first-order probabilistic inference rodrigo de salvo braz sri international

68
First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

Upload: lesley-chandler

Post on 19-Jan-2018

214 views

Category:

Documents


0 download

DESCRIPTION

3 Slides online  Just search for “Rodrigo de Salvo Braz” and check at the presentations page. (www.cs.berkeley.edu/~braz)

TRANSCRIPT

Page 1: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

First-OrderProbabilistic Inference

Rodrigo de Salvo BrazSRI International

Page 2: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

2

A remarkFeel free to ask clarification questions!

Page 3: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

3

Slides online Just search for

“Rodrigo de Salvo Braz” and check at the presentations page.

(www.cs.berkeley.edu/~braz)

Page 4: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

4

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 5: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

5

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 6: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

6

How to solvecommonsense

reasoning

How to solveNatural

LanguageProcessing

How to solvePlanning

How to solveVision

DomainKnowledge

Inferenceand

Learning

LanguageKnowledge

Inferenceand

Learning

Domain &Planning

Knowledge

Inferenceand

Learning

Objects &Optics

Knowledge

Inferenceand

Learning

Abstracting Inference and Learning

Commonsense reasoning

Natural LanguageProcessing

Planning Vision ...

Inferenceand

Learning

AI Problems

Page 7: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

7

Inference and LearningWhat capabilities should it have? Inference

andLearningIt should represent and use:

•predicates (relations) and quantification over objects: 8 X male(X) Ç female(X) 8 X male(X) ) sick(X)sick(p121)

•varying degrees of uncertainty: 8 X { male(X) ) sick(X) }

since it may hold often but not absolutely.•essential for language, vision, pattern recognition,

commonsense reasoning etc•modal knowledge, utilities, and more.

Page 8: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

8

Abstracting Inference and Learning

Domain knowledge:

male(X) Ç female(X){ male(X) ) sick(X) }sick(o121)...

Commonsense reasoningLanguage knowledge:

{ sentence(S) Æ verb(S,”had”) Æ object(S,”fever”) subject(S,X) ) fever(X) }...

Natural Language Processing

Inferenceand

Learning

Sharing inference and learning module

Page 9: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

9

Abstracting Inference and Learning

Domain knowledge:

male(X) Ç female(X){ male(X) ) sick(X) }sick(o121)...

Commonsense reasoning WITH Natural Language ProcessingLanguage knowledge:

{ sentence(S) Æ verb(S,”had”) Æ object(S,”fever”) subject(S,X) ) fever(X) }

Inferenceand

Learning

Joint solution made simpler

verb(s13,”had”), object(S, “fever”), subject(s13,o121)...

Page 10: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

10

Standard solutions fall short Logic

Has objects and properties; but statements are absolute;

Graphical models and machine learning Have varying degrees of uncertainty; but propositional; treating objects and

quantification is awkward.

Page 11: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

11

Standard solutions fall shortGraphical models and objects

male(X) Ç female(X){ male(X) )sick(X) }{ friend(X,Y) Æ male(X) ) male(Y) }

sick(o121) sick(o135)

sick_121

male_o121 female_o121

friend_o121_o135

male_o135 female_o135

sick_o135

•Transformation (propositionalization) not part of graphical model framework;

•Graphical model have only random variables, not objects;

•Different data creates distinct, formally unrelated model.

Page 12: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

12

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 13: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

13

First-Order Probabilistic Inference Many languages have been proposed

Knowledge-based model construction (Breese, 1992) Probabilistic Logic Programming (Ng & Subrahmanian, 1992) Probabilistic Logic Programming (Ngo and Haddawy, 1995) Probabilistic Relational Models (Friedman et al., 1999) Relational Dependency Networks (Neville & Jensen, 2004) Bayesian Logic (BLOG) (Milch & Russell, 2004) Bayesian Logic Programs (Kersting & DeRaedt, 2001) DAPER (Heckerman, Meek & Koller, 2007) Markov Logic Networks (Richardson & Domingos, 2004)

“Smart” propositionalization is the main method.

Page 14: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

14

Propositionalization Bayesian Logic Programs

Prolog-like statements such as

medicine(Hospital) | in(Patient,Hospital), sick(Patient).

sick(Patient) | in(Patient,Hospital),

exposed(Hospital).

associated with CPTs and combination rules.

|instead of

:-

Page 15: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

15

Propositionalizationmedicine(Hospital) | in(Patient,Hospital),

sick(Patient). (plus CPT)BN grounded from and-or tree:

medicine(hosp13)

in(john,hosp13)

sick(john)

in(peter,hosp13)

sick(peter)

...

...

...

...

...

