fire resistance assessment of composite...

63
Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 1 Fire resistance assessment of Composite structures Basic design methods Worked examples CAJOT Louis-Guy Chairman of CEN/TC250/SC4/EG - Fire Part ArcelorMittal

Upload: dokien

Post on 12-Mar-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 1

Fire resistance assessment of Composite structures

Basic design methodsWorked examples

CAJOT Louis-Guy

Chairman of CEN/TC250/SC4/EG - Fire Part

ArcelorMittal

Page 2: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 2

The Building (R+5)

Partially encased composite columns

HE260A

Composite beams IPE450

COFRAPLUS 60

120mm slab

Bracing system

Page 3: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 3

Structure grid of the composite building

16 m 6 m 6 m 6 m 6 m

A

B

C

7 m

7 m

14 m

2 3 4 5 6

3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m

S1 S1

S2

S2

S1 - S1

Bracing system

Bracing system

3 m 3 m

Bra

cing

sys

tem

Bra

cing

sys

tem

Composite slab, composite beams, composite columns

Page 4: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 4

Actions (for all floor levels)

Type qk ψ1 ψ2

Live load on floors 4.0 kN/m² 0.7 0.6

Snow on roof 1.7 kN/m² 0.2 0.0

Structure grid of the composite building

Self weight G1Composite slab unit weight : 2.12 kN/m²Steel structural members

Permanent load G2Finishing, embedded services, partitions : 1.50 kN/m²

Façade G3 : 2 kN/mCharacteristic values of variable loads and ψ factors

Page 5: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 5

Structural membersComposite slab

Total thickness: 12 cmSteel deck: COFRAPLUS60Thickness of steel deck: 0.75 mmContinuous slab over 2 spans

Secondary beamsIPE450 linked with headed studs to the composite slab; fire protected steel sections Alternative : Partially encased composite beams IPE450; fire protection obtained through partial encasement

Columns for ground levelFacade columns: Partially encased HEA260 Alternative: Fully encased HEB160

Structure grid of the composite building

Page 6: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 6

Structure grid of the composite building

16 m 6 m 6 m 6 m 6 m

A

B

C

7 m

7 m

14 m

2 3 4 5 6

3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m

S1 S1

S2

S2

S1 - S1

Bracing system

Bracing system

3 m 3 m

Bra

cing

sys

tem

Bra

cing

sys

tem

Composite slab, composite beams, composite columns

Page 7: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 7

Structure grid of the composite building

16 m 6 m 6 m 6 m 6 m

A

B

C

7 m

7 m

14 m

2 3 4 5 6

3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m

S1 S1

S2

S2

S1 - S1

Bracing system

Bracing system

3 m 3 m

Bra

cing

sys

tem

Bra

cing

sys

tem

Composite slab continuous on 3 supports

Page 8: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 8

Required fire resistance : R60

3m 3m

Summary of data

Verification of the composite slab

Slab thickness = 12cm

Page 9: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 9

Verification of the composite slab

Material characteristics

Steel decking : fy = 350 N/mm²

Concrete : C25/30 ; fc = 25 N/mm²

Rebars : fy = 500 N/mm²

Mesh ST25 ; A = 2,57 cm²/m

Ribs : 1 φ8 /rib

Permanent loads:

Steel decking : gt,k = 0,085 kN/m²

Concrete : gb,k = 2,03 kN/m²

Permanent load : gc,k = 1,5 kN/m²

Variable load:

Variable load : qk = 4,0 kN/m²

Loads

Page 10: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 10

Verification of the composite slab

Application field

Geometric parameters

h1 = 62 mm h2 = 58 mm h3 = 0l1 = 101 mm l2 = 62 mm l3 = 106 mm

1φ8 per rib= 2,51 cm²/m

1mCOFRAPLUS60

l3

l1

OKh2 = 5850 ≤ h2 ≤ 100

OKh1 = 6250 ≤ h1 ≤ 125

OKl3 = 10640 ≤ l3 ≤ 115

OKl2 = 6232 ≤ l2 ≤ 132

OKl1 = 10180 ≤ l1 ≤ 155

Condition fulfilled ?Existing geometric parameters[mm]

Trapezoidal steel deckingprofiles [mm]

Page 11: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 11

Verification of the composite slab

Fire resistance according to thermal insulation

3r5

34

r32

'110i

1LAa1a

LAaahaat

ll⋅⋅+⋅+⋅+Φ⋅+⋅+=

For Normal Weight Concrete

48-7350,33-12,61,55-28,8

a5[min]

a4mm·min

a3[min/mm]

a2[min]

a1[min/mm]

a0[min]

48-7350,33-12,61,55-28,8

a5[min]

a4mm·min

a3[min/mm]

a2[min]

a1[min/mm]

a0[min]

