fixed point theorems for expansive mappings in js-metric …54 manoj kumar, vishnu narayan mishra,...

16
Advances in Dynamical Systems and Applications. ISSN 0973-5321, Volume 12, Number 1, (2017) pp. 49-63 Β© Research India Publications http://www.ripublication.com Fixed Point Theorems for Expansive Mappings in js-Metric Space Manoj Kumar 1 , Vishnu Narayan Mishra 2,3* , Asha Rani 4 , Asha Rani 5 , Kumari Jyoti 6 1 Department of Mathematics, Lovely Professional University, Punjab, India. 2 Applied Mathematics and Humanities Dept., S.V. National Institute of Technology, Surat 395 007, Gujarat, India. 3 Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484 887, India. 4,5,6 Department of Mathematics, SRM University, Haryana, India. Abstract In this paper, we introduce Kannan, Chatterjea, Zamfirscu and Rhodes type expansive mappings in the setting of generalized metric spaces (js-metric spaces). The results proved in the setting of generalized metric spaces generalizes the results in metric spaces, dislocated metric spaces, b-metric spaces, and modular spaces. We also illustrate our results with the help of certain examples. Keywords: Fixed point, js-metric space, Kannan expansion, Zamfirscu expansion, Rhodes expansion. 1. INTRODUCTION In the last few decades, fixed point theory is being one of the most interesting research subject in non linear analysis. In 1922, Banach [1] gave a new direction in research by introducing Banach Contraction Principle. After that Kannan [2], Corresponding Author

Upload: others

Post on 06-Aug-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Advances in Dynamical Systems and Applications.

ISSN 0973-5321, Volume 12, Number 1, (2017) pp. 49-63

Β© Research India Publications

http://www.ripublication.com

Fixed Point Theorems for Expansive Mappings

in js-Metric Space

Manoj Kumar1, Vishnu Narayan Mishra2,3*, Asha Rani4,

Asha Rani5, Kumari Jyoti6 1Department of Mathematics, Lovely Professional University, Punjab, India.

2Applied Mathematics and Humanities Dept., S.V. National Institute of Technology, Surat 395 007, Gujarat, India.

3Department of Mathematics, Indira Gandhi National Tribal University, Lalpur, Amarkantak, Anuppur, Madhya Pradesh 484 887, India.

4,5,6Department of Mathematics, SRM University, Haryana, India.

Abstract

In this paper, we introduce Kannan, Chatterjea, Zamfirscu and Rhodes type

expansive mappings in the setting of generalized metric spaces (js-metric

spaces). The results proved in the setting of generalized metric spaces

generalizes the results in metric spaces, dislocated metric spaces, b-metric

spaces, and modular spaces. We also illustrate our results with the help of

certain examples.

Keywords: Fixed point, js-metric space, Kannan expansion, Zamfirscu

expansion, Rhodes expansion.

1. INTRODUCTION

In the last few decades, fixed point theory is being one of the most interesting

research subject in non linear analysis. In 1922, Banach [1] gave a new direction in

research by introducing Banach Contraction Principle. After that Kannan [2],

Corresponding Author

Page 2: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

50 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

Chatterjea [3], Zamfirscu [4], Rhodes[5] gave generalisation of this result. In 1984,

Wang [6] introduced the expansive mappings and proved fixed point results for them.

Now a days, the concept of standard metric spaces plays a role of fundamental tool in

fixed point theory and also attract many researchers because of development of fixed

point theory in standard metric spaces. In last few years, several generalization of

standard metric spaces came into existence like b-metric spaces[7], dislocated metric

spaces[8], modular spaces[9]. Recently in 2015, Jleli and Samet [10] introduced a

new generalization of metric spaces (js-metric space).

In this paper, we establish some new results of fixed points by defining Kannan type,

Zamfirscu, Rhodes fixed point theorem in generalized metric spaces (js-metric

spaces) which recovers several topological spaces including dislocated metric spaces,

b-metric spaces, modular spaces.

2. PRELIMINARIES

Definition 2.1[10] Let 𝑋 be a nonempty and π’Ÿ:𝑋 Γ— 𝑋 β†’ [0,∞] be a given mapping.

For every 𝑝 ∈ 𝑋, let us define the set

𝐢(π’Ÿ, 𝑋, 𝑝) = {{𝑝𝑛} βŠ‚ 𝑋: limπ‘›β†’βˆž

π’Ÿ(𝑝𝑛, 𝑝) = 0}.

Definition 2.2 [10] Let 𝑋 be a non empty set and π’Ÿ:𝑋 Γ— 𝑋 β†’ [0,∞]be a mapping.