Page 16: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

16

PropositionalizationMulti-Entity Bayesian Networks (Laskey, 2004)

in(Patient,Hospital) sick(Patient)

medicine(Hospital)

in(Patient,Hospital) exposed(Hospital)

sick(Patient)

Page 17: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

17

PropositionalizationMulti-Entity Bayesian Networks (Laskey, 2004)

in(Patient,Hospital) sick(Patient)

medicine(Hospital)

in(john,hosp13) sick(john)

medicine(hosp13)

in(peter,hosp13) sick(peter)

medicine(hosp13)

...

first-order fragments

instantiated

Page 18: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

18

PropositionalizationMulti-Entity Bayesian Networks (Laskey, 2004)

in(john,hosp13) sick(john)

medicine(hosp13)

in(peter,hosp13) sick(peter)

...

in(john,hosp13) sick(john)

medicine(hosp13)

in(peter,hosp13) sick(peter)

medicine(hosp13)

...

Page 19: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

19

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 20: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

20

Lifted Inference

medicine(hosp13)

medicine(Hospital) ( in(Patient,Hospital) Æ sick(Patient){ sick(Patient) ( in(Patient,Hospital) Æ exposed(Hospital) }

sick(Patient)

exposed(hosp13)

in(Patient, hosp13)

Unbound, general variable

•Faster•More compact•More intuitive•Higher level – more

information/structure available for optimization

Page 21: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

21

Bayesian Networks (directed)

epidemic

P(sick_john, sick_mary, sick_bob, epidemic)= P(sick_john | epidemic) * P(sick_mary | epidemic) * P(sick_bob | epidemic) * P(epidemic)

sick_john sick_mary sick_bob

P(sick_bob | epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_mary | epidemic)

Page 22: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

22

Factor Networks (undirected)

epidemic_france

P(epi_france, epi_belgium, epi_uk, epi_germany)/ (epi_france, epi_belgium) * (epi_france, epi_uk) * (epi_france, epi_germany) * (epi_belgium, epi_germany)

epidemic_belgium epidemic_germany

epidemic_uk

factor,or potential

function

Page 23: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

23

Bayesian Nets as Factor Networks

epidemic

P(sick_john, sick_mary, sick_bob, epidemic)/ P(sick_john | epidemic) * P(sick_mary | epidemic) * P(sick_bob | epidemic) * P(epidemic)

sick_john sick_mary sick_bob

P(sick_bob | epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_mary | epidemic)

Page 24: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

24

Inference: Marginalization

epidemic

P(sick_john) / epidemic sick_mary sick_bob P(sick_john | epidemic) * P(sick_mary | epidemic) * P(sick_bob | epidemic) * P(epidemic)

sick_john sick_mary sick_bob

P(sick_bob | epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_mary | epidemic)

Page 25: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

25

epidemic

sick_john sick_mary sick_bob

P(sick_bob | epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_mary | epidemic)

P(sick_john) / epidemic P(sick_john | epidemic) * P(epidemic)

* sick_mary P(sick_mary | epidemic)

* sick_bob P(sick_bob | epidemic)

Inference: Variable Elimination (VE)

Page 26: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

26

epidemic

sick_john sick_mary

(epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_mary | epidemic)

P(sick_john) / epidemic P(sick_john | epidemic) * P(epidemic)

* sick_mary P(sick_mary | epidemic) * (epidemic)

Inference: Variable Elimination (VE)

Page 27: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

27

epidemic

sick_john sick_mary

(epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_mary | epidemic)

P(sick_john) / epidemic P(sick_john | epidemic) * P(epidemic) * (epidemic)

* sick_mary P(sick_mary | epidemic)

Inference: Variable Elimination (VE)

Page 28: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

28

epidemic

sick_john

(epidemic)

P(epidemic)

P(sick_john | epidemic)

P(sick_john) / epidemic P(sick_john | epidemic) * P(epidemic) * (epidemic) * (epidemic)

(epidemic)

Inference: Variable Elimination (VE)

Page 29: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

29

sick_john

(sick_john)

P(sick_john) / (sick_john)

Inference: Variable Elimination (VE)

Page 30: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

30

A Factor Network

sick(mary,measles)

hospital(mary)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles)

hospital(bob)

sick(bob,flu)……

… …

… …

Page 31: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

31

First-order Representation

sick(P,D)

hospital(P)

epidemic(D)

Atoms representa set of random

variables

Logical Variablesparameterize random

variables

Parfactors, for parameterized

factors

Contraints to logical

variables

P john

Page 32: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

32

Semantics

sick(mary,measles)

hospital(mary)

epidemic(measles) epidemic(flu)

sick(mary,flu)

… sick(bob,measles)

hospital(bob)

sick(bob,flu)……

… …

… …sick(mary,measles), epidemic(measles))