3r3r

'1i

1LA481)735(

LA33,0)6,12(h55,1)8,28(t

ll⋅⋅+⋅−+⋅+Φ⋅−+⋅+−=

Page 12: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 12

Verification of the composite slab

Fire resistance according to thermal insulation

h1=62

l1½

h2=58

l3 ½l3

h3=0

= 101

l2 = 62Exposed Surface

= 53

1061

LA48

1061)735(

LA33,0)6,12(6255,1)8,28(t

rri ⋅⋅+⋅−+⋅+Φ⋅−+⋅+−=

3r5

34

r32

'110i

1LAa1a

LAaahaat

ll⋅⋅+⋅+⋅+Φ⋅+⋅+=

mm62hhh 31'1 =+= (h3 = thickness of the screed)

Page 13: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 13

Verification of the composite slab

Fire resistance according to thermal insulation

10616,2548

1061)735(6,2533,0)6,12(6255,1)8,28(ti ⋅⋅+⋅−+⋅+Φ⋅−+⋅+−=

3r5

34

r32

'110i

1LAa1a

LAaahaat

ll⋅⋅+⋅+⋅+Φ⋅+⋅+=

mm6,25

2h2

2h

LA

2212

22

212

r=

⎟⎠⎞

⎜⎝⎛ −

+⋅+

⎟⎠⎞

⎜⎝⎛ +⋅

=ll

l

ll

Rib geometry factor

h1=62

l1½

h2=58

l3 ½l3

h3=0

= 101

l2 = 62Exposed Surface

= 53

Page 14: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 14

Verification of the composite slab

Fire resistance according to thermal insulation

h1=62

l1½

h2=58

l3 ½l3

h3=0

= 101

l2 = 62Exposed Surface

= 53

10616,2548

1061)735(6,2533,0727,0)6,12(6255,1)8,28(ti ⋅⋅+⋅−+⋅+⋅−+⋅+−=

3r5

34

r32

'110i

1LAa1a

LAaahaat

ll⋅⋅+⋅+⋅+Φ⋅+⋅+=

View factor

727,02

h2

h 3

2212

2

221

322 =

⎥⎥

⎢⎢

⎡⎟⎠⎞

⎜⎝⎛ −

+−⎟⎠⎞

⎜⎝⎛ −

++=Φ lllll

l

min71ti =

Page 15: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 15

Verification of the composite slab

For h2/h1 ≤ 1,5 and h1 > 40mm

60-h3

80-h3

100-h3

120-h3

150-h3

175-h3

I 30I 60I 90I 120I 180I 240

heff

[mm]Standard fire

resistance

Simplified method (EN1994-1-2/Annex D/§D.4)

h3 = 0 ; heff = 85mmI 60

h1 = 62 mmh2 = 58 mml1 = 101 mml2 = 62 mml3 = 106 mm

h1

h3

h2

l2

l1 l3

heff

Minimal effective thickness of the slab heff to satisfy the thermal insulation criteria

mm8510610162101585,062h5,0hh

31

2121eff =⎟

⎞⎜⎝

⎛++

⋅⋅+=⎟⎟⎠

⎞⎜⎜⎝

++

⋅⋅+=ll

ll

Page 16: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 16

Verification of the composite slab

Temperature evolution in the section as a function of the time

Page 17: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 17

Verification of the composite slab

243

r2

310a bb

LAb1bb Φ⋅+Φ⋅+⋅+⋅+=θ

l

-379.0592.6-1.67-2460770Upper flange

-267.4344.2-1.82-949925Web120

-82.846.7-1.13-6791063Lower flange

-472.0767.9-1.79-2786618Upper flange

-340.2464.9-2.21-959816Web90

-108.165.1-1.55-8391018Lower flange

-679.81148.4-2.62-3269340Upper flange

-351.9537.7-2.96-833661Web60

-150.786.4-2.32-1197951Lower flange

NormalConcrete

b4[°C]

b3[°C]

b2[°C/mm]

b1[°C·mm]

b0[°C]

Part of theSteel decking

Fireresistance

[min]Concrete

Upper Flange

Web

Lower Flange

For the different parts of the steel decking, the temperatures at 60 minutes are :

Temperature distribution in the steel decking :

h1=62

l1½

h2=58

l3 ½l3

h3=0

= 101

l2 = 62

= 53

Calculation of the sagging moment resistance Mfi,t,Rd+

C863727,07,150727,04,866,2532,2106

11197951 2a °=⋅−⋅+⋅−⋅−=θ

C782727,09,351727,07,5376,2596,2106

1833661 2a °=⋅−⋅+⋅−⋅−=θ

C718727,08,679727,04,11486,2562,2106

13269340 2a °=⋅−⋅+⋅−⋅−=θ

Page 18: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 18

Verification of the composite slab

Temperature of the reinforcing bar in the rib :

u1 = 35,8mmu2 = 35,8mmu3 = 20mm(axis distances)