Then (𝑋,π’Ÿ) is a generalized metric on 𝑋 if it satisfies the following conditions:

(π’Ÿ1) for every (𝑝, π‘ž) ∈ 𝑋 Γ— 𝑋, we have π’Ÿ(𝑝, π‘ž) = 0 ⟹ 𝑝 = π‘ž;

(π’Ÿ2) for every (𝑝, π‘ž) ∈ 𝑋 Γ— 𝑋, we have π’Ÿ(𝑝, π‘ž) = π’Ÿ(π‘ž, 𝑝);

(π’Ÿ3) there exists 𝐢 > 0 such that if (𝑝, π‘ž) ∈ 𝑋 Γ— 𝑋, {𝑝𝑛} ∈ 𝐢(π’Ÿ, 𝑋, 𝑝),

then π’Ÿ(𝑝, π‘ž) ≀ πΆπ‘™π‘–π‘šπ‘ π‘’π‘π‘›β†’βˆžπ’Ÿ(𝑝𝑛, π‘ž).

In this case, the pair (𝑋,π’Ÿ) is a generalized metric space.

Remark 2.3 [10] If the set 𝐢(π’Ÿ, 𝑋, 𝑝) is empty for every 𝑝 ∈ 𝑋, then (𝑋, π’Ÿ) is a

generalized metric space if and only if (π’Ÿ1) and (π’Ÿ2) are satisfied.

Definition 2.4 [10] Let (𝑋,π’Ÿ) be a generalized metric space and {𝑝𝑛} be a sequence

in 𝑋 and 𝑝 ∈ 𝑋. We say that {𝑝𝑛} π’Ÿ-converges to 𝑝 if 𝑝 ∈ 𝐢(π’Ÿ, 𝑋, 𝑝).

Page 3: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 51

Proposition 2.5 [10] Let (𝑋,π’Ÿ) be a generalized metric space and {𝑝𝑛} be a sequence

in 𝑋 and (𝑝, π‘ž) ∈ 𝑋 Γ— 𝑋. If {𝑝𝑛} π’Ÿ-converges to 𝑝 and {𝑝𝑛} π’Ÿ-converges to π‘ž, then

𝑝 = π‘ž.

Definition 2.6 [10] Let (𝑋,π’Ÿ)be a generalized metric space and {𝑝𝑛} be a sequence in

𝑋. We say that {𝑝𝑛} is a π’Ÿ-cauchy sequence if limπ‘›β†’βˆž

π’Ÿ(𝑝𝑛, 𝑝𝑛+π‘š) = 0.

Definition 2.7 [10] Let (𝑋,π’Ÿ)be a generalized metric space. It is said to be π’Ÿ -

complete if every Cauchy sequence in 𝑋 is convergent to some element in 𝑋.

Definition 2.8 [10] Let (𝑋,π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a

mapping. Let π‘˜ ∈ (0,1) then 𝑇 is said to be π‘˜ -contraction if π’Ÿ(𝑇(𝑝), 𝑇(π‘ž)) ≀

π‘˜π’Ÿ(𝑝, π‘ž), for every (𝑝, π‘ž) ∈ 𝑋 Γ— 𝑋.

Definition 2.9 [10] Suppose that 𝑇 is a π‘˜-contraction for some π‘˜ ∈ (0,1). Then any

fixed point 𝑒 ∈ 𝑋 of 𝑇 satisfies π’Ÿ(𝑒, 𝑒) < ∞⟹ 𝐷(𝑒, 𝑒) = 0.

Definition 2.10 [10] For every 𝑝 ∈ 𝑋, let 𝛿(π’Ÿ, 𝑇, 𝑝) = 𝑠𝑒𝑝 {π’Ÿ (𝑇𝑖(𝑝), 𝑇𝑗(𝑝)) : 𝑖, 𝑗 ∈ β„•}.

Definition 2.11 [10] Suppose that the following conditions hold:

(i) (𝑋, π’Ÿ)is complete;

(ii) 𝑇 is a π‘˜-contraction for some π‘˜ ∈ (0,1);

(iii) there exists 𝑝0 ∈ 𝑋 such that 𝛿(π’Ÿ, 𝑇, 𝑝0) < ∞.

Then {𝑇𝑛(𝑝0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇. Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑓 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Definition 2.12[10] Let π‘˜ ∈ (0,1), it is said to be π‘˜-quasicontraction if

π’Ÿ(𝑇(𝑝), 𝑇(π‘ž)) ≀ π‘˜ π‘šπ‘Žπ‘₯{π’Ÿ(𝑝, π‘ž), π’Ÿ(𝑝, 𝑇𝑝),π’Ÿ(π‘ž, π‘‡π‘ž),π’Ÿ(𝑝, π‘‡π‘ž),π’Ÿ(π‘ž, 𝑇𝑝)},

for every (𝑝, π‘ž) ∈ 𝑋 Γ— 𝑋.

Theorem 2.13[10] Suppose that the following conditions hold:

(i) (𝑋, π’Ÿ)is complete;

(ii) 𝑇 is a π‘˜-quasicontraction for some π‘˜ ∈ (0,1);

(iii) there exists 𝑝0 ∈ 𝑋 such that 𝛿(π’Ÿ, 𝑇, 𝑝0) < ∞.

