finsler metrics (flag curvature) - umfinsler metrics main reference: bao, d., chern, s.s., shen, z.:...

132
Finsler metrics (Flag Curvature) Miguel Angel Javaloyes and Miguel S´ anchez Universidad de Granada Seminario del departamento de Geometr´ ıa y Topolog´ ıa 16 de diciembre de 2009 M. A. Javaloyes (*) Flag Curvature 1 / 26

Upload: others

Post on 07-Jul-2020

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics (Flag Curvature)

Miguel Angel Javaloyes and Miguel Sanchez

Universidad de Granada

Seminario del departamento de Geometrıa y Topologıa16 de diciembre de 2009

M. A. Javaloyes (*) Flag Curvature 1 / 26

Page 2: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 02 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 3: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 0

2 Positively homogeneous of degree oneF (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 4: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 02 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 5: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 02 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 6: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 02 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0

Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 7: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 02 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 8: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metrics

Main reference:

Bao, D., Chern, S.S., Shen, Z.: An Introduction toRiemann-Finsler geometry.

DEFINITION: a Finsler metric F in a manifold M is acontinuous function F : TM → [0,+∞) such that:

1 It is C∞ in TM \ 02 Positively homogeneous of degree one

F (x , λy) = λF (x , y) for all λ > 0

3 Fiberwise strictly convex square:

gij(x , y) =[

12∂2(F 2)∂y i∂y j (x , y)

]is positively defined.

It can be showed that this implies:

F is positive in TM \ 0Triangle inequality holds in the fibers

F 2 is C 1 on TM.

Paul Finsler (1894-1970)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 2 / 26

Page 9: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 10: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 11: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 12: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 13: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 14: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 15: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 16: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 17: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Non-symmetric “distance”

We can define the length of a curve: L(γ) =∫ ba F (γ, γ)ds

and then the distance between two points:dist(p, q) = infγ∈C∞(p,q) L(γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of itsreverse t → γ(t)!!

We have to distinguish between forward and backward:

balls

Cauchy sequence

topological completeness

geodesical completeness

M. A. Javaloyes (*) Flag Curvature 3 / 26

Page 18: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 19: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 20: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 21: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 22: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 23: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)

Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 24: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 25: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 26: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 27: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Closed Geodesics

A geodesic of (M,F ) (parameterized by the arclength) is a critical curveof the energy function

E (γ) =

∫ 1

0F 2(γ, γ)ds

Existence of closed geodesics in compact manifolds:

At least one: Fet and Lyusternik (51), F. Mercuri (78)

Multiplicity results under topological hypotheses:

Gromoll-Meyer theorem: Betti numbers of ΛM are unbounded(Matthias 78)Bangert-Hingston theorem: π(M) is infinite abelian (L. Biliotti,M.A.J.to be published)

Katok metrics (73) in Sn admit a finite number of closed geodesics.

S2 admits at least 2 closed geodesics (Bangert-Long, preprint)

S2 with a Riemannian metric admit infinite many closed geodesics(Franks (92) and Bangert (93))

M. A. Javaloyes (*) Flag Curvature 4 / 26

Page 28: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

π : TM \ 0 → M is the natural projection

now we take the pullback of TM bydπ = π∗, that is, π∗TM

We have a metric over this vector bundlegiven by gij(x , y)dx i ⊗ dx j , where

gij(x , y) =1

2

∂2(F 2)

∂y i∂y j(x , y)

S.S. Chern (1911-2004)

M. A. Javaloyes (*) Flag Curvature 5 / 26

Page 29: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

π : TM \ 0 → M is the natural projection

now we take the pullback of TM bydπ = π∗, that is, π∗TM

We have a metric over this vector bundlegiven by gij(x , y)dx i ⊗ dx j , where

gij(x , y) =1

2

∂2(F 2)

∂y i∂y j(x , y)

S.S. Chern (1911-2004)

M. A. Javaloyes (*) Flag Curvature 5 / 26

Page 30: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

π : TM \ 0 → M is the natural projection

now we take the pullback of TM bydπ = π∗, that is, π∗TM

We have a metric over this vector bundlegiven by gij(x , y)dx i ⊗ dx j , where

gij(x , y) =1

2

∂2(F 2)

∂y i∂y j(x , y)

S.S. Chern (1911-2004)

M. A. Javaloyes (*) Flag Curvature 5 / 26

Page 31: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

π : TM \ 0 → M is the natural projection

now we take the pullback of TM bydπ = π∗, that is, π∗TM

We have a metric over this vector bundlegiven by gij(x , y)dx i ⊗ dx j , where

gij(x , y) =1

2

∂2(F 2)

∂y i∂y j(x , y)

S.S. Chern (1911-2004)

M. A. Javaloyes (*) Flag Curvature 5 / 26

Page 32: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

Given a connection ∇, the connection 1-forms ω ij : ∇v

∂∂x j = ω i

j (v) ∂∂x i

The Chern connection ∇ is the unique linear connection on π∗TMwhose connection 1-forms ωi

j satisfy:

dx j ∧ ωij = 0 torsion free (1)

dgij − gkjωk

i − gikωk

j =2

FAijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Nsj dx j ,

and

N ij (x , y) := γ i

jkyk − 1

FAi

jkγkrsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,and

γ ijk(x , y) =

1

2g is

(∂gsj

∂xk− ∂gjk

∂x s+∂gks

∂x j

),Aijk(x , y) =

F

2

∂gij

∂yk=

F

4

∂3(F 2)

