flow in porous media [compatibility mode]

Upload: elena-proca

Post on 04-Jun-2018

226 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    1/19

    .

    . B :

    4.62 4.62

    4.63 4.64

    ( , , ); 4.65 4.66 4.67 ;

    4.68 4.68

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    2/19

    10 3 10 5 ;

    ;

    /

    10 6 109

    ;

    (

    )

    , 10 9 ,

    ;

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    3/19

    A

    .

    .

    B .

    .

    : D ; ; .

    A ( ) , , , , ,

    .

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    4/19

    Figure Fluid motion inside of the uniform porous body

    +

    ( ) .

    =

    The probability tohave the fluid

    element at time

    to x position

    The probability tha tshows the fluidelemen t at time to xx position withan evolution along of

    x+ for the following time

    +

    The probability thatshows the fluid

    element at time to xx + positionwith an evolution alongof x for the following

    time (4.260)

    ),xx(qP),xx(pP),x(P ++=

    A Taylor expansion of ),xx(P + and ),xx(P are used in last relation at their right ter

    2

    22

    x),x(P

    2x

    x),x(Px

    )qp(),x(P

    =

    +

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    5/19

    The multiplication

    x

    )qp( , that has a velocity dimension The ratio

    2

    x 2 has the dimension of one diffusion coefficient (L 2T -1); it is recognized as dispersion

    coefficient (D)

    ( ) (D), , .

    2

    2

    x

    ),x(PD

    x

    ),x(Pw

    ),x(P

    =

    +

    ; .

    .

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    6/19

    With this model the liquid element evolves inside of porous body with random motions having the velocitiesm,..1i,v i = .

    These random jumps of velocity from a state to other can be explained by random changes of the flow poresection or by random changes of the flow rate that go in each pore from each pull road coupling of pores fromthe porous body The completion of this description is given by the consideration that accepts a classical states connection. So

    here the elementary states connection becomes a Markov type: == ij*ijij app .

    :

    1,...mi, )vx(Pp),x(P i jm

    1 j jii ==+

    =

    ),x(P),x(Px

    ),x(Pv

    ),x(P j

    m

    i j,1 j jii

    m

    i j,1 j ij

    i

    i

    i +

    =

    ==

    Relation (4.265) shows that the time evolution of the fraction of the fluid particles that attain at time theposition x with the velocity iv is determined by the following particles types :a) the particles having thespecified velocity iv that leave the position x; b) the particles having the specified velocity iv that arrive at

    position x ; the particles that arrive at position x and change their velocity from jv to iv .

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    7/19

    For the particular case where we have two evolution states for the fluid velocity ( v v1 += , vv 2 = ) thegeneral model (4.265) comes to the relations set (4.266). Here the consideration == 2112 shows that weconsider the case of the isotropic porous body.

    ),x(P),x(Px

    ),x(Pv

    ),x(P21

    11 +

    =

    ),x(P),x(Px

    ),x(Pv

    ),x(P12

    22 +

    =

    ),x(P),x(P),x(P 21 +=

    2

    22

    2

    2

    x),x(P

    2v),x(P

    21),x(P

    =

    +

    ( )

    2

    22

    x

    ),x(P

    2

    v),x(P

    =

    ( )

    =0for x 00for x 0

    )0,x(Pf

    =+ 0for x 00for x 1

    )0,x(Pf

    ,

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    8/19

    C

    ===0 x

    x

    impimpimp d),(Pd),(Pd),)x(P),x(P

    The particularization of this last expression to the specified problem contains the following observations: a),x(P is normalized having values inside of the interval [0, 1]; b) ,x(P is symmetric with respect to the

    plane 0x = . So we can write:

    >=x

    0

    imp 0for x d),(P21

    ),x(P

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    9/19

    =

    => d)v2

    exp(v22

    1)P(x, ; 0x

    2

    2x

    02 )

    v2

    x(erf

    21

    21

    dze1

    21

    2

    z

    v2

    x

    0

    2

    2

    =

    +=

    dv

    1I

    v1

    1v

    1Iv2

    e21

    )P(x, ; 0xx

    022

    2

    1

    22

    222

    2

    0

    ++

    =

    vx0forxvv

    Ixvxv

    2xvv

    Ie21

    1n

    222n

    2n

    2220

    pp

    = vfor x 0),x(P f

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    10/19

    ( ,)

    / 2/ 0.