Page 33: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

33

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 34: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

34

Inversion Elimination (IE)

sick(P, D)

epidemic(D)

D measles

D measles

IE

…sick(john, flu)

epidemic(flu)

sick(mary, rubella)

epidemic(rubella)…

Grounding

…sick(john, flu)

epidemic(flu)

sick(mary, rubella)

epidemic(rubella)…

VE

Abstraction

epidemic(D)

D measles

D measles

sick(P, D)

sick(P,D) (epidemic(D),sick(P,D))

Page 35: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

35

Inversion Elimination (IE) Proposed by Poole (2003); Lacked formalization; Did not identify cases in which it is

incorrect; Formalized and identified correctness

conditions (with Dan Roth and Eyal Amir).

Page 36: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

36

Requires eliminated RVs to occur in separate instances of parfactor

…sick(mary, flu)

epidemic(flu)

sick(mary, rubella)

epidemic(rubella)…

sick(mary, D)

epidemic(D)

D measles

InversionElimination

correct

Inversion Elimination - Limitations

Page 37: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

37

IE not correct

Requires eliminated RVs to occur in separate instances of parfactor

Inversion Elimination - Limitations

epidemic(D2)

epidemic(D1)

D1 D2 month

epidemic(measles)

epidemic(flu)

epidemic(rubella)

…month

epidemic(D2)

epidemic(D1)

D1 D2 month

Page 38: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

38

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 39: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

39

Counting Elimination Need to consider joint assignments; Exponential number of those; But actually, potential depends on

histogram of values in assignment only: 00101 the same as 11000;

Polynomial number of assignments instead.

epidemic(D2)

epidemic(D1)

D1 D2 month

epidemic(measles)

epidemic(flu)

epidemic(rubella)

…month

Page 40: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

40

A Simple Experiment

Page 41: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

41

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 42: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

42

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 43: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

43

BLOG (Bayesian LOGic) Milch & Russell (2004); A probabilistic logic language; Current inference is propositional

sampling; Special characteristics:

Open Universe; Expressive language.

Page 44: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

44

type Hospital;#Hospital ~ Uniform(1,10);

random Boolean Large(Hospital hosp) ~ Bernoulli(0.6);

random NaturalNum Region(Hospital hosp) ~ TabularCPD[[0.3, 0.4, 0.2, 0.1]]();

type Patient;#Patient(HospitalOf = Hospital hosp)

if Large(hosp) then ~ Poisson(1500); else if Region(hosp) = 2 then = 300; else ~ Poisson(500);

query Average( {#Patient(b) for Hospital b} );

BLOG (Bayesian LOGic)Open Universe

Expressive language

Page 45: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

45

Inference in BLOGrandom Boolean Exposed(hosp) ~ Bernoulli(0.7);

random Boolean Sick(Patient patient)if Exposed(HospitalOf(patient)) then if Male(patient) then ~ Bernoulli(0.1); else ~ Bernoulli(0.4); else = False;

random Boolean Male(Patient patient) ~ Bernoulli(0.5);

random Boolean Medicine(Hospital hosp)= exists Patient patient HospitalOf(patient) = hosp & Sick(patient);

guaranteed Hospital hosp13;query Medicine(hosp13);

Page 46: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

46

Inference in BLOG - Sampling

Medicine(hosp13)

#Patient(hosp13)

Sick(patient1)

Sick(patient73)

Exposed(hosp13)

...

Sampled false

Open Universe

false

false

false

Page 47: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

47

Inference in BLOG - Sampling

Medicine(hosp13)

#Patient(hosp13)

Sick(patient1)

Exposed(hosp13)

Sampled true

Open Universe

true Male(patient1)

truetrue

Page 48: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

48

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 49: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

49

Temporal models in BLOG Expressive enough to directly write temporal

modelstype Aircraft;#Aircraft ~ Poisson[3];

random Real Position(Aircraft a, NaturalNum t) if t = 0 then ~ UniformReal[-10, 10]() else ~ Gaussian(Position(a, Pred(t)), 2);type Blip;// num of blips from aircraft a is 0 or 1#Blip(Source = Aircraft a, Time = NaturalNum t) ~ TabularCPD[[0.2, 0.8]]()

// num false alarms has Poisson distribution.#Blip(Time = NaturalNum t) ~ Poisson[2];

random Real BlipPosition(Blip b, NaturalNum t) ~ Gaussian(Position(Source(b), Pred(t)), 2));

Page 50: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

50

Temporal models in BLOG Inference algorithm does not use

temporal structure: Markov property: state depends on

previous state only; evidence and query come for successive

time steps; Dynamic BLOG (DBLOG); analogous to Dynamic Bayesian

networks (DBNs).