Then {𝑇𝑛(𝑝0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇. Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Page 4: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

52 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

3. MAIN RESULT

Definition 3.1 Let (𝑋, π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a onto

mapping. Let π‘˜ > 1, then 𝑇 is said to be π‘˜-expansion if

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜π’Ÿ(π‘₯, 𝑦), for every (π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

Definition 3.2 Let (𝑋, π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a onto

mapping Let π‘˜ > 1, it is said to be π‘˜-quasiexpansion if

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯

π‘˜ π‘šπ‘Žπ‘₯{π’Ÿ(π‘₯, 𝑦),π’Ÿ(π‘₯, 𝑇π‘₯),π’Ÿ(𝑦, 𝑇𝑦),π’Ÿ(π‘₯, 𝑇𝑦),π’Ÿ(𝑦, 𝑇π‘₯)}, for every

(π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

Definition 3.3 Let (𝑋, π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a onto

mapping. Let π‘˜ β‰₯1

2 then 𝑇 is said to be k-Kannan expansion if

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜[π’Ÿ(π‘₯, 𝑇π‘₯) + π’Ÿ(𝑦, 𝑇𝑦)], for every (π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

Definition 3.4 Let (𝑋, π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a mapping.

Let π‘˜ β‰₯1

2 then 𝑇 is said to be k- Chatterjea expansion if

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜[π’Ÿ(π‘₯ , 𝑇𝑦) + π’Ÿ(𝑦, 𝑇π‘₯)], for every (π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

Definition 3.5 Let (𝑋, π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a mapping.

Let π‘˜ ∈ (0,1) then 𝑇 is said to be k-Zamfirscu expansion if

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜max {π’Ÿ(π‘₯, 𝑦),π’Ÿ(π‘₯,𝑇π‘₯)+π’Ÿ(𝑦,𝑇𝑦)

2,π’Ÿ(π‘₯,𝑇𝑦)+π’Ÿ(𝑦,𝑇π‘₯)

2}, for every (π‘₯, 𝑦) ∈

𝑋 Γ— 𝑋.

Definition 3.6 Let (𝑋, π’Ÿ)be a generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a mapping.

Let π‘˜ ∈ (0,1) then 𝑇 is said to be k-Rhodes expansion if

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜max {π’Ÿ(π‘₯, 𝑦),π’Ÿ(π‘₯,𝑇π‘₯)+π’Ÿ(𝑦,𝑇𝑦)

2, π’Ÿ(π‘₯. 𝑇𝑦),π’Ÿ(𝑦, 𝑇π‘₯)}, for every

(π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

Theorem 3.7 Let (𝑋, π’Ÿ) is complete generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be a

onto mapping which satisfies the following conditions :

(i) 𝑇 is a π‘˜-expansion for some π‘˜ ∈ (0,1);

Page 5: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 53

(ii) there exists π‘₯0 ∈ 𝑋 such that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.

Then {𝑇(π‘₯0)} converges to πœ” ∈ 𝑋, a fixed point of 𝑇. Moreover, if πœ”β€² ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(πœ”,πœ”β€²) < ∞, then πœ” = πœ”β€².

Proof Let 𝑛 ∈ β„• (𝑛 β‰₯ 1). Since 𝑇 is a π‘˜-expansion, for all 𝑖, 𝑗 ∈ β„•,we have

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) β‰₯ π‘˜π’Ÿ (𝑇𝑛+𝑖(π‘₯0), 𝑇

𝑛+𝑗(π‘₯0)),

which implies that

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

π‘˜π›Ώ(π’Ÿ, 𝑇, π‘‡π‘›βˆ’1(π‘₯0)).

Then, for every 𝑛 ∈ β„•, we have

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Using the above inequality, for every 𝑛,π‘š ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) ≀ 𝛿(π’Ÿ, 𝑇, 𝑇

𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Since limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞ and π‘˜ > 1, we get

lim𝑛,π‘šβ†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) = 0,

which implies that {𝑇𝑛(π‘₯0)} is a π’Ÿ-cauchy sequence.

But (𝑋,π’Ÿ) is π’Ÿ-complete so there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is a π’Ÿ-

convergent to 𝑒.

Since 𝑇 is onto, so there exist πœ” ∈ 𝑋, such that πœ” ∈ π‘‡βˆ’1(𝑒) ⟹ 𝑇(πœ”) = 𝑒

But by condition (i), 𝑇 is π‘˜-expansion, for all 𝑛 ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑒) = π’Ÿ(𝑇𝑛+1(π‘₯0), 𝑇(πœ”)) β‰₯ π‘˜π’Ÿ(𝑇𝑛(π‘₯0),πœ”).

Letting 𝑛 β†’ ∞ in the above inequality, we get

limπ‘›β†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0),πœ”) = 0.

Page 6: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

Then {𝑇𝑛(π‘₯0)} is π’Ÿ-convergent to πœ”. By the proposition 2.5 the uniqueness of the

limit we get, 𝑒 = πœ”, Hence, 𝑒 is a fixed point of 𝑇

Now, suppose that 𝑣 ∈ 𝑋 is a fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞. Since 𝑇 is a π‘˜-

expansion, we have

π’Ÿ(𝑒, 𝑣) = π’Ÿ(𝑇(𝑒), 𝑇(𝑣)) β‰₯ π‘˜π’Ÿ(𝑒, 𝑣),

By property (π’Ÿ1), we get 𝑒 = 𝑣.