∂y i∂y j∂yk,

M. A. Javaloyes (*) Flag Curvature 6 / 26

Page 33: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

Given a connection ∇, the connection 1-forms ω ij : ∇v

∂∂x j = ω i

j (v) ∂∂x i

The Chern connection ∇ is the unique linear connection on π∗TMwhose connection 1-forms ωi

j satisfy:

dx j ∧ ωij = 0 torsion free (1)

dgij − gkjωk

i − gikωk

j =2

FAijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Nsj dx j ,

and

N ij (x , y) := γ i

jkyk − 1

FAi

jkγkrsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,and

γ ijk(x , y) =

1

2g is

(∂gsj

∂xk− ∂gjk

∂x s+∂gks

∂x j

),Aijk(x , y) =

F

2

∂gij

∂yk=

F

4

∂3(F 2)

∂y i∂y j∂yk,

M. A. Javaloyes (*) Flag Curvature 6 / 26

Page 34: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

Given a connection ∇, the connection 1-forms ω ij : ∇v

∂∂x j = ω i

j (v) ∂∂x i

The Chern connection ∇ is the unique linear connection on π∗TMwhose connection 1-forms ωi

j satisfy:

dx j ∧ ωij = 0 torsion free (1)

dgij − gkjωk

i − gikωk

j =2

FAijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Nsj dx j ,

and

N ij (x , y) := γ i

jkyk − 1

FAi

jkγkrsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,and

γ ijk(x , y) =

1

2g is

(∂gsj

∂xk− ∂gjk

∂x s+∂gks

∂x j

),Aijk(x , y) =

F

2

∂gij

∂yk=

F

4

∂3(F 2)

∂y i∂y j∂yk,

M. A. Javaloyes (*) Flag Curvature 6 / 26

Page 35: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

Given a connection ∇, the connection 1-forms ω ij : ∇v

∂∂x j = ω i

j (v) ∂∂x i

The Chern connection ∇ is the unique linear connection on π∗TMwhose connection 1-forms ωi

j satisfy:

dx j ∧ ωij = 0 torsion free (1)

dgij − gkjωk

i − gikωk

j =2

FAijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Nsj dx j ,

and

N ij (x , y) := γ i

jkyk − 1

FAi

jkγkrsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,and

γ ijk(x , y) =

1

2g is

(∂gsj

∂xk− ∂gjk

∂x s+∂gks

∂x j

),Aijk(x , y) =

F

2

∂gij

∂yk=

F

4

∂3(F 2)

∂y i∂y j∂yk,

M. A. Javaloyes (*) Flag Curvature 6 / 26

Page 36: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Chern Connection

Given a connection ∇, the connection 1-forms ω ij : ∇v

∂∂x j = ω i

j (v) ∂∂x i

The Chern connection ∇ is the unique linear connection on π∗TMwhose connection 1-forms ωi

j satisfy:

dx j ∧ ωij = 0 torsion free (1)

dgij − gkjωk

i − gikωk

j =2

FAijsδy s almost g-compatibility (2)

where δy s are the 1-forms on π∗TM given as δy s := dy s + Nsj dx j ,

and

N ij (x , y) := γ i

jkyk − 1

FAi

jkγkrsy r y s

are the coefficients of the so called nonlinear connection on TM \ 0,and

γ ijk(x , y) =

1

2g is

(∂gsj

∂xk− ∂gjk

∂x s+∂gks

∂x j

),Aijk(x , y) =

F

2

∂gij

∂yk=

F

4

∂3(F 2)

∂y i∂y j∂yk,

M. A. Javaloyes (*) Flag Curvature 6 / 26

Page 37: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Covariant derivatives

The components of the Chern connection are given by:

Γijk(x , y) = γi

jk −g il

F

(AljsNs

k − AjksNsi + AklsNs

j

).

that is, ω ij = Γi

jkdxk .

The Chern connection gives two different covariant derivatives:

DT W =

(dW i

dt+ W jT kΓi

jk(γ,T )

)∂

∂x i

∣∣∣∣γ(t)

with ref. vector T ,

DT W =

(dW i

dt+ W jT kΓi

jk(γ,W )

)∂

∂x i

∣∣∣∣γ(t)

with ref. vector W .

M. A. Javaloyes (*) Flag Curvature 7 / 26

Page 38: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Covariant derivatives

The components of the Chern connection are given by:

Γijk(x , y) = γ i

jk −g il

F

(AljsNs

k − AjksNsi + AklsNs

j

).

that is, ω ij = Γi

jkdxk .

The Chern connection gives two different covariant derivatives:

DT W =

(dW i

dt+ W jT kΓi

jk(γ,T )

)∂

∂x i

∣∣∣∣γ(t)

with ref. vector T ,

DT W =

(dW i

dt+ W jT kΓi

jk(γ,W )

)∂

∂x i

∣∣∣∣γ(t)

with ref. vector W .

M. A. Javaloyes (*) Flag Curvature 7 / 26

Page 39: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Covariant derivatives

The components of the Chern connection are given by:

Γijk(x , y) = γ i

jk −g il

F

(AljsNs

k − AjksNsi + AklsNs

j

).

that is, ω ij = Γi

jkdxk .

The Chern connection gives two different covariant derivatives:

DT W =

(dW i

dt+ W jT kΓi

jk(γ,T )

)∂

∂x i

∣∣∣∣γ(t)

with ref. vector T ,

DT W =

(dW i

dt+ W jT kΓi

jk(γ,W )

)∂

∂x i

∣∣∣∣γ(t)

with ref. vector W .

