first principles computational study on ferroelectricity ... · committee members: dr. avinash...

33
First Principles Computational Study on Ferroelectricity in Hafnia (HfO 2 ) and Beyond Rohit Batra Department of Materials Science and Engineering, University of Connecticut, USA Principal Adviser: Dr. Rampi Ramprasad Associate Advisers: Dr. George Rossetti, Jr., Dr. Serge M. Nakhmanson Committee Members: Dr. Avinash Dongare, Dr. Pu-Xian Gao Proposal Defense 17 July, 2017

Upload: others

Post on 06-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • First Principles Computational Study on Ferroelectricity in Hafnia (HfO2) and Beyond

    Rohit Batra

    Department of Materials Science and Engineering,University of Connecticut, USA

    Principal Adviser: Dr. Rampi RamprasadAssociate Advisers: Dr. George Rossetti, Jr., Dr. Serge M. NakhmansonCommittee Members: Dr. Avinash Dongare, Dr. Pu-Xian Gao

    Proposal Defense17 July, 2017

  • Linear Dielectric vs. Ferroelectric

    2

    Linear dielectric

    Ein∝-EP∝E

    Ferroelectric

    EinPPr =

    Ferroelectric: Presence of a polar phase with switchable polarization

    Example: BaTiO3, PZT

    P

    E

    P

    EPPb

    O

    Electric field (E)

    PPb

    O

    Ti/Zr

  • Linear dielectric

    P

    E

    Hafnia: Dielectric or Ferroelectric

    3

    • High-k material• Used as SiO2 replacement• Vital part of commercially available

    electronic devices

    • Observations in hafnia films• New opportunities due to

    promising FE properties

    Hafnia

    Until 2010

    Ferroelectric

    P

    E

    Since 2010

  • Applications of Ferroelectric (FE) Materials

    4Varghese et al. J. Mater. Chem. C, 1, 2618(2013)

    P

    E

    PO

    PO

    ‘Bit 0’

    ‘Bit 1’

    https://dx.doi.org/10.1039/2050-7534/2013

  • Exciting Properties of Hafnia

    Hafnia can assist miniaturization of electronic devices!!

    However…

    5

    Substantial polarization at small thickness

    Funakubo et al., Sci. Rep., 32931(2016)

    Size reduction

    Source: http://www.electronics-eetimes.com/Park et al., APL, 107,19(2015)

    1 order smaller than perovskite-

    based FE materials

  • Ohtaka et al., J. Am. Cream. Soc. 84, 1369 (2001)

    OB

    OA

    P-T phase diagram of hafnia

    “Known” Hafnia PhasesAll known equilibrium phases are non-polar, can’t display FE behavior

    Which polar phase of hafnia causes ferroelectricity?6

    Processing conditions of hafnia films

    Monoclinic(M)

    (P21/c)

    Tetragonal (T)

    P42/nmc

    Orthorhombic(OA)Pbca

    (100) projections of hafnia phasesHfO

    Mnemonic 1

  • OA P-O1 P-O2 T C0

    102030405060708090

    Ea�

    EM

    (meV

    /ato

    m)

    Computational

    ΔEn

    ergy

    (w.r.

    t M)

    Huan et al., PRB 90, 064111 (2014)

    FE Phase of Hafnia?

    Potential FE phases identified, but which conditions stabilize it? 7

    Difficult to characterize FE

    hafnia phase due to:

    1. Small film thickness2. Structural similarity

    Potential FE phase

    (100) projections of hafnia phases

    Orthorhombic(P-O2)Pmn21

    Tetragonal(T)

    P42/nmc

    Orthorhombic(P-O1)Pca21

    Experimental: XRD

    MT

    P-O1P-O2OA

    Pbcm

    Schenk, T. Ph. D. dissertation thesis (2017) Mnemonic 2Mnemonic 3

  • E-field 4

    External Factors in FE Hafnia Films

    Overall GOAL: How these factors combine to induce FE behavior in hafnia films?