Observe that we can replace condition (ii) in Theorem 3.2 by

(H) there exists π‘₯0 ∈ 𝑋 such that 𝑠𝑒𝑝{π’Ÿ(π‘₯0, π‘‡π‘Ÿ(π‘₯0))} < ∞.

Example 3.8 Let 𝑋 = [0,1] be a complete generalized metric space with π’Ÿ =

π‘šπ‘–π‘›{π‘₯, 𝑦} with π‘˜ =3

2. Define the function 𝑇: 𝑋 β†’ 𝑋 such that 𝑇(π‘₯) = 2π‘₯

If π‘₯, 𝑦 ∈ [0,1], without lose of generality π‘₯ < 𝑦 then

π’Ÿ(𝑇π‘₯, 𝑇𝑦) = π‘šπ‘–π‘›{𝑇π‘₯, 𝑇𝑦} = π‘šπ‘–π‘›{2π‘₯, 2𝑦} = 2π‘šπ‘–π‘›{π‘₯, 𝑦} =

2π’Ÿ(π‘₯, 𝑦).

Clearly, 𝑇 is an expansive mapping. Now, for every 𝑦 ∈ 𝑋, there exists an π‘₯ =𝑦

2∈ 𝑋,

such that, 𝑦 = 𝑇(π‘₯). So, 𝑇 is onto. Clearly for all 𝑖,0 ≀ 𝑇𝑖(π‘₯) ≀ 2𝑖, which implies

that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞. So the condition (ii) of the Theorem 3.7 is also satisfied. So

all the conditions of theorem 3.7 is satisfied with unique fixed point is π‘₯ = 0.

Corollary 3.9 Let (𝑋,π’Ÿ)be a complete b-metric space and 𝑇: 𝑋 β†’ 𝑋 be a mapping.

Suppose that for some π‘˜ > 1, we have

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜π’Ÿ(π‘₯, 𝑦), for every (π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

If there exists π‘₯0 ∈ 𝑋 such that 𝑠𝑒𝑝 {𝑑 (𝑇𝑖(π‘₯0), 𝑇𝑗(π‘₯0)) : 𝑖, 𝑗 ∈ β„•} < ∞.

Then the sequence {𝑇𝑛(π‘₯0)} converges to a fixed point of 𝑇. Moreover, 𝑇 has one and

only one fixed point.

Corollary 3.10 Let (𝑋,π’Ÿ)be a complete dislocated metric space and 𝑇: 𝑋 β†’ 𝑋 be a

mapping. Suppose that for some π‘˜ > 1, we have

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜π’Ÿ(π‘₯, 𝑦), for every (π‘₯, 𝑦) ∈ 𝑋 Γ— 𝑋.

Page 7: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 55

If there exists π‘₯0 ∈ 𝑋 such that 𝑠𝑒𝑝 {𝑑 (𝑇𝑖(π‘₯0), 𝑇𝑗(π‘₯0)) : 𝑖, 𝑗 ∈ β„•} < ∞.

Then the sequence {𝑇𝑛(π‘₯0)} converges to a fixed point of 𝑇. Moreover, 𝑇 has one and

only one fixed point.

Theorem 3.11 Let (𝑋, π’Ÿ) is complete generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be an

onto mapping which satisfies following conditions:

(i) 𝑇 is a π‘˜-quasi expansion for some π‘˜ β‰₯ 1;

(ii) there exists π‘₯0 ∈ 𝑋 such that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.

Then {𝑇𝑛(π‘₯0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇. Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Proof Let 𝑛 ∈ β„• (𝑛 β‰₯ 1). Since 𝑇 is a π‘˜-quasi expansion, for all 𝑖, 𝑗 ∈ β„•,we have

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) β‰₯ π‘˜ π‘šπ‘Žπ‘₯

{

π’Ÿ (𝑇𝑛+𝑖(π‘₯0), 𝑇

𝑛+𝑗(π‘₯0)) ,

π’Ÿ (𝑇𝑛+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑖(π‘₯0)) ,

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), 𝑇𝑛+𝑗(π‘₯0)) ,

π’Ÿ (𝑇𝑛+𝑗(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) ,

π’Ÿ (𝑇𝑛+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) }

.

which implies that

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) β‰₯ π‘˜[𝛿(π’Ÿ, 𝑇, π‘‡π‘›βˆ’1(π‘₯0))].

Then, for every 𝑛 β‰₯ 1, we have

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Using the above inequality, for every 𝑛,π‘š ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) ≀ 𝛿(π’Ÿ, 𝑇, 𝑇

𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Since limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.and π‘˜ β‰₯ 1, we get

lim𝑛,π‘šβ†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) = 0,

Page 8: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

56 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

which implies that {𝑇𝑛(π‘₯0)} is a π’Ÿ-cauchy sequence.