M. A. Javaloyes (*) Flag Curvature 7 / 26

Page 40: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Other connections

Cartan connection: metric compatible buthas torsion

Hashiguchi connection

Berwald connection: no torsion. Speciallygood to treat with Finsler spaces of constantflag curvature

Rund connection: coincides with Chernconnection

M. A. Javaloyes (*) Flag Curvature 8 / 26

Page 41: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Other connections

Cartan connection: metric compatible buthas torsion

Hashiguchi connection

Berwald connection: no torsion. Speciallygood to treat with Finsler spaces of constantflag curvature

Rund connection: coincides with Chernconnection

E. Cartan (1861-1940)

M. A. Javaloyes (*) Flag Curvature 8 / 26

Page 42: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Other connections

Cartan connection: metric compatible buthas torsion

Hashiguchi connection

Berwald connection: no torsion. Speciallygood to treat with Finsler spaces of constantflag curvature

Rund connection: coincides with Chernconnection

Masao Hashiguchi

E. Cartan (1861-1940)

M. A. Javaloyes (*) Flag Curvature 8 / 26

Page 43: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Other connections

Cartan connection: metric compatible buthas torsion

Hashiguchi connection

Berwald connection: no torsion. Speciallygood to treat with Finsler spaces of constantflag curvature

Rund connection: coincides with Chernconnection

Masao Hashiguchi

Ludwig Berwald 1883 (Prague)-1942

E. Cartan (1861-1940)

M. A. Javaloyes (*) Flag Curvature 8 / 26

Page 44: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Other connections

Cartan connection: metric compatible buthas torsion

Hashiguchi connection

Berwald connection: no torsion. Speciallygood to treat with Finsler spaces of constantflag curvature

Rund connection: coincides with Chernconnection

Masao Hashiguchi

Ludwig Berwald 1883 (Prague)-1942

E. Cartan (1861-1940)

Hanno Rund 1925-1993, South Africa

M. A. Javaloyes (*) Flag Curvature 8 / 26

Page 45: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω ij := dω i

j − ω kj ∧ ω i

k

It can be expanded as

Ω ij :=

1

2R i

j kldxk ∧ dx l + P ij kldxk ∧ δy l

F+

1

2Q i

j kl

δyk

F∧ δy l

F

From free torsion of the Chern connection Q ij kl = 0

R ij kl =

δΓijl

δxk −δΓi

jk

δxk + ΓihkΓh

jl − ΓihlΓ

hjk ( δ

δxk = ∂∂xk − N i

k∂∂y i )

P ij kl = −F

∂Γijk

∂y l

M. A. Javaloyes (*) Flag Curvature 9 / 26

Page 46: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω ij := dω i

j − ω kj ∧ ω i

k

It can be expanded as

Ω ij :=

1

2R i

j kldxk ∧ dx l + P ij kldxk ∧ δy l

F+

1

2Q i

j kl

δyk

F∧ δy l

F

From free torsion of the Chern connection Q ij kl = 0

R ij kl =

δΓijl

δxk −δΓi

jk

δxk + ΓihkΓh

jl − ΓihlΓ

hjk ( δ

δxk = ∂∂xk − N i

k∂∂y i )

P ij kl = −F

∂Γijk

∂y l

M. A. Javaloyes (*) Flag Curvature 9 / 26

Page 47: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω ij := dω i

j − ω kj ∧ ω i

k

It can be expanded as

Ω ij :=

1

2R i

j kldxk ∧ dx l + P ij kldxk ∧ δy l

F+

1

2Q i

j kl

δyk

F∧ δy l

F

From free torsion of the Chern connection Q ij kl = 0

R ij kl =

δΓijl

δxk −δΓi

jk

δxk + ΓihkΓh

jl − ΓihlΓ

hjk ( δ

δxk = ∂∂xk − N i

k∂∂y i )

P ij kl = −F

∂Γijk

∂y l

M. A. Javaloyes (*) Flag Curvature 9 / 26

Page 48: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω ij := dω i

j − ω kj ∧ ω i

k

It can be expanded as

Ω ij :=

1

2R i

j kldxk ∧ dx l + P ij kldxk ∧ δy l

F

+1

2Q i

j kl

δyk

F∧ δy l

F

From free torsion of the Chern connection Q ij kl = 0

R ij kl =

δΓijl

δxk −δΓi

jk

δxk + ΓihkΓh

jl − ΓihlΓ

hjk ( δ

δxk = ∂∂xk − N i

k∂∂y i )

P ij kl = −F

∂Γijk

∂y l

M. A. Javaloyes (*) Flag Curvature 9 / 26

Page 49: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω ij := dω i

j − ω kj ∧ ω i

k

It can be expanded as

Ω ij :=

1

2R i

j kldxk ∧ dx l + P ij kldxk ∧ δy l

F

+1

2Q i

j kl

δyk

F∧ δy l

F

From free torsion of the Chern connection Q ij kl = 0

R ij kl =

δΓijl

δxk −δΓi

jk

δxk + ΓihkΓh

jl − ΓihlΓ

hjk ( δ

δxk = ∂∂xk − N i

k∂∂y i )

P ij kl = −F

∂Γijk

∂y l

M. A. Javaloyes (*) Flag Curvature 9 / 26

Page 50: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Curvature 2-forms of the Chern connection

The curvature 2-forms of the Chern connection are:

Ω ij := dω i

j − ω kj ∧ ω i

k

It can be expanded as

Ω ij :=

1

2R i

j kldxk ∧ dx l + P ij kldxk ∧ δy l

F

+1

2Q i

j kl

δyk

F∧ δy l

F

From free torsion of the Chern connection Q ij kl = 0

R ij kl =

δΓijl

δxk −δΓi

jk

δxk + ΓihkΓh

jl − ΓihlΓ

hjk ( δ

δxk = ∂∂xk − N i

k∂∂y i )

P ij kl = −F

∂Γijk

∂y l

M. A. Javaloyes (*) Flag Curvature 9 / 26

Page 51: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bianchi Identities

First Bianchi Identity for R

R ij kl + R i

k lj + R il jk = 0

Other identities:

P ik jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRukl , Ru

kl = y j

F R uj kl and

Rijkl = gjµR µi kl

Rklji − Rjikl =(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mixterms in R i

j kl and P ij kl

Luigi Bianchi (1856-1928)