    8

    • Other factors: Oxygen vacancies• Empirical results indicate critical role of these factors

    HfO2

    Bottom electrode

    Top electrode

    Si substrate

    10-30 nm

    Dopant2

    Stress3

    Surface/interface energy

    1

    Typical FE hafnia film

    Grimley et al., Adv. Electron. Mater. 2: 1600173 (2016)

  • Research Objectives

    9

    Com

    plet

    ed

    B. Combined influence of extrinsic factors1. Establish origin of ferroelectricity in hafnia films2. Electric-field induced T to P-O1 phase

    transformations?Prop

    osed ElectricfieldDopants

    Stra

    in Surfaceenergy

    A. Individual influence of extrinsic factors1. Surface energy2. Dopants3. Mechanical stress4. Electric field

    Dopants

    Stre

    ss Surfaceenergy

    Electricfield

    C. New opportunities beyond hafnia1. Search other potential FE simple binary oxides

    Prop

    osed

  • Methodology: DFT

    10Using DFT compute energy of a given hafnia system

    Using DFT compute energy of different hafnia phases in:• bulk or slab form• pure or doped state• under hydrostatic or biaxial stress state

    Ground state energy?

    𝚿E[𝚿]

    Schrödinger equation

    3 x No. of e-No. of variables

    Density functional theory

    3

    E[⍴(r)]

    e- charge density

  • Objective A

    11

    A. Individual influence of extrinsic factors1. Surface energy2. Dopants3. Mechanical stress4. Electric field

    B. Combined influence of extrinsic factors1. Establish origin of ferroelectricity in hafnia films2. Electric-field induced T to P-O1 phase

    transformations?

    C. New opportunities beyond hafnia1. Search other potential FE simple binary oxides

    Com

    plet

    edPr

    opos

    edPr

    opos

    ed

    Dopants

    Stre

    ss Surfaceenergy

    Electricfield

    ElectricfieldDopants

    Stra

    in Surfaceenergy

  • Expe

    rimen

    tA.1: Surface Energy

    For most orientations, T phase has the lowest surface energy

    Polakowski-Müller, APL 106, 232905 (2015)

    Hoffmann et al., J. Appl. Phys., 118(2015)

    DFT computed surface energies

    (110)

    P-O2P-O1

    Batra et al., APL 108, 172902 (2016) 12

  • A.1: Surface Energy

    Surface energy does not explain observed ferroelectricity

    a[100]

    b[010]

    c[001]

    Schematic of hafnia particle

    [100] = 12.8 Å [100] = 27.4 Å

    P-O2

    P-O1

    Batra et al., APL 108, 172902 (2016)

    Stabilization of T or P-O2 phase due to surface energy

    • Results consistent with studies on ultra-thin hafnia films and nanotubes

    13

  • A.2: Dopants — The Strategy

    Identify dopants that promote polar phases the most

    Incr

    easi

    ng co

    st/a

    ccur

    acy

    Observations of ferroelectricity in diverse dopants(Si, Al, Gd, La, Sr, and more…)

    14

    OA P-O1 P-O2 T C0

    102030405060708090

    Ea�

    EM

    (meV

    /ato

    m) Pure

    ΔEn

    ergy

    OA P-O1 P-O2 T C0

    102030405060708090

    Ea D�

    EM D

    (meV

    /ato

    m)

    Dopant addition

    ΔEn

    ergy

    selection

    selection

    Batra et al., arXiv:1707.04211 (2017)

  • �50

    0

    50

    100

    150D

    Ea�

    MD

    (meV

    /f.u

    .) Ca (a) Sr (b)

    M P-O2 OA T P-O1

    Ba (c)

    0 3 6 12% doping conc.

    �50

    0

    50

    100

    150

    DEa

    �M

    D(m

    eV/f

    .u.) Y (d)

    0 3 6 12% doping conc.

    La (e)

    0 3 6 12% doping conc.

    Gd (f)

    �50

    0

    50

    100

    150

    DEa

    �M

    D(m

    eV/f

    .u.) Ca (a) Sr (b)

    M P-O2 OA T P-O1

    Ba (c)

    0 3 6 12% doping conc.

    �50

    0

    50

    100

    150

    DEa

    �M

    D(m

    eV/f

    .u.) Y (d)

    0 3 6 12% doping conc.

    La (e)

    0 3 6 12% doping conc.

    Gd (f)

    A.2: Dopants — Results Stage 3

    Open symbols: (a) phase relaxed into other phase, (b) phase cannot be classified

    Dopants promote P-O1 phase, but alone do not stabilize it

    Monoclinic

    T to P-O1

    15

    Phase cannot be classified

    Mnemonic 4

    Similar results for Ca, Sr, Ba, Y and Gd

    Batra et al., arXiv:1707.04211 (2017)

  • A.2: Dopants — Insights & Validation

    Theoretical results on dopants match experiments

    Dopants that stabilize P-O1:1. Larger radius2. Lower electronegativity

    Pola

    rizat

    ion(

    µC/c

    m2 )

    Ionic radius (pm)