By condition (i), (𝑋,π’Ÿ) is π’Ÿ-complete, there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is

a π’Ÿ-convergent to 𝑒.

But (𝑋,π’Ÿ) is π’Ÿ-complete so there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is a π’Ÿ-

convergent to 𝑒.

Since 𝑇 is onto, so there exist πœ” ∈ 𝑋, such that πœ” ∈ π‘‡βˆ’1(𝑒) ⟹ 𝑇(πœ”) = 𝑒

But by condition (i), 𝑇 is π‘˜-quasi expansion, for all 𝑛 ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑒) = π’Ÿ(𝑇𝑛+1(π‘₯0), 𝑇(πœ”)) β‰₯

π‘˜π‘šπ‘Žπ‘₯ {

π’Ÿ(𝑇𝑛(π‘₯0),πœ”),π’Ÿ(𝑇𝑛(π‘₯0), 𝑇

𝑛+1(π‘₯0)),

π’Ÿ(πœ”, 𝑇(πœ”)),π’Ÿ(𝑇𝑛(π‘₯0), 𝑇(πœ”)),

π’Ÿ(πœ”, 𝑇𝑛+1(π‘₯0))

}.

Letting 𝑛 β†’ ∞ in the above inequality, we get

limπ‘›β†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0),πœ”) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒),

π’Ÿ(πœ”, 𝑒) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒).

Implies that 𝑒 = πœ”, Hence, 𝑒 is a fixed point of 𝑇.

Remark 3.12 Using theorem 3.11 we can prove fixed point results for k-

quasiexpansion in b-metric spaces, dislocated spaces and modular spaces.

Theorem 3.13 Let (𝑋, π’Ÿ) is complete generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be an

onto mapping which satisfies following conditions:

(i) 𝑇 is a π‘˜-Kannan expansion for some π‘˜ β‰₯1`

2;

(ii) there exists π‘₯0 ∈ 𝑋 such that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.

Then {𝑇𝑛(π‘₯0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇 Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Proof Let 𝑛 ∈ β„• (𝑛 β‰₯ 1). Since 𝑇 is a π‘˜-Kannan expansion, for all 𝑖, 𝑗 ∈ β„•,we have

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) β‰₯ π‘˜ [π’Ÿ (𝑇𝑛+𝑖(π‘₯0), 𝑇

π‘›βˆ’1+𝑖(π‘₯0)) +

π’Ÿ (𝑇𝑛+𝑗(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0))].

Page 9: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 57

which implies that

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) β‰₯ π‘˜[𝛿(π’Ÿ, 𝑇, π‘‡π‘›βˆ’1(π‘₯0)) + 𝛿(𝐷, 𝑇, 𝑇

π‘›βˆ’1(π‘₯0))] β‰₯ π‘˜[2𝛿(π’Ÿ, 𝑇, π‘₯0)].

Then, for every 𝑛 β‰₯ 1, we have

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

(2π‘˜)𝑛𝛿(π’Ÿ, 𝑇, π‘₯0).

Using the above inequality, for every 𝑛,π‘š ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) ≀ 𝛿(π’Ÿ, 𝑇, 𝑇

𝑛(π‘₯0)) ≀1

(2π‘˜)𝑛𝛿(π’Ÿ, 𝑇, π‘₯0).

Since limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.and π‘˜ β‰₯

1

2, we get

lim𝑛,π‘šβ†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) = 0,

which implies that {𝑇𝑛(π‘₯0)} is a π’Ÿ-cauchy sequence.

By condition (i), (𝑋,π’Ÿ) is π’Ÿ-complete, there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is

a π’Ÿ-convergent to 𝑒.

But (𝑋,π’Ÿ) is π’Ÿ-complete so there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is a π’Ÿ-

convergent to 𝑒.

Since 𝑇 is onto, so there exist πœ” ∈ 𝑋, such that πœ” ∈ π‘‡βˆ’1(𝑒) ⟹ 𝑇(πœ”) = 𝑒

But by condition (i), 𝑇 is π‘˜-Kannan expansion, for all 𝑛 ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑒) = π’Ÿ(𝑇𝑛+1(π‘₯0), 𝑇(πœ”)) β‰₯ π‘˜[π’Ÿ(𝑇𝑛(π‘₯0), 𝑇

𝑛+1(π‘₯0)) + π’Ÿ(πœ”, 𝑇(πœ”))].

Letting 𝑛 β†’ ∞ in the above inequality, we get

limπ‘›β†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0),πœ”) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒),

π’Ÿ(πœ”, 𝑒) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒).

Implies that 𝑒 = πœ”, Hence, 𝑒 is a fixed point of 𝑇.

Remark 3.14 Using theorem 3.13 we can prove fixed point results for k-

quasiexpansion in b-metric spaces, dislocated spaces and modular spaces.

