fixed-gain cmos differential amplifiers for the 40 k to 390 k temperature range

24
1/ 24 Fixed-gain CMOS Differential Amplifiers for the 40 K to 390 K Temperature Range Vratislav MICHAL , Alain J. KREISLER and Annick F. DÉGARDIN Paris Electrical Engineering Laboratory (LGEP), Gif sur Yvette, France Supélec; CNRS UMR 8507; UPMC - Univ Paris 06; Univ Paris Sud 11 Geoffroy KLISNICK, Gérard SOU and Michel REDON Electronics and Electromagnetism Laboratory (L2E), UPMC - Univ Paris 06 , 4 place Jussieu, Paris, France Research supported by a Marie Curie Early Stage Research Training Fellowship of the European Community’s Sixth Framework Programme under contract number MEST-CT-2005- 020692

Upload: josie

Post on 15-Jan-2016

41 views

Category:

Documents


1 download

DESCRIPTION

Fixed-gain CMOS Differential Amplifiers for the 40 K to 390 K Temperature Range. Vratislav MICHAL , Alain J. KREISLER and Annick F. DÉGARDIN Paris Electrical Engineering Laboratory (LGEP) , Gif sur Yvette, France Supélec; CNRS UMR 8507; UPMC - Univ Paris 06; Univ Paris Sud 11 - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

1/ 24

Fixed-gain CMOS Differential Amplifiers for the

40 K to 390 K Temperature Range

Vratislav MICHAL, Alain J. KREISLER and Annick F. DÉGARDINParis Electrical Engineering Laboratory (LGEP), Gif sur Yvette, FranceSupélec; CNRS UMR 8507; UPMC - Univ Paris 06; Univ Paris Sud 11

Geoffroy KLISNICK, Gérard SOU and Michel REDONElectronics and Electromagnetism Laboratory (L2E), UPMC - Univ Paris 06 ,

4 place Jussieu, Paris, France

Research supported by a Marie Curie Early Stage Research Training Fellowship of the European Community’s Sixth Framework Programme under contract number MEST-CT-2005-020692

Page 2: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 2/24

Outline

I.I. Our objectivesOur objectives

II.II. Introduction / design approachIntroduction / design approach

III.III.First design & resultsFirst design & results

IV.IV.Second design & resultsSecond design & results

V.V. ConclusionsConclusions

Page 3: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 3/24

I. Our objectivesI. Our objectives

Page 4: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 4/24

Goals of the project Development of wide temperature range CMOS

readout amplifiers for YBaCuO bolometric detectors: Room temperature semiconducting Superconducting

Low noise Differential CMOS amplifier

Requirements:

40 dB, accurate static gain,

77 K to 300 K temperature range,

Differential gain BW: DC to several MHz,

Low noise operation,

High (> 100kΩ) input impedance,

Low power consumption,

Simple architecture.

R(T)

R(T)

OSC

FFT

DSP ...

G

77K

290K

290K

Page 5: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 5/24

II. Introduction / design approachII. Introduction / design approach

Page 6: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 6/24

Four pixel configuration: differential amplification

RB4

RB3

RB2

RB1

VB4

G

G

G

G

RBn G

IB

IB

+

-

VB3

+

-

VB2

+

-

VB1

+

-

VBn

+

-

a) b)

a) Structure of cascaded amplifier asymmetrical (Rbi is the steady state pixel resistance),

b) Selected differential read-out technique.

Page 7: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 7/24

II.1 Closed loop differential amplifiers

2, 2

1

8 1n in

Rv kTR f

R

Currently, fixed gain amplifiers are realized as closed-loop networks with resistor feedback (differential amplifier, instrumentation amplifier etc.)

Thermal noise of resistors can be dominant!

Frequency compensation degrade the GBW and SR

U/I

+Vcc

C

CM=C(G2+1)

G2

+in

-in Out

G0=gmRP G0=gmRPG

RPCM

A

-Vee

IB

R1

R1

R2

R2

vn(R1)

vb

DUT(pixel)

-

+

Vout

vn(R1)

vn(R1)

vn(R2)

Page 8: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 8/24

II.2 In-structure fixed gain (CMOS)

R1 R1

en en

G

IB

C1

C1

eb

DUT (pixel)

+ No resistors in the structure simplification and silicon surface save, reduced noise contribution

+ Absence of feedback improves the time characteristics (no stability problems), increases the BW and reduces the power consumption

- Linearity, distortion

- No developed architectures

1

1 1

28 bBin

j R Ck Te

R j C

*

* Bolometer noise voltage is neglected

Page 9: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 9/24

II.3 Open loop amplifiers: design approach

+in +

--in

gm1

gm2

-

+

I1

I2

vout

1 1 10

2 2 2

m N

m P

g KP W LG

g KP W L

(a) (b)

Gain is given by transistors geometry ratio Gain is given by ratio of gmx of OTA

For current biased MOS architectures, the transconductance is given by:

The 40dB gain can require the geometric ratio value of transistors up to 10 000×KP/KN!