M. A. Javaloyes (*) Flag Curvature 10 / 26

Page 52: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bianchi Identities

First Bianchi Identity for R

R ij kl + R i

k lj + R il jk = 0

Other identities:

P ik jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRukl , Ru

kl = y j

F R uj kl and

Rijkl = gjµR µi kl

Rklji − Rjikl =(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mixterms in R i

j kl and P ij kl

Luigi Bianchi (1856-1928)

M. A. Javaloyes (*) Flag Curvature 10 / 26

Page 53: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bianchi Identities

First Bianchi Identity for R

R ij kl + R i

k lj + R il jk = 0

Other identities:

P ik jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRukl , Ru

kl = y j

F R uj kl and

Rijkl = gjµR µi kl

Rklji − Rjikl =(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mixterms in R i

j kl and P ij kl

Luigi Bianchi (1856-1928)

M. A. Javaloyes (*) Flag Curvature 10 / 26

Page 54: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bianchi Identities

First Bianchi Identity for R

R ij kl + R i

k lj + R il jk = 0

Other identities:

P ik jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRukl , Ru

kl = y j

F R uj kl and

Rijkl = gjµR µi kl

Rklji − Rjikl =(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mixterms in R i

j kl and P ij kl

Luigi Bianchi (1856-1928)

M. A. Javaloyes (*) Flag Curvature 10 / 26

Page 55: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bianchi Identities

First Bianchi Identity for R

R ij kl + R i

k lj + R il jk = 0

Other identities:

P ik jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRukl , Ru

kl = y j

F R uj kl and

Rijkl = gjµR µi kl

Rklji − Rjikl =(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mixterms in R i

j kl and P ij kl

Luigi Bianchi (1856-1928)

M. A. Javaloyes (*) Flag Curvature 10 / 26

Page 56: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bianchi Identities

First Bianchi Identity for R

R ij kl + R i

k lj + R il jk = 0

Other identities:

P ik jl = P i

j kl

Rijkl + Rjikl = 2Bijkl , where

Bijkl := −AijuRukl , Ru

kl = y j

F R uj kl and

Rijkl = gjµR µi kl

Rklji − Rjikl =(Bklji − Bjikl) + (Bkilj + Bljki ) + (Bilji + Bjkil)

Second Bianchi identities: very complicated, mixterms in R i

j kl and P ij kl

Luigi Bianchi (1856-1928)

M. A. Javaloyes (*) Flag Curvature 10 / 26

Page 57: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag Curvature

We must fix a flagpole y and then atransverse edge V

K (y ,V ) :=V i (y jRjikly

l)V k

g(y , y)g(V ,V )− g(y ,V )2

We can change V byW = αV + βy , that is,K (y ,W ) = K (y ,V ).

We obtain the same quantitywith the other connections(Cartan, Berwald, Hashiguchi...)

M. A. Javaloyes (*) Flag Curvature 11 / 26

Page 58: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag Curvature

We must fix a flagpole y and then atransverse edge V

K (y ,V ) :=V i (y jRjikly

l)V k

g(y , y)g(V ,V )− g(y ,V )2

We can change V byW = αV + βy , that is,K (y ,W ) = K (y ,V ).

We obtain the same quantitywith the other connections(Cartan, Berwald, Hashiguchi...)

M. A. Javaloyes (*) Flag Curvature 11 / 26

Page 59: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag Curvature

We must fix a flagpole y and then atransverse edge V

K (y ,V ) :=V i (y jRjikly

l)V k

g(y , y)g(V ,V )− g(y ,V )2

We can change V byW = αV + βy , that is,K (y ,W ) = K (y ,V ).

We obtain the same quantitywith the other connections(Cartan, Berwald, Hashiguchi...)

M. A. Javaloyes (*) Flag Curvature 11 / 26

Page 60: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag Curvature

We must fix a flagpole y and then atransverse edge V

K (y ,V ) :=V i (y jRjikly

l)V k

g(y , y)g(V ,V )− g(y ,V )2

We can change V byW = αV + βy , that is,K (y ,W ) = K (y ,V ).

We obtain the same quantitywith the other connections(Cartan, Berwald, Hashiguchi...)

M. A. Javaloyes (*) Flag Curvature 11 / 26

Page 61: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 62: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 63: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 64: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 65: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 66: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 67: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Computing Flag curvature

G i := γ ijky jyk (spray coefficients)

2F 2R ik = 2(G i )xk − 1

2 (G i )y j (G j)yk − y j(G i )ykx j + G j(G i )yky j

K (y ,V ) = K (l ,V ) =Vi (R

ik )V k

g(V ,V )−g(l ,V )2 , where l = y/F .

If we consider F (x , y) =√〈y , y〉+ df [y ], with 〈·, ·〉 the Euclidean metric,

then

G i = 1F fx jxk y jyk , very simple!!!

K (y ,V ) = K (x , y) = 34F 4 (fx ix j y iy j)2 − 1

2F 3 (fx ix jxk y iy jyk)

the flag curvature does not depend on the transverse edge!! it isscalar

M. A. Javaloyes (*) Flag Curvature 12 / 26

Page 68: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 69: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 70: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 71: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

Hiroshi Yasuda (1925-1995)

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 72: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

Hiroshi Yasuda (1925-1995)

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 73: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

Hiroshi Yasuda (1925-1995)

Makoto Matsumoto (1920-2005)

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 74: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Finsler metric with constant flag curvature

The complete classification is an openproblem, no Hopf’s theorem!!!