354

r32

2

310s

1ccLAczc

hucc

l⋅+α⋅+⋅+⋅+⋅+=θ

with201

8,351

8,351

u1

u1

u1

z1

321

++=++=

-13261.68-4.79-227-2381387120

-12671.39-5.30-235-256134290

-9251.04-5.01-240-250119160

NormalConcrete

c5[°C]

c4[°C/°]

c3[°C/mm]

c2[°C/mm0.5]

c1[°C]

c0[°C]

Fire resistance[min]Concrete

→ z = 1,79 mm0,5

h1 = 62

h2 = 58

½l3l1 = 101

l2 = 62

½l3 = 53

u1 u2

u3α= 70°

C612106

19254,7104,16,2501,579,124058202501191s °=⋅−⋅+⋅−⋅−⋅−=θ

Page 19: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 19

Verification of the composite slab

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

9,2218,340,5030,367612Rebar in the rib

5,8137,310,7950,209718Upper flange

4,2214,600,9180,131782Web

1,2742,740,4650,078863Lower flange

Fi[kN]

fy,i,θ

[kN/cm²]

Partialarea

Ai [cm²]

Reductionfactorky,i [-]

Temperatureθi [°C]

θ [°C]

ky

Bearing capacity of the different parts of the steel decking and the reinforcing bar :

Page 20: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 20

Verification of the composite slab

for a rib width of 207mm,

Than, for a slab width equal to 1m,

Determination of the positive moment resistance of the composite slab :

Determination of the plastic neutral axis :

Equilibrium of the horizontal forces

( ) cpl31slabi fzF ⋅⋅+⋅α=∑ ll

zpl

Z

l1= 101½l3= 53 ½l3

Positive moment of the composite slab

( ) mm7,41025)106101(85,0

22,9813,5221,4274,1f

Fz 3c31slab

ipl =

⋅⋅+⋅+++

=⋅+⋅α

∑= −ll

-4,790,23-20,527Concrete

92,19610,09,22Reinforcing bar in the rib

35,8206,165,813Upper flange

38,4109,104,221Web

15,24511,961,274Lower flange

Mi[kNcm]

zi[cm]

Fi[kN]

∑ = kNcm9,176Mi

m/kNm5,8207,0769,1

widthribMM i

Rd,fi ==∑=+

Page 21: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 21

The hogging moment resistance of the slab is calculated by considering a reduced cross section established on the basis of the isotherm for the limit temperature θlim schematised by means of 4 characteristic points.

l2

½ l3 h2I II

IIIIV

X

Y

I

(Ns = 26,6 kN is the normal force in the upper reinforcing bar )

Verification of the composite slab

Calculation of the hogging moment resistance Mfi,t,Rd-

343

r2s10lim

1ddLAdNdd

l⋅+Φ⋅+⋅+⋅+=θ

-2155-166-9,71-2,2.10-41144120

-1990-154-9,91-2,2.10-4105590

-1378-123-8,75-1,9.10-486760Normal weight

concrete

d4[°C].mm

d3[°C]

d2[°C].mm

d1[°C].N

d0[°C]

Fire resistance[min]

C535106

11378727,01236,2575,826600109,1867 4lim °=⋅−⋅−⋅−⋅⋅−=θ −

Page 22: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 22

Verification of the composite slab

l2

½ l3 h2I II

IIIIV

X

Y

I

The parameter z of the formula D.9 is obtained from the equation for the determination of the temperature of the reinforcing bar, assuming that u3/h2 = 0,75 and θs = θlim

354

r32

2

310lim

1ccLAczc

hucc

l⋅+α⋅+⋅+⋅+⋅+=θ

Determination of the points of the isotherm :

5,0

2

54310limmm69,1

)240(106

192504,14,7101,56,2525075,01191535

c106

1cc4,71c6,25c75,0cz =

⋅+⋅−⋅+⋅+−=

⋅−⋅−⋅−⋅−−θ=⇒

Page 23: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 23

66,0103,5IV

58,042,1III

10,123,7II

10,10,0I

YX

Coordinates[mm]Points

The coordinates of the 4 characteristic points are determined by the following formulae :

0XI =

2

31

III

4z1

1YY

⎟⎟

⎜⎜

+−

==

ll

( )1cossin

Y21X I

2II −α⋅α

+= l

α−=

sinb

21X 1III l

2III hY =

( )31IV 21X ll +=

bhY 2IV +=

⎟⎟⎠

⎞⎜⎜⎝

⎛−

=α21

2h2arctanll

α⎟⎟

⎜⎜

⎛−= sin

h1

z1a 1

2

2

l

⎟⎟⎟

⎜⎜⎜

⎛ +−−α=

aca4a

1sin21b

2

1l

( ) 8asia118c ≥++−=

( ) 8asia118c <+++=

with

l2

½ l3 h2I II

IIIIV

X

Y

I

Verification of the composite slab

Coordinates of the points of the isotherm :

Page 24: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 24

Verification of the composite slab

Determination of the plastic neutral axis :

26,60500,5321,0θ < θlimMesh ST25

Fi[kN]

fy,i,θ[kN/cm²]