2m DSAT

Wg KP I

L

M1

M2

VGS1

Vout

VDD

VSS

IL

I1

Page 10: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 10/24

II.4 Adopted technique

2m L

Wg KP I

L

M1M2

LI2MI

BIASV

VDD

MOS diode

transconductance

given by

Decreasing the

transconductance by current

sink [PhD F. Voisin, 2005]

' 12

1

2m L M

Wg KP I I

L

Current difference makes the

function very sensitive:

Proposed methodProposed method for decreasing

the transconductance by means of

current scaling:current scaling:

m LT

W W

W L Lg KP I

W WLL L

2

4 1

' 2 4 1

3 52

3 5

2

M1

M2

M3 M4

M5

2i 4i

VDD

VSS

vout

11 :

2 : 1

LI

Lv+

-

M1

LI

VDD

''

( )

'( )

1

2 1m m kg

km k

g k kS

k g k

Page 11: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 11/24

III. First design & resultsIII. First design & results

Page 12: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 12/24

III.1 Design of 1st folded cascode amplifier in AMS 0.35µm

0( 0)0

1,

2 2GSGS

effout D B

GS eff D L VV

LdV W IG

d V W L I

DC transfer characteristic:

Gain is the slope of the DC transfer characteristic:

where:

2 4 1

2 4 1

3 5

3 5

eff

eff

W W WW L L L

W WLL L

3 5 2

23 5, 1

4 12

4 12

2 14

8D D

OUT DD TH P M B P GS P GSD D

P

W W

L L W WV V V I I KP V KP V

W W L LWKP L LL

V BIAS

IB

IM IM

ID

IL

VOUT

IDVBIAS

MD1MD2

MC1 MC2

M1

M2

M3 M4

M5

vIn+ vIn-

VDD

VSS

Page 13: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 13/24

III.3 Measured DC and AC characteristics of 1st amplifier

Simple fixed gain architecture: suitable for low noise and large BW operation,

Gain is fixed by means of geometric ratio: no variation with temperature,

Linearity is good for small signals,

DC transfer characteristic √Vin.

DC transfer characteristic at 290 K AC response and input noise (VDD=5V, IQ=2mA)

-20

0

20

40

102 104 106 10810-9

10-8

10-7

" frequency (Hz) "

100 10k 1M 100M1.0

5.0

10

20

50

100

" in

pu

t n

ois

e (

nV

/Hz½

) "

-3dB

-60dB/dec

-20

0

20

40

" vo

ltag

e g

ain

(d

B)

" 77K

77K

296K

-1

0

1

2

3

-0.030 -0.015 0 0.015 0.030

Vout

[V]

Vin [mV]

3

2

1

0

-1-30 -15 0 15 30

100V/V

Simulated

Measured

Page 14: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 14/24

IV. Second design & resultsIV. Second design & results

Page 15: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 15/24

IV.1 2nd amplifier: Linearization of DC transfer characteristic

221 21 2 02 2TH DD THV V V V V I

0

2 ( 2 )DD

DD TH

IVV

V V

Based on cancelling the quadratic termscancelling the quadratic terms in the basic equation of the MOS transistor. The node equation can be written:

The extraction of output voltage leads to (assuming β1 = β2, VTH1 = VTH2):

VDD

V

M2

M1

I1

I2

P

N

I0V

VBIAS

IB

IM I

M

ID

ID

T1

T2

I2

I1

P-type

N-type

IAUX

I0

VBIAS

VDD

In+

TDTD

In-

VOUT

Linear low gmCMOS load

in

BAUX M

V =0

II =I -

2

Low gmcompositetransistor

Low g mcompositetransistor

IL

Page 16: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 16/24

IV.2 Analysis of transfer function, temperature properties

DC transfer function:

We replace the elements without temperature dependence by C:

Which leads to:

Gain is given by derivation:

T[K]

G[dB]

2

2

,

1 14

2 81

22

D DB B P GS P GS

D Dout DD

effP DD TH P

eff

W WI I KP V KP V

L LV V

WKP V V

L

GS

DB

Dout

effGS VP DD TH P

eff

WI

LdVG

Wd VKP V V

L

0

0,

1

22

02P DD TH ,P

CG T

KP (T ) V V (T )