In the class of Randers metrics there doesexist a classification after a long story

In 1977 Yasuda and Shimada publish apaper with a characterization of Randersmetrics of scalar flag curvature

As a particular case they obtain the Randersmetrics of constant flag curvature

Shibata-Kitayama in 1984 and Matsumotoin 1989 obtain alternative derivations of theYasuda-Shimada theorem

In summer 2000, P. Antonelli asks ifYasuda-Shimada theorem is indeed correct

Hiroshi Yasuda (1925-1995)

Makoto Matsumoto (1920-2005)

M. A. Javaloyes (*) Flag Curvature 13 / 26

Page 75: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (agraduate student) and David Bao begin to work in ageometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing acounterexample to Yasuda-Shimada he found whenworking with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto findindependently the correct version of Yasuda-Shimadatheorem.

Still no classification (solutions√

h + h(W , v) must havea h-Riemannian curvature related with the module of ah-Killing field W )

Finally they perceive that when considering Zermeloexpression of Randers metrics the geometry comes out

M. A. Javaloyes (*) Flag Curvature 14 / 26

Page 76: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (agraduate student) and David Bao begin to work in ageometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing acounterexample to Yasuda-Shimada he found whenworking with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto findindependently the correct version of Yasuda-Shimadatheorem.

Still no classification (solutions√

h + h(W , v) must havea h-Riemannian curvature related with the module of ah-Killing field W )

Finally they perceive that when considering Zermeloexpression of Randers metrics the geometry comes out

M. A. Javaloyes (*) Flag Curvature 14 / 26

Page 77: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (agraduate student) and David Bao begin to work in ageometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing acounterexample to Yasuda-Shimada he found whenworking with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto findindependently the correct version of Yasuda-Shimadatheorem.

Still no classification (solutions√

h + h(W , v) must havea h-Riemannian curvature related with the module of ah-Killing field W )

Finally they perceive that when considering Zermeloexpression of Randers metrics the geometry comes out

M. A. Javaloyes (*) Flag Curvature 14 / 26

Page 78: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (agraduate student) and David Bao begin to work in ageometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing acounterexample to Yasuda-Shimada he found whenworking with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto findindependently the correct version of Yasuda-Shimadatheorem.

Still no classification (solutions√

h + h(W , v) must havea h-Riemannian curvature related with the module of ah-Killing field W )

Finally they perceive that when considering Zermeloexpression of Randers metrics the geometry comes out

M. A. Javaloyes (*) Flag Curvature 14 / 26

Page 79: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (agraduate student) and David Bao begin to work in ageometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing acounterexample to Yasuda-Shimada he found whenworking with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto findindependently the correct version of Yasuda-Shimadatheorem.

Still no classification (solutions√

h + h(W , v) must havea h-Riemannian curvature related with the module of ah-Killing field W )

Finally they perceive that when considering Zermeloexpression of Randers metrics the geometry comes out

M. A. Javaloyes (*) Flag Curvature 14 / 26

Page 80: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Constant flag curvature and Zermelo metrics

In the academic year of 2000-2001 Colleen Robles (agraduate student) and David Bao begin to work in ageometrical proof of Yasuda-Shimada theorem

In 17th may 2001 Z. Shen phones D. Bao describing acounterexample to Yasuda-Shimada he found whenworking with Zermelo metrics

In the same year D. Bao-C. Robles and Matsumoto findindependently the correct version of Yasuda-Shimadatheorem.

Still no classification (solutions√

h + h(W , v) must havea h-Riemannian curvature related with the module of ah-Killing field W )

Finally they perceive that when considering Zermeloexpression of Randers metrics the geometry comes out

M. A. Javaloyes (*) Flag Curvature 14 / 26

Page 81: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 82: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 83: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 84: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 85: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 86: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 87: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Flag constant curvature and stationary spacetimes

Zermelo metric:√1

αg(v , v) +

1

α2g(W , v)2 − 1

αg(W , v),

where α = 1− g(W ,W ).

Randers space forms are those Zermelo metrics having hof constant curvature and W a conformal Killing field

Katok metrics are Randers space forms

When the Fermat metric associated to a stationaryspacetime is of constant flag curvature, then thespacetime is locally conformally flat

Reciprocal is not true (√

h + df )

what about scalar flag curvature?

M. A. Javaloyes (*) Flag Curvature 15 / 26

Page 88: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Schur’s Lemma

Theorem

Let M be a Riemannian manifold with dimension≥ 3. If for every point x ∈ M the sectionalcurvature does not depend on the plane, then Mhas constant sectional curvature.

It was established by Issai Schur (1875-1941)

Generalized to Finsler manifolds by Lilia delRiego in her Phd. Thesis in 1973.

Issai Schur (1875-1941)

M. A. Javaloyes (*) Flag Curvature 16 / 26

Page 89: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Schur’s Lemma

Theorem

Let M be a Riemannian manifold with dimension≥ 3. If for every point x ∈ M the sectionalcurvature does not depend on the plane, then Mhas constant sectional curvature.

It was established by Issai Schur (1875-1941)

Generalized to Finsler manifolds by Lilia delRiego in her Phd. Thesis in 1973.

Issai Schur (1875-1941)

M. A. Javaloyes (*) Flag Curvature 16 / 26

Page 90: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Schur’s Lemma

Theorem

Let M be a Riemannian manifold with dimension≥ 3. If for every point x ∈ M the sectionalcurvature does not depend on the plane, then Mhas constant sectional curvature.

It was established by Issai Schur (1875-1941)

Generalized to Finsler manifolds by Lilia delRiego in her Phd. Thesis in 1973.