Page 10: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

58 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

Example 3.15 Let 𝑋 = [0,2] be a complete generalized metric space with π’Ÿ =

|π‘₯ βˆ’ 𝑦| with π‘˜ =1

2. Define the function 𝑇: 𝑋 β†’ 𝑋 such that 𝑇(π‘₯) = {

2π‘₯ π‘₯ < 12π‘₯ βˆ’ 1 π‘₯ β‰₯ 1

Clearly 𝑇 satisfies the condition

π’Ÿ(𝑇(π‘₯), 𝑇(𝑦)) β‰₯ π‘˜[π’Ÿ(π‘₯, 𝑇π‘₯) + π’Ÿ(𝑦, 𝑇𝑦)].

Now, for every 𝑦 ∈ 𝑋, there exists an π‘₯ = {

𝑦

2 π‘“π‘œπ‘Ÿ 𝑦 < 2

𝑦+1

2π‘“π‘œπ‘Ÿ 𝑦 β‰₯ 2

∈ 𝑋, such that, 𝑦 = 𝑇(π‘₯).

So, 𝑇 is onto. Clearly for all 𝑖 when π‘₯ < 1, 0 ≀ 𝑇𝑖(π‘₯) ≀ 2𝑖and 0 ≀ 𝑇𝑖(π‘₯) ≀ 2𝑖 βˆ’ 1

when π‘₯ β‰₯ 1which implies that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞. So the condition (ii) of the

Theorem 3.7 is also satisfied. So all the conditions of theorem 3.13 is satisfied with

two fixed points π‘₯ = 0 and π‘₯ = 1.

Theorem 3.16 Let (𝑋, π’Ÿ) is complete generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be an

onto mapping which satisfies following conditions:

(i) 𝑇 is a π‘˜- Chatterjea expansion for some π‘˜ β‰₯1

2;

(ii) there exists π‘₯0 ∈ 𝑋 such that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.

Then {𝑇𝑛(π‘₯0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇. Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Proof Let 𝑛 ∈ β„• (𝑛 β‰₯ 1). Since 𝑇 is a π‘˜- Chatterjea expansion, for all 𝑖, 𝑗 ∈ β„•,we

have

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) β‰₯ π‘˜ [π’Ÿ (𝑇𝑛+𝑖(π‘₯0), 𝑇

π‘›βˆ’1+𝑗(π‘₯0)) +

π’Ÿ (𝑇𝑛+𝑗(π‘₯0), π‘‡π‘›βˆ’1+𝑖(π‘₯0))].

which implies that

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) β‰₯ π‘˜[𝛿(π’Ÿ, 𝑇, π‘‡π‘›βˆ’1(π‘₯0)) + 𝛿(𝐷, 𝑇, 𝑇

π‘›βˆ’1(π‘₯0))] β‰₯ π‘˜[2𝛿(π’Ÿ, 𝑇, π‘₯0)].

Then, for every 𝑛 β‰₯ 1, we have

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

(2π‘˜)𝑛𝛿(π’Ÿ, 𝑇, π‘₯0).

Page 11: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 59

Using the above inequality, for every 𝑛,π‘š ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) ≀ 𝛿(π’Ÿ, 𝑇, 𝑇

𝑛(π‘₯0)) ≀1

(2π‘˜)𝑛𝛿(π’Ÿ, 𝑇, π‘₯0).

Since limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.and π‘˜ β‰₯

1

2, we get

lim𝑛,π‘šβ†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) = 0,

which implies that {𝑇𝑛(π‘₯0)} is a π’Ÿ-cauchy sequence.

By condition (i), (𝑋,π’Ÿ) is π’Ÿ-complete, there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is

a π’Ÿ-convergent to 𝑒.

But (𝑋,π’Ÿ) is π’Ÿ-complete so there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is a π’Ÿ-

convergent to 𝑒.

Since 𝑇 is onto, so there exist πœ” ∈ 𝑋, such that πœ” ∈ π‘‡βˆ’1(𝑒) ⟹ 𝑇(πœ”) = 𝑒

But by condition (i), 𝑇 is π‘˜- Chatterjea expansion, for all 𝑛 ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑒) = π’Ÿ(𝑇𝑛+1(π‘₯0), 𝑇(πœ”)) β‰₯ π‘˜[π’Ÿ(𝑇𝑛(π‘₯0), 𝑇(πœ”)) + π’Ÿ(πœ”, 𝑇

𝑛+1(π‘₯0))].

Letting 𝑛 β†’ ∞ in the above inequality, we get

limπ‘›β†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0),πœ”) β‰₯ π‘˜[π’Ÿ(𝑒, πœ”) + π’Ÿ(πœ”, 𝑒)],

π’Ÿ(πœ”, 𝑒) β‰₯ 2π‘˜π’Ÿ(πœ”, 𝑒). Since π‘˜ β‰₯1

2

Which implies that 𝑒 = πœ”, Hence, 𝑒 is a fixed point of 𝑇.

Theorem 3.17 Let (𝑋, π’Ÿ) is complete generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be an

onto mapping which satisfies following conditions:

(i) 𝑇 is a π‘˜- zamfirscu expansion for some π‘˜ β‰₯ 1;

(ii) there exists π‘₯0 ∈ 𝑋 such that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.