Partial area

Ai [cm²]

Reductionfactorky,i [-]

Temperatureθi [°C]

The horizontal equilibrium gives : ∑ ⋅⋅⎟⎟⎠

⎞⎜⎜⎝

⎛⋅+⋅

β= cpl

2pli f85,0z4,47z

tg1F

=> zpl = 22,35mm

l2

½ l3 h2I II

IIIIV

X

Y

I

Page 25: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 25

Verification of the composite slab

-120,324,5-26,60Concrete rib

239,018,926,60Mesh ST25

Mi [kNcm]zi [cm]Fi [kN]

The negative moment resistance of the composite slab, for a rib width of 207mm is given by :

Moment resistance of each part of the rib :

Than, for a slab width equal to 1m,

∑ = kNcm7,118Mi

m/kNm734,5207,0187,1

widthribM

M iRd,fi === ∑−

Page 26: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 26

Verification of the composite slab

Bearing capacity of the continuous slab

For a slab width equal to 1m, the bearing capacity may be deduced from the sagging and hogging moment by the following relation :

pfi,Rd = 9,98 kN/m²

The applied load is :

pfi,d = 1,0 * (0,085 + 2,03 + 1,5) + 0,6 * 4 = 6,02 kN/m²Efi,d = Gk + ψ1,1 Qk,1

pfi,d = 6,02 kN/m²>

The continuous slab has a fire resistance of 60 minutes

( )

( ) 2222Rd,fi

2Rd,fi

2Rd,fiRd,fi22

Rd,fiRd,fiRd,fi

734,55,82734,532

35,84734,52p

MM2M2M4M2p

−⋅+⋅+⋅+⋅

=

−+⋅++

= −+−+−

ll

Page 27: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 27

33,4 kNm ≥ 28,4 kNmpfi,Rd = 7,33 kN/m² ≥ pfi,d = 6,31 kN/m²

pfi,d = 6,31 kN/m²

Verification of the composite slab

Bearing capacity of the continuous slab : Simplified formula

Page 28: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 28

Evolution du moment fléchissant en fonction du temps

Verification of the composite slab

Page 29: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 29

Evolution de la déformée en fonction du temps

Verification of the composite slabv

Page 30: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 30

Structure grid of the composite building

16 m 6 m 6 m 6 m 6 m

A

B

C

7 m

7 m

14 m

2 3 4 5 6

3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m

S1 S1

S2

S2

S1 - S1

Bracing system

Bracing system

3 m 3 m

Bra

cing

sys

tem

Bra

cing

sys

tem

Secondary composite beams

Page 31: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 31

Verification of the composite beam

Data

Composite beam on 2 supports

Continuous slab on 3 supports

Beam span = 14m

Distance between beams = 3m

Required fire resistance R60

l = 3mL = 14m (IPE450) S355l = 3m

14.0 m

Gk+ Qk

Page 32: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 32

Geometrical characteristics and material propertiesBeam : IPE450

h = 450 mmb = b1 = b2 = 190 mmew = 9,4 mmef = e1 = e2 = 14,6 mmfy = 355 N/mm²

Steel decking : fy = 350 N/mm²

Concrete : hc = 120 mmbeff = 3000 mmC25/30 fc = 25 N/mm²

Connectors : fu = 450 N/mm²Number = 136Diameter = 19 mm

hc

h ew hw

b1

e1

b2

e2

beff

Verification of the composite beam

h1 = 62 mm h2 = 58 mml1 = 101 mm l2 = 62 mm l3 = 106 mm

h1

h2

l2

l1 l3

Page 33: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 33

Fire protection (use of sprayed protection)

Fire protection material characteristics :Thickness : dp= 15 mm Thermal conductivity : λp= 0,12 W/(m·K)Specific heat : cp=1100 J/(kg·K)Density: ρp= 550 kg/m³

High densityspray

(vermiculite)

IPE450

Verification of the composite beam

Geometrical characteristics and material properties

Page 34: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 34

Permanents loads:

Steel decking : gt,k = 0,085 kN/m²

Concrete : gb,k = 2,03 kN/m²

Permanent load : gc,k = 1,5 kN/m²

Self weight of the profile : Ga,k = 0,776 kN/ml

Variable load:

Variable load : qk = 4,0 kN/m²

Loads

Verification of the composite beam

Page 35: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 35

Rd

Edfi,

d

t,d,fitfi, M

MR

Eη ==

Combination of the mechanical actions: ( )⎪⎭

⎪⎬⎫

⎪⎩

⎪⎨⎧

++++= ∑ ∑≥1j 1i

ik,i2,k,12,11,1djk,d QψQψouψAPGEEf

[ ] [ ] kN/m332,23776,03)46,062,3(,251G)qψg(,251F ka,k,1,12k,1fi,d =+⋅⋅+⋅=+⋅⋅+⋅= l