Issai Schur (1875-1941)

M. A. Javaloyes (*) Flag Curvature 16 / 26

Page 91: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannianmanifold with boundary ∂M. Then∫M K dA +

∫∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalizedGauss-Bonnet to even dimensions using thePfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)extends the theorem to the Finsler setting insome particular cases

Bao-Chern (Ann. Math. 1996) extend it toa wider class of Finsler manifolds

M. A. Javaloyes (*) Flag Curvature 17 / 26

Page 92: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannianmanifold with boundary ∂M. Then∫M K dA +

∫∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalizedGauss-Bonnet to even dimensions using thePfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)extends the theorem to the Finsler setting insome particular cases

Bao-Chern (Ann. Math. 1996) extend it toa wider class of Finsler manifolds

Carl F. Gauss (1777-1855)

M. A. Javaloyes (*) Flag Curvature 17 / 26

Page 93: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannianmanifold with boundary ∂M. Then∫M K dA +

∫∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalizedGauss-Bonnet to even dimensions using thePfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)extends the theorem to the Finsler setting insome particular cases

Bao-Chern (Ann. Math. 1996) extend it toa wider class of Finsler manifolds

Pierre O. Bonnet (1819-1892)

M. A. Javaloyes (*) Flag Curvature 17 / 26

Page 94: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannianmanifold with boundary ∂M. Then∫M K dA +

∫∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalizedGauss-Bonnet to even dimensions using thePfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)extends the theorem to the Finsler setting insome particular cases

Bao-Chern (Ann. Math. 1996) extend it toa wider class of Finsler manifolds

S. S. Chern (1911-2004)

C. Allendoerfer (1911-1974)

Andre Weil (1906-1998)

M. A. Javaloyes (*) Flag Curvature 17 / 26

Page 95: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannianmanifold with boundary ∂M. Then∫M K dA +

∫∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalizedGauss-Bonnet to even dimensions using thePfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)extends the theorem to the Finsler setting insome particular cases

Bao-Chern (Ann. Math. 1996) extend it toa wider class of Finsler manifolds

Andre Lichnerowitz (1915-1998)

M. A. Javaloyes (*) Flag Curvature 17 / 26

Page 96: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Gauss-Bonnet Theorem

Theorem

Suppose M is a 2-dim compact Riemannianmanifold with boundary ∂M. Then∫M K dA +

∫∂M kg ds = 2πχ(M),

Gauss knew a version but never published it

Bonnet published a version in 1848

Allendoerfer-Weil-Chern generalizedGauss-Bonnet to even dimensions using thePfaffian in the mid-40’s

Lichnerowitz (Comm. Helv. Math. 1949)extends the theorem to the Finsler setting insome particular cases

Bao-Chern (Ann. Math. 1996) extend it toa wider class of Finsler manifolds

David Bao and S. S. Chern

M. A. Javaloyes (*) Flag Curvature 17 / 26

Page 97: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtaineda version bounding from above the sectionalcurvatures with a positive constant

Myers obtained the generalized version withRic curvatures in 1941

Louis Auslander extended the result to theFinsler setting in 1955 (Trans AMS)

M. A. Javaloyes (*) Flag Curvature 18 / 26

Page 98: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtaineda version bounding from above the sectionalcurvatures with a positive constant

Myers obtained the generalized version withRic curvatures in 1941

Louis Auslander extended the result to theFinsler setting in 1955 (Trans AMS)

Pierre O. Bonnet (1819-1892)

M. A. Javaloyes (*) Flag Curvature 18 / 26

Page 99: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtaineda version bounding from above the sectionalcurvatures with a positive constant

Myers obtained the generalized version withRic curvatures in 1941

Louis Auslander extended the result to theFinsler setting in 1955 (Trans AMS)

M. A. Javaloyes (*) Flag Curvature 18 / 26

Page 100: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Pierre Ossian Bonnet (1819-1892) obtaineda version bounding from above the sectionalcurvatures with a positive constant

Myers obtained the generalized version withRic curvatures in 1941

Louis Auslander extended the result to theFinsler setting in 1955 (Trans AMS)

M. A. Javaloyes (*) Flag Curvature 18 / 26

Page 101: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Bao-Chern-Chen assume just forwardcompleteness in their book “Introduction toRiemann-Finsler geometry”

Causality reveals that completeness can besubstituted by the condition

B+(x , r)∩B−(x , r) compact for all x ∈ M and r > 0

(see Caponio-M.A.J.-Sanchez, preprint 09)

M. A. Javaloyes (*) Flag Curvature 19 / 26

Page 102: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Bao-Chern-Chen assume just forwardcompleteness in their book “Introduction toRiemann-Finsler geometry”

Causality reveals that completeness can besubstituted by the condition

B+(x , r)∩B−(x , r) compact for all x ∈ M and r > 0

(see Caponio-M.A.J.-Sanchez, preprint 09)

D. Bao, S.S. Chern and Z. Shen

M. A. Javaloyes (*) Flag Curvature 19 / 26

Page 103: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bonnet-Myers Theorem

Theorem

If Ricci curvature of a complete Riemannianmanifold M is bounded below by (n − 1)k > 0,then its diameter is at most π/

√k and the

manifold is compact.

Bao-Chern-Chen assume just forwardcompleteness in their book “Introduction toRiemann-Finsler geometry”

Causality reveals that completeness can besubstituted by the condition

B+(x , r)∩B−(x , r) compact for all x ∈ M and r > 0

(see Caponio-M.A.J.-Sanchez, preprint 09)

M. A. Javaloyes (*) Flag Curvature 19 / 26

Page 104: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, completeand connected manifold, with all the sectionalcurvatures bounded by some positive constant,then M is simply connected.

John Lighton Synge (1897-1995) publishedthis result in 1936 (Quaterly Journal ofMathematics).

Louis Auslander(1928-1997) extended theresult for Finsler manifolds in 1955

Again the completeness condition can beweakened.

M. A. Javaloyes (*) Flag Curvature 20 / 26

Page 105: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, completeand connected manifold, with all the sectionalcurvatures bounded by some positive constant,then M is simply connected.