Then {𝑇𝑛(π‘₯0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇. Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Proof Let 𝑛 ∈ β„• (𝑛 β‰₯ 1). Since 𝑇 is a π‘˜ - zamfirscu expansion, for all 𝑖, 𝑗 ∈ β„•,we

have

Page 12: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

60 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) β‰₯

π‘˜ π‘šπ‘Žπ‘₯

{

π’Ÿ (𝑇𝑛+𝑖(π‘₯0), 𝑇

𝑛+𝑗(π‘₯0)) ,

π’Ÿ(𝑇𝑛+𝑖(π‘₯0),π‘‡π‘›βˆ’1+𝑖(π‘₯0))+π’Ÿ(𝑇

𝑛+𝑗(π‘₯0),π‘‡π‘›βˆ’1+𝑗(π‘₯0))

2,

π’Ÿ(𝑇𝑛+𝑖(π‘₯0),π‘‡π‘›βˆ’1+𝑗(π‘₯0))+π’Ÿ(𝑇

𝑛+𝑗(π‘₯0),π‘‡π‘›βˆ’1+𝑖(π‘₯0))

2 }

;

which implies that

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) β‰₯ π‘˜[𝛿(π’Ÿ, 𝑇, π‘‡π‘›βˆ’1(π‘₯0))].

Then, for every 𝑛 β‰₯ 1, we have

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Using the above inequality, for every 𝑛,π‘š ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) ≀ 𝛿(π’Ÿ, 𝑇, 𝑇

𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Since limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞ and π‘˜ β‰₯ 1, we get

lim𝑛,π‘šβ†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) = 0,

which implies that {𝑇𝑛(π‘₯0)} is a π’Ÿ-cauchy sequence.

By condition (i), (𝑋,π’Ÿ) is π’Ÿ-complete, there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is

a π’Ÿ-convergent to 𝑒.

But (𝑋,π’Ÿ) is π’Ÿ-complete so there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is a π’Ÿ-

convergent to 𝑒.

Since 𝑇 is onto, so there exist πœ” ∈ 𝑋, such that πœ” ∈ π‘‡βˆ’1(𝑒) ⟹ 𝑇(πœ”) = 𝑒

But by condition (ii), 𝑇 is π‘˜- zamfirscu expansion, for all 𝑛 ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑒) = π’Ÿ(𝑇𝑛+1(π‘₯0), 𝑇(πœ”)) β‰₯ π‘˜π‘šπ‘Žπ‘₯

{

π’Ÿ(𝑇𝑛(π‘₯0), πœ”),

π’Ÿ(𝑇𝑛(π‘₯0),𝑇𝑛+1(π‘₯0))+π’Ÿ(πœ”,𝑇(πœ”))

2,

π’Ÿ(𝑇𝑛(π‘₯0),𝑇(πœ”))+π’Ÿ(πœ”,𝑇𝑛+1(π‘₯0))

2 }

.

Page 13: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 61

Letting 𝑛 β†’ ∞ in the above inequality, we get

limπ‘›β†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0),πœ”) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒),

π’Ÿ(πœ”, 𝑒) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒).

Implies that 𝑒 = πœ”, Hence, 𝑒 is a fixed point of 𝑇.

Remark 3.18 Using theorem 3.17, we can prove fixed point results for k- zamfirscu

expansion in b-metric spaces, dislocated spaces and modular spaces.

Theorem 3.19 Let (𝑋, π’Ÿ) is complete generalized metric space and 𝑇: 𝑋 β†’ 𝑋 be an

onto mapping which satisfies following conditions:

(i) 𝑇 is a π‘˜-Rhodes expansion for some π‘˜ β‰₯ 1;

(ii) there exists π‘₯0 ∈ 𝑋 such that limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.

Then {𝑇𝑛(π‘₯0)} converges to 𝑒 ∈ 𝑋, a fixed point of 𝑇. Moreover, if 𝑣 ∈ 𝑋 is another

fixed point of 𝑇 such that π’Ÿ(𝑒, 𝑣) < ∞, then 𝑒 = 𝑣.

Proof Let 𝑛 ∈ β„• (𝑛 β‰₯ 1). Since 𝑇 is a π‘˜- Rhodes expansion, for all 𝑖, 𝑗 ∈ β„•,we have

π’Ÿ (π‘‡π‘›βˆ’1+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) β‰₯

π‘˜ π‘šπ‘Žπ‘₯

{

π’Ÿ (𝑇𝑛+𝑖(π‘₯0), 𝑇

𝑛+𝑗(π‘₯0)) ,

π’Ÿ(𝑇𝑛+𝑖(π‘₯0),π‘‡π‘›βˆ’1+𝑖(π‘₯0))+π’Ÿ(𝑇

𝑛+𝑗(π‘₯0),π‘‡π‘›βˆ’1+𝑗(π‘₯0))

2,

π’Ÿ (𝑇𝑛+𝑗(π‘₯0), π‘‡π‘›βˆ’1+𝑖(π‘₯0)) ,

π’Ÿ (𝑇𝑛+𝑖(π‘₯0), π‘‡π‘›βˆ’1+𝑗(π‘₯0)) }

.

which implies that

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) β‰₯ π‘˜[𝛿(π’Ÿ, 𝑇, π‘‡π‘›βˆ’1(π‘₯0))].

