindel,Dis-sertation,TU Berlin, 1982.

[11] A.A . Zukaus kas and V. Katina s, Flow-induced vibra tion inheat-exchanger tube banks, in E. Naudascher (ed.),IAHR/ IU-TA M Syrup. Practical Experiences with Flow-induced Vibrations,Karlsruhe, 1979,Springer-Verlag, Berlin/Heidelberg/New York,1980, pp. 188-196.

[12] M. And jeli6, Stabilit~.tsverhalten querangestr6m ter Rohrbfind elmit versetzter Dreiecksteilung,Dissertation,UniversitS.t Han-nover, 1988.

[13] W. Hahn, Untersuchungen zum Einflu3 des statischen Druckesauf Schwingungen gasdurchstr6mter W~.rmeaustauscher,Disser-tation D82,RWTH Aachen, 1989.

[14] S.S . Chen, GuideIines for the instability flow velocity of tubearrays in crossflow, J.Sound Vib., 93(1984) 439-455.

[15] M.J. Pettigrew and C.E. Tay lor, Fluid -elastic instability of heatexchanger tube bundles: review and design recommendations,Int. Cot¢ Pro e. Ins t . Mec h. En g., Flow-induced Vibration,Brighton, 199I,paper C 416/052, pp. 349-368.

[16] H.J. C onnors, An experimental investigation o f the flow-inducedvibration of tube arrays in cross flow,Pb.D. Thesis,University ofPittsburgh, 1970.

[17] S.J. Price an d M.P. Pa /doussis, Fluid-e lastic instability of adouble row of cylinders subjected to a crossflow,ASM E J . Vib.Aeoust. Stress Reliab. Des., 105(1983) 59-66.

[18] B.M.H. Soper, Th e ef fect of tube layou t on the fluid-elastic

instability of tube bundles in crossflow,Trans . ASME , I05(1983) 744-750.

[19] H. Tro idl, Str6mungsinduzierte Schwingungen querangestr6mterRohrbfindel bei versetzter und fluchtender Rohranordnung,Dis-sertation,TU Mfinchen, 1986.

[20] B. Jatzlau, Sehwingungsanregung in zweiphasig durchstr6mten,unbeheizten und beheizten Rohrbfindeln,Dissertation, T UMfinchen, 1990.

[21] S.S. Chen, Flow-induced v ibrations in two-phase flow ,J. Pres-sure Vessel Teclmol., I13(1991) 234-241.

[22] H.J. Connors, Fluid-elas tic vibration of hea t exchanger tubearrays,ASME 3 . Mech. Des. , 100(1978) 347-353.

[23] H.G.D. Ooyder, A practical method for assessing tube vibrationin heat exchangers,Int. S)'mp. Flow.induced Vibration and No ise,Flow-induced Vibration of C )'limler Arm),s ht Cross-Flow, Ana-heim, 1992,HT D Vol. 230, pp. 237-260.

[24] L. Urbas, T . Leyh, M . Jahr and tI. G elbe, Berechnung derdreidimensionalen Geschwindigkeitsverteilung in Rohrbtindel-Wfirmefibertragern und Simulation der Schwingungsanregung,Chem.-Ing.-Teeh., 66(t994) 938~940.

[25] M. J ahr and H. Gelbe, Die B edeutung tier berechnetenGesch windigkeitsverteilungen f fir die sehw ingungssichere A usle-gung yon Wgrmefibertragern,GVC -Jahrestagtmg, Aachen, I994,Chem.-htg.-Teeh., 66(1994) 1172-1173.

[26] M. Ja hr a nd H. Gelbe, The effect of calculated velocity distribu-tions on the vibration behavior of tube bundles,A S M E P V PConf., Mbmeapolis, I994,ASM E, New York, 1994, Vol, 94-4,pp. 7-13.

[27] S.S. Chen. In stability mechanism and stability criteria of a groupof circula r cylinders subjected to cross.flow. Pa rt I. Theory, J.Vib. Aeoust. Stress Reliab. Des., I05(1983) 51-58.

[28] E. Hfibner,Technische Schwingu~lgsh, re in ihren Grundzi~gen,Springer-Verlag, Berlin, 1957.

[29] T. Leyh, SmSm ungsinduzierte R ohrbfindelschwingungen ineinem gasdurchstr6mten realen W~rmefibertrager,DissertationD83,TU Berlin, 1993.

[30] D. Stockmeier, Einflut3 der Viskositfit auf die Sehwingungen inRohrbfindelapparaten,Dissertation,UniversitS.t Hann over, 1990.

[31] Y.S. Yeh and S.S. Chert, Vibration of comp onent cooling waterheat exchangers, AS ME PVP Conf , Nashvil le , TN, I990,AS ME , New Y ork, 1990, Vol. 189, pp. 153-164.

[32] M. Jahr, Einflfisse yon Strukturparametern und Str~5-mungsverteilung au f das Sch~ingverhalten mit Luftangestr6mter Rohrbfindel,Dissertattolt D83 ,TU Berlin, 1995.

[33] J.A. Jendrzejczyk, Dyn amic characteristics of h eat exchangertubes vibrating in a tube support plate inactive mode,A S M EPV P Co1~, New Orleans, I985,ASM E, New York, 1985, Vol. 7,pp. 251-262.

[34] M.J. Pettigrew, H.G.D. Goyder, L.Z, Qiao and F, Axisa, Damp-ing of multispan heat exchanger tubes. Part 1. In gases,A S M EPV P C onf Exhib., C hicago, 1986,ASM E, New York, I986, VoI.104, pp. 81-87.