Calculated moment:

kNm3,1065M

kNm6,5718

14332,238

LFM

Rd

22fi,d

Edfi,

=

=⋅

=⋅

=

System considered:Central support : reaction = 1,25 P. l

537,03,1065

6,571η tfi, ==(see Calculation Note)

l = 3mL = 14m (IPE450) S355l = 3m

Determination of the load level in fire situation

Verification of the composite beam

Page 36: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 36

% of the nominal value

0 300 600 900 1200

100

80

60

40

20

Temperature [°C]

Effectiveresistance ky,θ

Elasticmodulus kE,θ

Resistance

aycrθay,tfi, f/fη =For R60

θcr = 578°C

537,0f

f

ay

crθay, =

Determination of the critical T°

Critical temperature method

Verification of the composite beam

0001200

0,020,01250,02251100

0,040,02500,04501000

0,060,03750,0675900

0,110,0500,09800

0,230,0750,13700

0,470,1800,31600

0,780,3600,60500

1,000,4200,70400

1,251,000,6130,80300

1,251,000,8070,90200

1,251,001,001,00100

1,251,001,001,0020

ku,θky,θkp,θkE,θ

SteelTemperature

θa[°C]

Table 3.2: Reduction factors kθ for stress-strain relationships of structural steel at elevated temperatures.

Page 37: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 37

Verification of the composite beam

Temperature calculation in the protected steel cross section The increase of temperature of the various parts of the protected steel beam during the time interval may be determined by the following equation :

( ) ( )[ ]tw/10

a,tti

p,i

aa

ppa,t Δθ1eΔtθθ

w/311

VA

ρc/dλ

Δθ −−⎥⎥⎦

⎢⎢⎣

⎡−⎟

⎞⎜⎝

⎛+⎟⎟

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

with :Ca specific heat of the steel ; varying according to the steel temperature [J/(kg.K)] (§3.3.1(4))ρa density of the steel [kg/m3] (§ 3.4(1))λp thermal conductivity of the fire protection material [W/m°K]dp thickness of the fire protection material [m]Ap,i is the area of the inner surface of the fire protection material per unit length of the part i of the steel

member [m²/m]Vi volume of the part i of the steel cross section per unit length [m3/m]Ap,i /Vi section factor of the part i of the insulated steel cross-section [m-1]Δt time interval (less than 5sec) [s]

⎟⎟⎠

⎞⎜⎜⎝

⎛⎟⎟⎠

⎞⎜⎜⎝

⎛=

i

p,ip

aa

pp

VA

dρcρc

w where cp specific heat of the fire protection material [J/kg°K]ρp density of the fire protection material [kg/m3]

Page 38: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 38

147,5

212,8

147,5

Am/V[m-1]

Steel temperature after 60’

[°C]

480Lower flange

588Web

480Upper flange

Verification of the composite beam

Temperature calculation in the protected steel cross section

T° lower flange ≅ T° upper flange

Page 39: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 39

Determination of the failure time

Verification of the composite beam

0

200

400

600

800

1000

1200

0 20 40 60 80 100 120

Ste

el te

mpe

ratu

re [°

C]

time [min]t = 88min

θcr = 578°C

Protected IPE450

Page 40: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 40

0

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000 1200

ky,θ

θ [°C]

Verification of the resistance by the moment resistance method

Verification of the composite beam

292,50,824480Lower flange

179,90,507588Web

292,50,824480Upper flange

fay,θ

[N/mm²]ky,θ

[-]θa,max,30

[°C]

Page 41: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 41

kN096,2334γ

ebfehfebfT

afi,M,

f2θay,wwwθay,f1θay, =⋅⋅+⋅⋅+⋅⋅

=

Determination of the tensile force in the profile

Verification of the composite beam

The location of the tensile force (with regard to the bottom flange) is given by the following equation :

( )mm6,222

T2eh)eb(f

2heehf

2ebf

ya,fi,M

ff2,ay

wfwww,ay

2f

1,ay

T =γ⋅

⎟⎠⎞

⎜⎝⎛ −⋅+⎟

⎠⎞

⎜⎝⎛ +⋅+⎟⎟

⎞⎜⎜⎝

⎛ ⋅⋅

=θθθ

The steel profile is subjected to a tensile force T which could be calculated by the following way

Page 42: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 42

with N is the number of connectors in the critical length of the beamPfi,Rd is the design shear resistance of one connector in fire

situation

minP Rdfi, =

'1,Rdθu,Rd,1fi, Pk0,8P ⋅⋅=

Rd,fiPNT ⋅≤

'2,Rdθ,c2Rd,fi, PkP ⋅=

Verification of the composite beam

Limitation of the tensile force

kN1024

π.190,1

4500,84

π.dγ

f0,8P

22

M,fi,v

u'1,Rd =⋅⋅=⋅⋅=

kN910,13050025190,1290,

γEf

d290,P 2

M,fi,v

cmc2'2,Rd =

⋅⋅⋅⋅=

⋅⋅⋅α⋅=

where

and

Page 43: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 43

θv (connectors) = 80% θsemelle = 0,8 x 480 = 384°C ⇒ ku,θ = 1,04

θc (concrete) = 40% θsemelle = 0,4 x 480 = 192°C ⇒ kc,θ = 0,954

kN57749,8468kN096,2334 =⋅<

Limit of the tensile force is fulfilled :