0

0 , 0 00

1

( ) 2 ( ) 1x

P DD TH P THX

G T

C TKP T V V T T T

T

VBIAS

IB

IM2 IM1

ID1IL

VGS1VGS1

ID2

TP

I1P

IAUX

I0

TP

I2

P

Vi Vo

I’2

VOUT

in

BAUX M

V =0

II =I -

2

-1

Voltage/current invertot

Vi=-Vo

I2=I’2

Low gm composite transistors

Page 17: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 17/24

IV.4 DC transfer characteristic

DC measured transfer characteristic and measured voltage gain @ 2.5V, 290 K

Temperature compensated linear amplifier for three VDD values (2nd amplifier type)

-2

-1

0

1

2

-0.03 -0.02 -0.01 0 0.01 0.02 0.0310

20

30

40

50

Simulated

Measured

" input voltage (mV) "

-20 -10 0 10 20 30-30

" ou

tput

vol

tage

(V

) "

2

1

0

-1

-2

50

40

30

20

10

out

in dB

dV

dV(measured)

0

10

20

30

40

50

0 100 200 300 400T [K]

~0 100 200 300 400

G[dB]

50

40

30

20

10

0

±2.0V ±2.2V ±2.5V

G[dB]

Page 18: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 18/24

IV.5 Cryogenic tests: DC

-2

-1

0

1

2

-0.04 -0.02 0 0.02 0.04

Bleu 290Kred 77KVdd= +/- 2V

-2

-1

0

1

2

-0.04 -0.02 0 0.02 0.04

Bleu 290Kred 77KVdd +/- 2.5V

Vin [V]

Vout

[V]

Vin [V]

Vout

[V]

DC transfer characteristic for two DC supply values (2nd type linear amplifier)

Page 19: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 19/24

V. ConclusionsV. Conclusions

Page 20: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 20/24

V.1 Comparison with industrial state of the art

Type

Configuration

GBW [MHz]

SR [µV/s]

VDD [V]

Iq [mA]

Input noise

nV/√Hz

Other

AD8045 OA Bipolar 1000 1350 3.3 - 12 19 × 3 3 LTC6401-20 Fixed gain 20dB+/-0,6dB Bipolar 1300 4500 2,85-3,5 50 × 3 2,1 Rin=200Ω

LT1226 OA Bipolar 1000 400 5-36 7 × 3 2,6 25dB stable OPA699 OA Bipolar 1000 1400 5-12 22,5 × 3 4,1 12dB stable OPA2354 OA CMOS 250 150 2,7-5,5 7,5 × 3 6,5 INA2331 Instrumentation CMOS 50 5 2,5-5,5 0,5 46 INA103 Instrumentation BIPOALR 80 15 9-25 9 1

Key parameters of developed amplifiers

Industrial differential amplifiers (room temperature)

MEASURED PARAMETERS TYPE I AMPLIFIER TYPE II AMPLIFIER

Operating supply voltage 4.1 V to 5.5 V 3.6 V to 5.5 V Quiescent bias current 2.1 mA 1.3 mA – 3dB bandwidth @ 290 K 10 MHz (GBW=1GHz) 4 MHz @ 5 V Input noise @ 290 K 5 nV/Hz½ 5 nV/Hz½ Input noise @ 77 K 2 nV/Hz½ 3 nV/Hz½ Gain @ 290K 39.85 dB 39.3 dB @ 5 V Δ Gain 270 K ÷ 390 K – 0.12 dB – 0.5 dB @ 4 V Gain error @ 77 K – 1.2 dB – 1.3 dB @ 4 V Tot. harm. distortion @ Vout = 0.3 Vpp 1 % 0.03 %

Page 21: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 21/24

V.2 Summary

Two amplifiers, based on different techniques of gain setting, have been designed, fabricated and characterized by measurements in a wide temperature range.

Both amplifiers exhibit very good performances, competitive with or superior to the industrial state-of-the-art.

Small size and low consumption make them ideal as versatile blocks for VLSI integration.

Wide temperature range operation demonstrates robustness of the design.

Page 22: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 22/24

V.3 PCB test board with integrated ASIC

Page 23: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 23/24

Appendix I: Differential (type I) amplifier designed for 40dB voltage gain

IL

vin+

MB2

VSS

VDD

Ib=500µA

MB3

MB4 MB5 MB6

MD1MD2

MC2 MC2

M1

M2

M3 M4

M5

MO1

MO2

MB1

IMIM

IB/2 IB/2

vbias

vout

vin-

IB 400/8µ

200/8µ

38/5µ15/5µ

38/5µ 15/5µ

15/5µ

100/5µ100/5µ

600.5/8µ

2360/2µ2360/2µ

315/8µ

500/8µ

501/8µ 501/8µ

1000/2µ

Page 24: Fixed-gain CMOS Differential Amplifiers  for the  40 K to 390 K Temperature Range

Vratislav Michal - Wolte 8, 22-25July 2008, Ilmenau 24/24

Appendix II: CMOS AMS 0.35µm realization of type II amplifier

Schematic view of designed amplifier