    2 1 0 2 1

    0.

    1

    ( ,)

    / 2/ 0.5

    2 1 0 2 1

    0.5

    1

    ( )

    Differences between parabolic (up presented) and

    hyperbolic (below presented) ),x(P evolution

    ,

    , ; ( )

    .

    ,

    =

    = 2

    v2

    )x(limD

    22

    0,0x

    For the porous body with constitutive elements of height dimension such as the fixed packed bed, where thcharacteristic dimension is that of the packed element (diameter d of the packed body), the frequency of thevelocity change is d / v= (after each passing over a packed body the local fluid velocity v changes itsdirection)

    Now if we use this value of in the dispersion coefficient we obtain the famous relation 2D / )vd(Pe == .

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    11/19

    .D ,

    .

    .

    .

    A

    ;

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    12/19

    i

    Micro-particle movingaround of t hedeposition bed particle

    Micro-particleinput

    Flow direction

    Porous bed particle

    External liquidboundary layer

    Retainedparticle

    Depositiontrajectory

    Non-depositiontrajectory

    Figure 4.34 Micro-particle retention by one element of the fixed bed struc ture

    , , , , , ,

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    13/19

    ( )

    This coefficient noted as )c,( s s0 depends on its initial value ( 0 ) and on the local concentration of theretained solid around the bed deposition elements ( ssc ). It is defined as the fraction of the solid retained fromthe suspension in an elementary length of the granular bed

    dx1

    cdc

    )c,(vs

    vsss0 =

    =

    = ss

    f

    ss

    vs

    vs cw1c

    GA

    dxdc

    0 ; cwc

    vs0f ss ==

    0 ; ccwc

    ssvs0f ss f=

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    14/19

    ss

    f

    vs0vs c

    wc

    xc =

    002

    =

    =

    ss

    f

    vsvs cw

    c x

    c

    0x

    ccxc vsvs

    0vs

    2

    =

    +

    +

    0c 0x 0 vs ==

    0vvs cc 0x 0 ==

    =

    =1n

    n

    1n0

    0

    0v

    vs )exp(T)!1n(

    )x()xexp(

    cc

    )!2n(

    )(TT

    2n

    1nn

    =

    )exp(T1 =

    =

    +=

    1i

    2 / 10i

    2 / i

    0

    0

    0v

    vs ])x[(Ix

    )x((expcc

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    15/19

    Dintr-un experiment bazat pe teoria Mint s-a stabilit c pentru un strat filtrant valoarea ini ial

    a coeficientului de filtrare este 0 = 4 m -1 , iar valoarea coeficientului de deta are este =

    0,057 h -1 . Pentru un filtru lung de 0,1 m realizat n totalitate din acela i material, calcula i

    calitatea filtrantului, ca procentaj din valoarea ini ial , la nceputul opera iei i dup 6 ore delucru.

    A : vsvs c

    x

    c0 =

    )exp( 0

    0

    Lc

    c

    vs

    vs =

    Cu datele numerice 0 = 4 m-1

    , L = 0,1 se ob ine %6767,0)1,04exp(0 ===vsvs

    c

    c.

    n ( 0L)n-1 (n-1)! ( )n-2 (n-2)! T n exp(- )

    1 1 1 1 - - - 1,41 0,715 0,670

    2 0,4 1 0,4 1 1 1 0,41 0,715 0,079

    3 0,16 2 0,08 0,344 1 0,344 0,066 0,715 0,003

    4 0,064 6 0,0107 0,117 2 0,058 0,008 0,715 0,000

    ( )

    )!1(

    10

    n L n

    )!2()( 2

    n

    n A :

    %2,75752,00

    ==vs

    vs

    c

    c

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    16/19

    A deep bed stochastic model [4.5] identifies for micro-particle evolution in thefiltration bed two elementary processes:

    a) a type I process that considers for micro-particles their motion with thevelocity vv1 = ; this velocity is induced by the surrounding flowing fluid; this

    process type physically corresponds with the non deposition of the micro-particle;b) a type II process that shows the possibility of the micro-particle to take

    the deposition way; from the viewpoint of the motion the velocity of this processis 0v 2 = .