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200

θ [°C]

kc,θ

ku,θ

0,9541,04

192 384

Rd,fiPNT ⋅≤

Verification of the composite beam

Determination of the reduction factors

minP Rdfi, =kN9,8410204,18,0Pk0,8P '

1,Rdθu,Rd,1fi, =⋅⋅=⋅⋅=

kN21,8791954,0PkP '2,Rdθ,c2Rd,fi, =⋅=⋅=

OK

Page 44: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 44

heff

Determination of the effective thickness of the slab cm8,84heff =

'30crh 25014050

28916045

32718040

37421035

42125030

46930025

52535020

58141515

64247010

7055355

60’30’

Temperature[°C]hcr

[mm]Determination of the critical height mm50h '60

cr =

Determination of the thickness of the compressive zone of the concrete :

mm12,310,1/253000

096,2334/γfb

Thcfi,M,ceff

u =⋅

=⋅

=

hu

beff

Verification of the composite beam

Determination of the compressive zone of the slab

Page 45: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 45

kNm4,692)y(yTM TFRdfi, =−⋅= 183,04,6926,571

MM

Rdfi,

Edfi, <==Verification :

The stability of the beam in fire situation is fulfilled for R60

hd hc=heff

hu

hcr

Location of the force F :

cm522)/(hhhy ucF =−+≈

F

T

yF

yT

c,fi,MC20,c /f γ°

a,fi,M2,ay /f γθ

a,fi,Mw,ay /f γθ

a,fi,M1,ay /f γθ

Verification of the composite beam

Determination of the moment resistance

Page 46: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 46

a,fi,M

,ayvRd,fi,pl

3

fAV

γ⋅⋅= θ

kN33,1632

pVkN5,8590,13

5,2925090V Ed,fiRd,pl,fi =⋅

=>=⋅

⋅=l OK

Verification of the shear resistance

Verification of the composite beam

Page 47: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 47

Verification of the composite beam

Alternative with reactive coating painted beam

Typical Intumescent Thickness Range

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

0 50 100 150 200 250 300 350 400

A/V  (m‐1)

Thickness (mm)

R30

R60

R90

R120

Page 48: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 48

Verification of the composite beam

ABC calculation (Alternative AF solution without fire protection)

IPE4504φ16

Page 49: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 49

Structure grid of the composite building

16 m 6 m 6 m 6 m 6 m

A

B

C

7 m

7 m

14 m

2 3 4 5 6

3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m

S1 S1

S2

S2

S1 - S1

Bracing system

Bracing system

3 m 3 m

Bra

cing

sys

tem

Bra

cing

sys

tem

Composite columns

Page 50: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 50

Verification of the composite column

Partially encased composite columnHeight = 3,40 m

Summary of data

Profile : HEA 260h = 250 mmb = 260 mmew = 7,5 mmef = 12,5 mmAa = 8680 mm²fy = 460 N/mm²

Concrete : C30/37 ; fc = 30 N/mm²Ac = 53860 mm²

Rebars : 4 ø 28 ; As = 2463 mm²u1= 52mm ; u2= 60mmfs = 500 N/mm²

Geometrical characteristics and material properties

Y

Z

b

h

ew

ef

u1

u2

Page 51: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 51

L = 14 m

l = 3 m

l = 3 m

3.4

m

q1

q1

q2

q1 = 1,25 [(3,62+0,6*4,0)*3]+0,776 = 23,351 kN/m

q2 = 0,750 [(3,62+0,6*4,0)*3]+0,776 = 14,321 kN/m

IPE450pp=0,776kN/mIPE450

pp=0,776kN/m

HE260App=0,682kN/m

PPTOTAL = 6*Ptot

P

Ptot = (23,351*14/2)+ (14,321*14/2)+2*6+0,776*6+2,14*3,4 = 287,636 kN

Verification of the composite column

PTOTAL = 6 * 287,636 = 1726 kN

For one level :

Load

Page 52: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 52

Verification of the composite column

4zs,z

3

zc, cm31730II12b.hI =−−=

4ys,y

3

yc, cm22080II12h.bI =−−=

Inertia

Profile :

Concrete :

Rebars : 42

2

24

s,z cm6,1324u2b

4d

46d4I =

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ −⋅π

+⋅π

⋅=

42

1

24

s,y cm9,1218u2h

4d

46d4I =

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠

⎞⎜⎝

⎛ −⋅π

+⋅π

⋅=

Iz = 3668 cm4

Iy = 10450 cm4

Page 53: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 53

Verification of the composite column

Use of tabulated data (0,28 < ηfi,t < 0,47)

Method not applicable

YES

YESu1 = 52mmu2 = 60mmu1 and u2 > 50 mm

NOh = 250 mmb = 260 mmh and b > 300 mm

YES7,5 / 12,5 = 0,6ew / ef > 0,5

Fulfilled conditions ?