John Lighton Synge (1897-1995) publishedthis result in 1936 (Quaterly Journal ofMathematics).

Louis Auslander(1928-1997) extended theresult for Finsler manifolds in 1955

Again the completeness condition can beweakened.

John Synge (1897-1995)

M. A. Javaloyes (*) Flag Curvature 20 / 26

Page 106: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, completeand connected manifold, with all the sectionalcurvatures bounded by some positive constant,then M is simply connected.

John Lighton Synge (1897-1995) publishedthis result in 1936 (Quaterly Journal ofMathematics).

Louis Auslander(1928-1997) extended theresult for Finsler manifolds in 1955

Again the completeness condition can beweakened.

John Synge (1897-1995)

M. A. Javaloyes (*) Flag Curvature 20 / 26

Page 107: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Synge’s Theorem

Theorem

If M is an even-dimensional, oriented, completeand connected manifold, with all the sectionalcurvatures bounded by some positive constant,then M is simply connected.

John Lighton Synge (1897-1995) publishedthis result in 1936 (Quaterly Journal ofMathematics).

Louis Auslander(1928-1997) extended theresult for Finsler manifolds in 1955

Again the completeness condition can beweakened.

John Synge (1897-1995)

M. A. Javaloyes (*) Flag Curvature 20 / 26

Page 108: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connectedRiemannian manifold of non positive sectionalcurvature. Then

Geodesics do not have conjugate points

expp : TpM → M is globally defined and alocal diffeorphism

If M simply connected, then expp is adiffeomorphism

Obtained for surfaces in 1898 by Hadamard

Generalized for every dimension by Cartan

Extended to Finsler manifolds in 1955 by L.Auslander

M. A. Javaloyes (*) Flag Curvature 21 / 26

Page 109: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connectedRiemannian manifold of non positive sectionalcurvature. Then

Geodesics do not have conjugate points

expp : TpM → M is globally defined and alocal diffeorphism

If M simply connected, then expp is adiffeomorphism

Obtained for surfaces in 1898 by Hadamard

Generalized for every dimension by Cartan

Extended to Finsler manifolds in 1955 by L.Auslander

Jacques Hadamard (1865-1963)

Elie Cartan (1869-1951)

M. A. Javaloyes (*) Flag Curvature 21 / 26

Page 110: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connectedRiemannian manifold of non positive sectionalcurvature. Then

Geodesics do not have conjugate points

expp : TpM → M is globally defined and alocal diffeorphism

If M simply connected, then expp is adiffeomorphism

Obtained for surfaces in 1898 by Hadamard

Generalized for every dimension by Cartan

Extended to Finsler manifolds in 1955 by L.Auslander

Jacques Hadamard (1865-1963)

Elie Cartan (1869-1951)

M. A. Javaloyes (*) Flag Curvature 21 / 26

Page 111: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Cartan-Hadamard Theorem

Theorem

If M is a geodesically complete connectedRiemannian manifold of non positive sectionalcurvature. Then

Geodesics do not have conjugate points

expp : TpM → M is globally defined and alocal diffeorphism

If M simply connected, then expp is adiffeomorphism

Obtained for surfaces in 1898 by Hadamard

Generalized for every dimension by Cartan

Extended to Finsler manifolds in 1955 by L.Auslander

Jacques Hadamard (1865-1963)

Elie Cartan (1869-1951)

M. A. Javaloyes (*) Flag Curvature 21 / 26

Page 112: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge,while for small (or negative) curvature, geodesicstend to spread.

Proved in the 40’s by A. D. Aleksandrov forsurfaces

Generalized to Riemannian manifolds in1951 by H. E. Rauch

Probably P. Dazord was the first one ingiving the generalized Rauch theorem in1968

M. A. Javaloyes (*) Flag Curvature 22 / 26

Page 113: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge,while for small (or negative) curvature, geodesicstend to spread.

Proved in the 40’s by A. D. Aleksandrov forsurfaces

Generalized to Riemannian manifolds in1951 by H. E. Rauch

Probably P. Dazord was the first one ingiving the generalized Rauch theorem in1968

A. D. Aleksandrov (1912-1999)

M. A. Javaloyes (*) Flag Curvature 22 / 26

Page 114: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge,while for small (or negative) curvature, geodesicstend to spread.

Proved in the 40’s by A. D. Aleksandrov forsurfaces

Generalized to Riemannian manifolds in1951 by H. E. Rauch

Probably P. Dazord was the first one ingiving the generalized Rauch theorem in1968

A. D. Aleksandrov (1912-1999)

M. A. Javaloyes (*) Flag Curvature 22 / 26

Page 115: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Rauch’s Comparison Theorem

Theorem

For large curvature, geodesics tend to converge,while for small (or negative) curvature, geodesicstend to spread.

Proved in the 40’s by A. D. Aleksandrov forsurfaces

Generalized to Riemannian manifolds in1951 by H. E. Rauch

Probably P. Dazord was the first one ingiving the generalized Rauch theorem in1968

A. D. Aleksandrov (1912-1999)

M. A. Javaloyes (*) Flag Curvature 22 / 26

Page 116: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere Theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

Conjecture by Rauch. First proof by M.Berger in 1960

Alternative proof by Klingenberg in 1961(obtaining homotopy equivalence rather thanhomeomorphism)

Dazord observes that Klingeberg proof worksfor reversible Finsler metrics in 1968

M. A. Javaloyes (*) Flag Curvature 23 / 26

Page 117: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere Theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

Conjecture by Rauch. First proof by M.Berger in 1960

Alternative proof by Klingenberg in 1961(obtaining homotopy equivalence rather thanhomeomorphism)

Dazord observes that Klingeberg proof worksfor reversible Finsler metrics in 1968