Page 51: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

51

DBLOG Syntax Only change in syntax is a special Timestep

type, with same semantics as NaturalNum:type Aircraft;#Aircraft ~ Poisson[3];

random Real Position(Aircraft a, Timestep t) if t = @0 then ~ UniformReal[-10, 10]() else ~ Gaussian(Position(a, Prev(t)), 2);type Blip;// num of blips from aircraft a is 0 or 1#Blip(Source = Aircraft a, Time = Timestep t) ~ TabularCPD[[0.2, 0.8]]()

// num false alarms has Poisson distribution.#Blip(Time = Timestep t) ~ Poisson[2];

random Real BlipPosition(Blip b, Timestep t) ~ Gaussian(Position(Source(b), Prev(t)), 2));

Page 52: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

52

Similar idea to DBN Particle Filtering

DBLOG Particle Filtering

evidence at t

State samples for t - 1

Samples weighed by evidence

resampling

State samples for t

Likelihoodweighting

Page 53: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

53

Weighting by evidence in DBNs

evidence

state

t-1 t

Page 54: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

54

Weighting evidence in DBLOG

evidence

state Position(a1,@1)

Position(a2,@1)

#Aircraft

t-1 t

obs {Blip b : Source(b) = a1} = {B1};

obs BlipPosition(B1, @2) = 3.2;BlipPosition(B1,@2)

#Blip(a1,@2)

Position(a1,@2)B1

Lazy instantiation

Page 55: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

55

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 56: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

56

Retro-instantiation in DBLOG

Position(a1,@1)

Position(a2,@1)

#Aircraft

BlipPosition(B1,@2)

#Blip(a1,@2)

Position(a1,@2)B1

BlipPosition(B8,@9)

#Blip(a2,@9)

Position(a2,@9)

B8

Position(a2,@2)

...

obs {Blip b : Source(b) = a2} = {B8};

obs BlipPosition(B8,@2) = 2.1;

...

...

Page 57: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

57

Coping with retro-instantiation Analyse possible queries and

evidence (provided by user) andpre-instantiate random variables that will be necessary later;

Use mixing time to decide when to stop sampling back.

Page 58: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

58

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 59: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

59

Improving BLOG inference Rejection sampling

evidence

evidence

= ?

We count samples that match the evidence.

Page 60: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

60

Improving BLOG inference Likelihood weighting

evidence

We count samples using evidence likelihood as weight.

Page 61: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

61

Improving BLOG inference

{Happy(p) : Person p}=

{true, true, false}

Happy(john)= true

Happy(mary)= false

Happy(peter)=false

Evidence is deterministic function, so likelihood is always 0 or 1.So likelihood weighting is no better than rejection sampling.

Page 62: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

62

Improving BLOG inference

{Salary(p) : Person p}=

{90,000, 75,000, 30,000}

Salary(john)= 100,000

Salary(mary)= 80,000

Salary(peter)=500,000

The more unlikely the evidence, the worse it gets.

Page 63: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

63

Improving BLOG inference

{BlipPosition(b) : Blip b}=

{1.2, 0.5, 5.1}

BlipPosition(b1) = 2.1

BlipPosition(b2) = 3.3

BlipPosition(b3) = 3.5

Doesn’t work at all for continuous evidence.

Page 64: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

64

Structure-dependent automatic importance sampling

{BlipPosition(b) : Blip b}=

{1.2, 0.5, 5.1}

BlipPosition(b1) BlipPosition(b2) BlipPosition(b3)

Position(Source(b1)) = 1.5

Position(Source(b2)) = 3.9

Position(Source(b3)) = 4.0

= 1.2 = 5.1 = 0.5 High-level language allows algorithm to automatically apply better sampling schemes

Page 65: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

65

Outline A goal: First-order Probabilistic Inference

An ultimate goal Propositionalization

Lifted Inference Inversion Elimination Counting Elimination

DBLOG BLOG background DBLOG Retro-instantiation Improving BLOG inference

Future Directions and Conclusion

Page 66: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

66

For the future Lifted inference works on symmetric,

indistinguishable objects only; Adapt approximations for dealing with

similar objects; Parameterized queries:

P(sick(X, measles)) = ? Function symbols:

(diabetes(X), diabetes(father(X))) Equality (paramodulation); Learning.

Page 67: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

67

Conclusion Expressive, first-order probabilistic

representations in inference too! Lifted inference equivalent to

grounded inference; much faster, yet yielding the same exact answer;

DBLOG brings techniques for temporal processes reasoning to first-order probabilistic reasoning.

Page 68: First-Order Probabilistic Inference Rodrigo de Salvo Braz SRI International

68