Existingparameters

Allowed parametersR60

4%AA

A

sc

s >+

%4,424636,538

2463=

+

Page 54: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 54

lfi=0,7L

Verification of the composite columnVerification of the composite column

Simplified method : Application field

Method applicable

YES24,63/(538,6+24,63)=4,4%

YESR60max R120

YESWeak axis : lθz = 2,38 < 10b = 2,6lθ limited to 10b if 230 ≤ b < 300

YESStrong axis : lθy = 2,38 < 10b = 2,6

YESb = 260 mm

YESh = 250 mm

YESlθz = lθy = 0,7 . 3,4 = 2,38 mlθ ≤ 13,5b = 13,5 . 0,26 = 3,51m

Fulfilled conditions ?Existingparameters

Allowed parametersR60

mm1100hmm230 ≤≤

500bmm230 ≤≤

%6)AA/(A%1 scs ≤+≤

Page 55: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 55

Verification of the composite column

ky,θ = 0,095kE,θ =0,083

Plastic resistance :

Effective stiffness :

Flanges of the profileMean temperature

Resistance to axial compression according to weak axis

4,65900R 120

6,15805R 90

9,55680R 60

9,65550R 30

kt [m°C]θo,t [°C]Standard fire resistance

C8307,1555,9680t,f °=⋅+=θ

V/Ak mtt,0t,f ⋅+θ=θ

1m m7,15b.h

)bh(2V

A −=+

=with

% of the nominal value

0 300 600 900 1200

100

80

60

40

20

Temperature [°C]

Effectiveresistance ky,θ

Elasticmodulus kE,θ

M,fi,ay,θay,fffi,pl,Rd,f )/γkfe(b2N ⋅⋅⋅⋅=

kN3,8420,)/150,0946012,5(2602Nfi,pl,Rd,f =⋅⋅⋅⋅=

)/6b(ekE(EI) 3fE,θa,ffi,f,z ⋅⋅⋅=

23fi,f,z m.kN4,406)/6602(12,5830,0210000(EI) =⋅⋅⋅=

Page 56: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 56

Verification of the composite column

Reduced height of web :

Level of maximum stress :

Web of the profile

hw,fi

hw,fi

1250R 120

1100R 90

770R 60

350R 30

Ht [mm]Standard fire resistance

( ) ( ))h/H(16,011e2h5,0h tffi,w ⋅−−⋅⋅−⋅=

( ) mm32,450)0,16(770/2112,5)12(2500,5hw,fi =−−⋅−⋅=

Plastic resistance :

Effective stiffness :

/h)(0,16H1ff tay,way,w,t −=

MPa6,327/250)770(0,161460fay,w,t =⋅−=

( )[ ] M,fi,aay,w,tw,fifwfi,pl,Rd,w /γf2h2eheN −−=

( ) kN7,3930,/16,32732,4)22,5127,5(250Nfi,pl,Rd,w =⋅−⋅−=

( )[ ]/12e2h2ehE(EI) 3ww,fifa,wfi,w,z −−=

( )( ) 23fi,w,z kN.m1,18/127,532,4212,52250210000(EI) =⋅−⋅−=

Page 57: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 57

Verification of the composite column

Reduced thickness of concrete : bc,fi

Am/V = 15,7m-1 Average temperature in the concrete θc,t = 356°C

bc,fi

bc,fi

Concrete

2,0(Am/V)+24,0R120

0,5(Am/V)+22,5R90

15,0R60

4,0R30

bc,fi [mm]Standard fire resistance

100043------------------

90041------------------

8003880054------------

600236003360050------

4009400134002140046

30053006300930023

2654256421441364

θc,t[°C]

Am/V[m-1]

θc,t[°C]

Am/V[m-1]

θc,t[°C]

Am/V[m-1]

θc,t[°C]

Am/V[m-1]

R120R90R60R30

Page 58: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 58

Verification of the composite column

kc,θ=0,79

Secant modulus of concrete :

kc,θ

12000

0.2

0.4

0.6

0.8

1

0 200 400 600 800 1000θ [°C]

0.79

356

θc,t = 356°C

Plastic resistance :

Effective stiffness :

θ

θ

θ

θθ ε

=,cu

,cc

,cu

,csec,,c

k.ffE

MPa4,7462108,68

0,7930E3c,sec,θ =

⋅⋅

=−

( )( ){ } M,fi,cc,θsc,fiwc,fiffi,pl,Rd,c /γfA2beb2b2eh0,86N −−−−−=

( )( ){ } kN8390,0,79/12524631527,526015212,522500,86Nfi,pl,Rd,c =⋅⋅−⋅−−⋅−⋅−⋅=

( ) ( )( ){ }[ ]s,z3w

3c,fic,fifc,sec,θfi,c,z I/12e2bb2b2ehE(EI) −−−−−=

( ) ( )( ){ }[ ] 2433fi,c,z mkN5,509106,1324/127,515226015212,522504,7462(EI) ⋅=⋅−−⋅−⋅−⋅−=