    Boettger et al., J. Mater. Chem. C, 5(2017)

    Empirical observations of larger Pr for larger dopants

    Divalent

    16

    Batra et al., arXiv:1707.04211 (2017)

  • 120 125 130 135 140 145 150

    Volume (Å3)

    0

    20

    40

    60

    80

    100

    120

    Ea�

    EM 0

    (meV

    /ato

    m)

    Hydrostatic

    (a)MT

    P-O1P-O2

    OA

    23 24 25 26 27 28 29

    Area (Å2)

    Equibiaxial

    (b)

    -11.5 -7.8 -4.1 -0.4 3.3 6.9 10.6e(%)

    -10.5 -6.7 -2.8 1.1 5.0 8.9 12.8e(%)

    (001)

    120 125 130 135 140 145 150

    Volume (Å3)

    0

    20

    40

    60

    80

    100

    120

    Ea�

    EM 0

    (meV

    /ato

    m)

    Hydrostatic

    (a)MT

    P-O1P-O2

    OA

    23 24 25 26 27 28 29

    Area (Å2)

    Equibiaxial

    (b)

    -11.5 -7.8 -4.1 -0.4 3.3 6.9 10.6e(%)

    -10.5 -6.7 -2.8 1.1 5.0 8.9 12.8e(%)

    120 125 130 135 140 145 150

    Volume (Å3)

    0

    20

    40

    60

    80

    100

    120

    Ea�

    EM 0

    (meV

    /ato

    m)

    Hydrostatic

    (a)MT

    P-O1P-O2

    OA

    23 24 25 26 27 28 29

    Area (Å2)

    Equibiaxial

    (b)

    -11.5 -7.8 -4.1 -0.4 3.3 6.9 10.6e(%)

    -10.5 -6.7 -2.8 1.1 5.0 8.9 12.8e(%)

    A.3: Mechanical Stress

    Compressive stress favor P-O1 phase, but alone fails to stabilize it

    Polar P-O1 phase stable relative to M phase in compressed state

    17

    Equilibrium M phase

    Experiments: The capping electrode necessary to induce ferroelectricity

    TensionCompression

    Batra et al., J. Phys. Chem. C, (2017)

  • A.4: Electric field

    E-field promotes P-O1 phase, but alone fails to stabilize it18

    E↵ = E↵DFT � V ↵0 (✏↵r ✏0 ~E + ~P↵) ~E

    Schenk, T. et al. Appl. Mater. Inter., 6(22), 19744–19751 (2014)

    Wake up

    Batra et al., J. Phys. Chem. C, (2017)

    stress-free

    Energy change due to electric field

    (Not first principles)

    Electric field significantly alters the phase stability

  • Recap

    19

    • Each of these factors promote the polar P-O1 phase• However, no factor alone stabilizes the P-O1 as the ground state

    Can combination of these factors explain observed ferroelectricity?

    120 125 130 135 140 145 150

    Volume (Å3)

    0

    20

    40

    60

    80

    100

    120

    Ea

    �E

    M 0(m

    eV/

    atom

    )

    Hydrostatic

    (a)MT

    P-O1P-O2

    OA

    23 24 25 26 27 28 29

    Area (Å2)

    Equibiaxial

    (b)

    -11.5 -7.8 -4.1 -0.4 3.3 6.9 10.6e(%)

    -10.5 -6.7 -2.8 1.1 5.0 8.9 12.8e(%)

    Stress

    Area

    Electric field

    Electric field (MV/cm)

    �50

    0

    50

    100

    150D

    Ea�

    MD

    (meV

    /f.u

    .) Ca (a) Sr (b)

    M P-O2 OA T P-O1

    Ba (c)

    0 3 6 12% doping conc.

    �50

    0

    50

    100

    150

    DEa

    �M

    D(m

    eV/f

    .u.) Y (d)

    0 3 6 12% doping conc.

    La (e)

    0 3 6 12% doping conc.

    Gd (f)Dopant

    Dopants

    % doping conc.

  • stress-free equibiaxial

    A: Combined Stress and Electric Field

    Multiple factors, operating jointly, may be responsible for FE

    • In-plane stress “de-stabilize” the M phase, and• Electric field “stabilize” the polar phase

    20

    Stabilization of P-O1 phase due to stress and

    electric fieldelastic energy

    Batra et al., J. Phys. Chem. C, (2017)

  • Objective B

    21

    A. Individual influence of extrinsic factors1. Surface energy2. Dopants3. Mechanical stress4. Electric field

    B. Combined influence of extrinsic factors1. Establish origin of ferroelectricity in hafnia films2. Electric-field induced T to P-O1 phase

    transformations?