    The stochastic model accepts a Markov type connection between its two elementary states. So with 12 we

    define the transition probability from the type I process to type II process. The transition probability from atype II process to a type I process is 21 . By ),x(P1 and ),x(P2 we note the probability to locate themicro-particle at the position x and time with a type I evolution respectively with a type II evolution

    ),x(P),x(Px

    ),x(Pv

    ),x(P221112

    11 +

    =

    ),x(P),x(P),x(P 1122212 +=

    C , 5, 14.11.2011

    0vvs c / ),x(c ),x(P),x(P),x(P 21 +=

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    17/19

    0),x(P

    )(x

    ),x(Pv

    x),x(P

    v),x(P

    122121

    2

    2

    2

    =

    ++

    ++

    By considering the combined variable 2 / vxz = we eliminate the mixed partly differential term from theequation

    +

    ++

    +

    +z

    ),2 / vz(P)(

    2v

    z),2 / vz(P

    4v),2 / vz(P

    12212

    22

    2

    20),2 / vz(P)( 1221 =

    ++

    0)P(z,xz , 0 x, 0 ==>=

    0P)P(z, 0z , 0 x, 0 =>=>

    The important values of the jumping frequencies from one state to other characterize, as specific, the commondeep bed filtration. This observation permits the transformation of the above-presented hyperbolic model intothe parabolic model

    0),

    2v

    z(P

    z

    ),2v

    z(P

    2

    v

    z

    ),2v

    z(P

    )(4

    v

    1221

    12212

    2

    1221

    2

    =

    ++

    +

    +

    =

    +

    +

    0)P(z,xz , 0 x, 0 ==>=

    0P)P(z, 0z , 0 x, 0 =>=>

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    18/19

    +

    +

    +=

    +

    1221

    2

    1221

    12

    01221

    12

    v

    vx

    erf 121

    P)P(x,

    , 0v

    x

    Now we go on and complete the validation of discussed model. As it is known only the experimentalinvestigation can validate or invalidate one process model. For this concrete case we appeal to theexperimental data for the filtration of a dilute Fe(OH) 3 suspension (no more than 0.1 g Fe(OH) 3 /l ) in a sandbed with various heights and constitution particle diameters. The considered experiments report themeasurements at constant filtrate flow rate and consist in the time evolution of the Fe(OH) 3 concentration atthe bed exit when at their input the solid concentration remains unchanged

    (%)%)%

    2 4 6 8 10

    1

    2

    0

    100

    ( )

    ),0(P / ),H(Pc / ),H(c vovs =

    C , 5, 14.11.2011

  • 8/13/2019 Flow in Porous Media [Compatibility Mode]

    19/19

    Deep bed filtrationfactor

    Factor value Stochastic model parameters

    12 21

    H [cm] t=20 0CGv=20cc/mindg=0.5-0.31mmC0=6.75mg/lFe(OH) 3

    2 1.14 3263 0.592 458.95 0.262 420.22

    6 17.66 9611.41

    t [0C] H=6cmGv=20cc/mindg=0.5-0.31mmC0=6.75mg/lFe(OH) 3

    20 17.95 9805.130 2.6 2748.1435 22.71 1347.5

    40 4.337 3028

    G v[cm 3 /min] H=6cmt=30 0Cdg=0.5-0.31mmC0=6.75mg/lFe(OH) 3

    20 3.054 3020.6630 13.34 6698.9640 62.08 22605.24

    50 118.2 42908.68

    C 0[mg/l] Fe(OH) 3 H=6cmt=30 0Cdg=0.5-0.31mmGv=50cm 3 /min

    6.75 111.7 4049313.49 82.7 28999.5

    26.98 34.18 10294.41

    dg [mm] H=6cm

    C0=6.75mg/lFe(OH) 3 Tf =30 0 Gv=50cm 3 /min

    0.31-0.2 754.98 355456.890.5-031 110.65 39773

    0.63-0.5 22.409 8795.980.85-0.63 23.82 6449.82

    The process factors influence on the stochastic models parameters

    dg28.256C872.2Gv003.375.67 012 +=

    dg10023.1C1268Gv111110081.3 504

    21 +=

    C , 5, 14.11.2011

    Firstly it is observable that assumption of height values for2112 and parameters is excellently covered by the experimentally

    starting data. Secondly, we find out that all process factors

    influence the stochastic models parameters values.