Page 59: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 59

Verification of the composite column

mm86,556052uuu 21 =⋅=⋅=

fi,sM,ys,ty,sRd,spl,fi, /γfkAN ⋅⋅=

zs,stE,zfi,s, IEk(EI) ⋅⋅=

u2

u1

kN5,12310,1/5000,12463N Rd,spl,fi, =⋅⋅=

24zfi,s, m.kN4,1881109,1218210000735,0(EI) =⋅⋅⋅=

Plastic resistance :

Effective stiffness :

Reduction factor for yield strength : ky,t

0,4360,3670,2880,2230,170R120

0,8220,6960,5720,4340,314R90

110,97630,8830,789R60

11111R30

6055504540

u [mm]Standard fire resistance

Reduction factor for Young modulus : kE,t

0,2850,2330,1730,1280,110R120

0,6190,5220,4060,2830,193R90

0,7630,7290,6890,6470,604R60

0,9350,9140,880,8650,830R30

6055504540

u [mm]Standard fire resistance

Reinforcing bars

Page 60: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 60

Verification of the composite column

Rd,spl,fi,cRd,pl,fi,wRd,pl,fi,fRd,pl,fi,Rdpl,fi, NNNNN +++=

zfi,s,θs,zc,fi,θc,zw,fi,θw,zf,fi,θf,zfi,eff, (EI)(EI)(EI)(EI)(EI) ϕ+ϕ+ϕ+ϕ=

Plastic resistance of the composite section

kN27485,12318397,3933,284N Rdpl,fi, =+++=

2zfi,eff, m.kN4,26784,18819,05,5098,018,10,14,6409,0(EI) =⋅+⋅+⋅+⋅=

Effective stiffness of the composite section

1,00,81,01,0R120

0,80,81,00,8R90

0,90,81,00,9R60

1,00,81,01,0R30

φs,θφc,θφw,θφf,θStandard fire

resistance

Page 61: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 61

Verification of the composite column

2θz

zfi,eff,2

zcr,fi,(EI)π

Nl

⋅=

7670,46672748

NN

λzcr,fi,

Rpl,fi,θ === 6830,urvecc z =χ→

Rdpl,fi,zzRd,fi, NN ⋅χ=

Euler buckling load :

with m38,2θz =l

kN466738,2

4,2678πN 2

2

zcr,fi, =⋅

=

Slenderness ratio :

Axial buckling resistance :

kN1726NkN87612748683,0N Rd,fizRd,fi, =>=⋅=

Determination of the axial buckling load at elevated temperatures

Page 62: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 62

Verification of the composite column

Same method as for weak axis, excepted of the inertia !

kN2748NNNNN Rd,spl,fi,cRd,pl,fi,wRd,pl,fi,fRd,pl,fi,Rdpl,fi, =+++=

2yfi,s,θs,yc,fi,θc,yw,fi,θw,yf,fi,θf,yfi,eff, m.kN1,4097(EI)(EI)(EI)(EI)(EI) =ϕ+ϕ+ϕ+ϕ=

kN1726NkN8,2124N.N Rd,fiRdpl,fi,yyRd,fi, =>=χ=

Plastic resistance of the composite section

Effective stiffness of the composite section

kN8,7138(EI)π

N 2θy

yfi,eff,2

ycr,fi, =⋅

=l

620,NN

λycr,fi,

Rpl,fi,θ ==

Euler buckling load

Slenderness ratio

Axial buckling resistance

Resistance to axial compression according to strong axis

Page 63: Fire resistance assessment of Composite structureseurocodes.jrc.ec.europa.eu/doc/2012_11_WS_fire/... · Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’

Workshop ‘Structural Fire Design of Buildings according to the Eurocodes’ – Brussels, 27-28 November 2012 63

Verification of the composite column

A3C calculation (Alternative solution : Fully encased HEB160)

---

4006040

3505030

2504020*

2004020*

---

Minimum dimensions hc and bc [mm]minimum concrete cover of steel section c [mm]

minimum axis distance of reinforcing bars us [mm]

2.12.22.3

4007550

3507550

3007540

2205030

1805030

1504020*

Minimum dimensions hc and bc [mm]minimum concrete cover of steel section c [mm]

minimum axis distance of reinforcing bars us [mm]

or

1.11.21.3

R240R180R120R90R60R30

Standard Fire Resistance

bc

us

us

hc

c

c

Table 4.4: Minimum cross-sectional dimensions, minimum concrete cover of the steel section and minimum axis distance of the reinforcing bars, of composite columns made of totally encased steel sections.

Tabulated data

bc = 280

h c=

280

c = 60 us = 42

HEB160

4φ12