    C. New opportunities beyond hafnia1. Search other potential FE simple binary oxides

    Com

    plet

    edPr

    opos

    edPr

    opos

    ed

    Dopants

    Stre

    ss Surfaceenergy

    Electricfield

    ElectricfieldDopants

    Stra

    in Surfaceenergy

  • Remaining Work: Objective B

    22Improved models to better understand ferroelectricity in hafnia

    Conditions to be modeledaccurately

    Limitation: Phenomenological E-fieldSolution: DFT-based E-field (only hafnia films)

    Carefully chosen parameter space

    E

    Electric field from first principles

    Ps’

    (111) P-O1 slab

    OHf

  • Remaining Work: Objective B

    23

    • More realistic models• Possibly electric field induced T to P-O1 transformations (Mnemonic 4)

    Further extension

    Improved models to better understand ferroelectricity in hafnia

    Non-zero temperatures(DFT-based MD simulations)

    Carefully chosen parameter space

    Doped (111) P-O1 slab

    Sr/La

    Ps’ E

  • Objective C

    24

    A. Individual influence of extrinsic factors1. Surface energy2. Dopants3. Mechanical stress4. Electric field

    B. Combined influence of extrinsic factors1. Establish origin of ferroelectricity in hafnia films2. Electric-field induced T to P-O1 phase

    transformations?

    C. New opportunities beyond hafnia1. Search other potential FE simple binary oxides

    Com

    plet

    edPr

    opos

    edPr

    opos

    ed

    Dopants

    Stre

    ss Surfaceenergy

    Electricfield

    ElectricfieldDopants

    Stra

    in Surfaceenergy

  • Tool Example of HfO2

    Remaining Work: Objective C

    25

    Structure search algorithm

    Point group

    Minimum energy pathway

    M, T, OAP-O1 and P-O2

    T parent phaseof P-O1 and P-O2

    Switching barrier:P-O1: 30 meVP-O2: 10 meV

    Hafnia is potentially ferroelectric

    Search for low energy structures

    Identify polar phase and respective parent phase

    Compute polarization and switching energy barrier

    Propose potential FE materials

    Search Steps1

    2

    3

    Is hafnia unique, or are there more FE binary oxides?

    Key insight: (1) low energy polar phase and (2) small switching barrier

  • Remaining Work: Objective C

    26

    Initial set criteria:1) Insulator2) Simple binary oxide3) Non-magnetic

    Promising Stage 1 results for few oxides

  • Timeline

    27

    Objective 2017 2018Fall Spring Summer

    B Phase stability in hafnia films

    C Search for other potential FE binary oxides

  • FE materials in Non-volatile Memories

    28

    Non-volatile RAM

    ???

    Future?

    CPU

    1980

    Tape

    Disk

    CPU

    RAM

    Present

    Disk

    Tape

    Flash drive

    CPU

    RAM

    Accesstime

    1 ns —

    1 µs —

    1 ms —

    1 s —

    Solution: FE materials (Hafnia and

    others)

    Source: Schenk, T. Ph. D. dissertation thesis (2017)

    Volatile

    Non-volatile

  • Summary and Impact

    29

    Extrinsic factors promoting ferroelectricity in hafnia

    New potential FE materials

    Insights on origins of FE behavior in hafnia films

    Better FE devices!!

    A

    B

    C

  • Acknowledgements

    30

    Puneet BatraBrother

    Prof. Rampi Ramprasad

    AdviserKhushboo Mittal

    Wife

  • Acknowledgements

    31

    Committee members:Prof. Serge M. Nakhmanson, Prof. Avinash Dongare and Prof. Pu-Xian Gao

    Group members and friends:Garvit, Lihua, Dr. Satyesh Yadav , Dr. Venkatesh Botu , Deepak, Dr. Chiho Kim and Sergey

    Computational resources:UCONN Hornet clusters, XSEDE

    Funding Agency:Army Research Office

    U.S. Army

    Collaborators:Prof. Jacob L. Jones, NCSU, USAProf. Dr. Uwe Schröder, Namlab, Germany

    Special thanks to:Prof. George Rossetti, Jr. and Dr. Huan Doan Tran

  • 32

  • DeepakSriram

    HarishKaleelMasabKhushboo

    & Rohit

    Yupeng

    XinHamzaTaraSumairaKamran

    Paritosh

    Alex

    Thanks!!

    33