Then, for every 𝑛 β‰₯ 1, we have

𝛿(π’Ÿ, 𝑇, 𝑇𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Using the above inequality, for every 𝑛,π‘š ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) ≀ 𝛿(π’Ÿ, 𝑇, 𝑇

𝑛(π‘₯0)) ≀1

π‘˜π‘›π›Ώ(π’Ÿ, 𝑇, π‘₯0).

Page 14: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

62 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti

Since limπ‘›β†’βˆž

𝛿(π’Ÿ,𝑇,π‘₯0)

π‘˜π‘›< ∞.and π‘˜ β‰₯ 1, we get

lim𝑛,π‘šβ†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇𝑛+π‘š(π‘₯0)) = 0,

which implies that {𝑇𝑛(π‘₯0)} is a π’Ÿ-cauchy sequence.

By condition (i), (𝑋,π’Ÿ) is π’Ÿ-complete, there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is

a π’Ÿ-convergent to 𝑒.

But (𝑋,π’Ÿ) is π’Ÿ-complete so there exists some 𝑒 ∈ 𝑋 such that {𝑇𝑛(π‘₯0)} is a π’Ÿ-

convergent to 𝑒.

Since 𝑇 is onto, so there exist πœ” ∈ 𝑋, such that πœ” ∈ π‘‡βˆ’1(𝑒) ⟹ 𝑇(πœ”) = 𝑒

But by condition (ii), 𝑇 is π‘˜- Rhodes expansion, for all 𝑛 ∈ β„•, we have

π’Ÿ(𝑇𝑛(π‘₯0), 𝑒) = π’Ÿ(𝑇𝑛+1(π‘₯0), 𝑇(πœ”)) β‰₯

π‘˜π‘šπ‘Žπ‘₯ {π’Ÿ(𝑇𝑛(π‘₯0),πœ”),

π’Ÿ(𝑇𝑛(π‘₯0),𝑇𝑛+1(π‘₯0))+π’Ÿ(πœ”,𝑇(πœ”))

2,

π’Ÿ(𝑇𝑛(π‘₯0), 𝑇(πœ”)),π’Ÿ(πœ”, 𝑇𝑛+1(π‘₯0))

}.

Letting 𝑛 β†’ ∞ in the above inequality, we get

limπ‘›β†’βˆž

π’Ÿ(𝑇𝑛(π‘₯0),πœ”) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒),

π’Ÿ(πœ”, 𝑒) β‰₯ π‘˜π’Ÿ(πœ”, 𝑒).

Implies that 𝑒 = πœ”, Hence, 𝑒 is a fixed point of 𝑇.

Remark 3.20 Using theorem 3.19 we can prove fixed point results for k- Rhodes

expansion in b-metric spaces, dislocated spaces and modular spaces.

REFERENCES

[1] Banach S., β€œSurles operations dans les ensembles abstraites et leurs

applications”, Fund. Math., 3 (1922), 133-187.

[2] Kannan R., β€œSome results on fixed points”, Bull. Cal. Math. Soc., 60 (1968),

71-76.

[3] Chatterjea.S.K,” Fixed point theorems,” C. R. Acad. Bulgare Sci. , 25 , 1972 ,

727 -730.

Page 15: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

Fixed Point Theorems for Expansive Mappings in js-Metric Space 63

[4] Zamfirescu T., β€œFixed Point Theorems In Metric Spaces”, Arch. Math., 23

(1972), 292-298.

[5] Rhoades B.E., β€œA fixed point theorem for generalized metric spaces”, Internat.

J. Math. and Math. Sci., 19 (3) (1996), 457-460.

[6] S. Z. Wang, B. Y. Li, Z. M. Gao, K. Iseki, Some fixed point theorems on

expansion mappings, Math. Jpn. 29, 631-636, 1984.

[7] Czerwik S., Contraction mappings in b-metric spaces, Acta Math. Inform.

Univ. Ostrav. 1(1993), 5-11.

[8] Hitzler P. and Seda A.K., β€œDislocated Topologies,” J. Electr. Engg., 51

(12/s),(2000), 3-7.

[9] Nakano H., β€œModular Semi Metric spaces,” Tokyo, Japan (1950).

[10] Jleli M., Samet B., β€œA generalized metric space and related fixed point

theorems,” Fixed point theory and App., (2015).

Page 16: Fixed Point Theorems for Expansive Mappings in js-Metric …54 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti Then {𝑇 ( 0)}is π’Ÿ-convergent to πœ”. By

64 Manoj Kumar, Vishnu Narayan Mishra, Asha Rani, Asha Rani & Kumari Jyoti