M. A. Javaloyes (*) Flag Curvature 23 / 26

Page 118: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere Theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

Conjecture by Rauch. First proof by M.Berger in 1960

Alternative proof by Klingenberg in 1961(obtaining homotopy equivalence rather thanhomeomorphism)

Dazord observes that Klingeberg proof worksfor reversible Finsler metrics in 1968

M. A. Javaloyes (*) Flag Curvature 23 / 26

Page 119: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere Theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

Conjecture by Rauch. First proof by M.Berger in 1960

Alternative proof by Klingenberg in 1961(obtaining homotopy equivalence rather thanhomeomorphism)

Dazord observes that Klingeberg proof worksfor reversible Finsler metrics in 1968

M. A. Javaloyes (*) Flag Curvature 23 / 26

Page 120: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

In 2004 H. B. Rademacher (Math. Ann.)extends Klingenberg proof to non-reversibleFinsler metrics using the hypothesis(

1− 11+λ

)2< K ≤ 1, where

λ = maxF (−X ) : F (X ) = 1In 2007 S. Brendle and R. Schoen (J. Amer.Math. Soc 2009) prove by using Ricci-flowthat there exists a diffeomorphism

To obtain Rademacher’s result it is enoughsymmetrized compact balls and boundedreversivility index

M. A. Javaloyes (*) Flag Curvature 24 / 26

Page 121: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

In 2004 H. B. Rademacher (Math. Ann.)extends Klingenberg proof to non-reversibleFinsler metrics using the hypothesis(

1− 11+λ

)2< K ≤ 1, where

λ = maxF (−X ) : F (X ) = 1

In 2007 S. Brendle and R. Schoen (J. Amer.Math. Soc 2009) prove by using Ricci-flowthat there exists a diffeomorphism

To obtain Rademacher’s result it is enoughsymmetrized compact balls and boundedreversivility index

M. A. Javaloyes (*) Flag Curvature 24 / 26

Page 122: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

In 2004 H. B. Rademacher (Math. Ann.)extends Klingenberg proof to non-reversibleFinsler metrics using the hypothesis(

1− 11+λ

)2< K ≤ 1, where

λ = maxF (−X ) : F (X ) = 1In 2007 S. Brendle and R. Schoen (J. Amer.Math. Soc 2009) prove by using Ricci-flowthat there exists a diffeomorphism

To obtain Rademacher’s result it is enoughsymmetrized compact balls and boundedreversivility index

M. A. Javaloyes (*) Flag Curvature 24 / 26

Page 123: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Sphere theorem

Theorem

A simply connected connected manifold with14 < K ≤ 1 is homeomorphic to the sphere.

In 2004 H. B. Rademacher (Math. Ann.)extends Klingenberg proof to non-reversibleFinsler metrics using the hypothesis(

1− 11+λ

)2< K ≤ 1, where

λ = maxF (−X ) : F (X ) = 1In 2007 S. Brendle and R. Schoen (J. Amer.Math. Soc 2009) prove by using Ricci-flowthat there exists a diffeomorphism

To obtain Rademacher’s result it is enoughsymmetrized compact balls and boundedreversivility index

M. A. Javaloyes (*) Flag Curvature 24 / 26

Page 124: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Inextendible theorems

Toponogov theorem? Problems with angles

Submanifold theory (very difficult)

Laplacian theory

M. A. Javaloyes (*) Flag Curvature 25 / 26

Page 125: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Inextendible theorems

Toponogov theorem? Problems with angles

Submanifold theory (very difficult)

Laplacian theory

Victor A. Toponogov (1930-2004)

M. A. Javaloyes (*) Flag Curvature 25 / 26

Page 126: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Inextendible theorems

Toponogov theorem? Problems with angles

Submanifold theory (very difficult)

Laplacian theory

Victor A. Toponogov (1930-2004)

M. A. Javaloyes (*) Flag Curvature 25 / 26

Page 127: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Inextendible theorems

Toponogov theorem? Problems with angles

Submanifold theory (very difficult)

Laplacian theoryVictor A. Toponogov (1930-2004)

M. A. Javaloyes (*) Flag Curvature 25 / 26

Page 128: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bibliography

D. Bao, S.-S. Chern, and Z. Shen, An introductionto Riemann-Finsler geometry, vol. 200 of Graduate Textsin Mathematics, Springer-Verlag, New York, 2000.

M. A. Javaloyes (*) Flag Curvature 26 / 26

Page 129: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bibliography

D. Bao, S.-S. Chern, and Z. Shen, An introductionto Riemann-Finsler geometry, vol. 200 of Graduate Textsin Mathematics, Springer-Verlag, New York, 2000.

M. A. Javaloyes (*) Flag Curvature 26 / 26

Page 130: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bibliography

D. Bao, S.-S. Chern, and Z. Shen, An introductionto Riemann-Finsler geometry, vol. 200 of Graduate Textsin Mathematics, Springer-Verlag, New York, 2000.

M. A. Javaloyes (*) Flag Curvature 26 / 26

Page 131: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bibliography

D. Bao, S.-S. Chern, and Z. Shen, An introductionto Riemann-Finsler geometry, vol. 200 of Graduate Textsin Mathematics, Springer-Verlag, New York, 2000.

M. A. Javaloyes (*) Flag Curvature 26 / 26

Page 132: Finsler metrics (Flag Curvature) - UMFinsler metrics Main reference: Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler geometry. DEFINITION: aFinsler metric F in a

Bibliography

D. Bao, S.-S. Chern, and Z. Shen, An introductionto Riemann-Finsler geometry, vol. 200 of Graduate Textsin Mathematics, Springer-Verlag, New York, 2000.

M. A. Javaloyes (*) Flag Curvature 26 / 26