final year project presentation (june 2015) : investigation of shear behaviour of slender beams...

49
US Air Force Warehouse, Ohio, USA (August,1955)

Upload: asadullah-malik

Post on 15-Apr-2017

716 views

Category:

Engineering


2 download

TRANSCRIPT

Page 1: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

US Air Force Warehouse, Ohio, USA(August,1955)

Page 2: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

Kayani (2014)

Johnson M K (1989)

Taylor

Angelakos (2001)

Zararis (2003)

Kani G (1964)

AC Scordelis

Collins M P (2008)

Placas A (1971)S Mindess (2003)

Z P Bazant (1984)

Z Zheng (2000)

R Malm (2009)

C Juarez (2007)

JCM Ho FTK Au (2005)

L Vandewalle (2000)A Buuml (2010)

J Thomas (2007)

S Colombo (2005)

MZ Jumaat (2010)

L Li Y Guo (2008)

K Chansawat (2009)

KS Elliott (2002)

E Ahmad (2011)

CM Belgin (2008)

O Adwan B Bose (1999)

J Ruis J Planes (1998)

S Yuyama (1995)

P Rao SK Sekar (2011)

Page 3: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

OVER 2000REPORTED

SHEAR TESTS IN PAST 60 YEARS

Reference: Collins et all. (2007)

Page 4: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS

USING FINITE ELEMENT ANALYSIST H E T H I N G S W E D O F O R Y O U

PROJECT ADVISOR

DR. WASIM KHALIQ

ASSOCIATE PROFESSOR

GROUP MEMBERS

1. USMAN MAHMOOD

2. AAKIF SAEED

3. ASAD ULLAH MALIK

4. FAIZAN HAMEED

Page 5: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

Research Scope

Why Finite Element Analysis?

Modelling procedure in ABAQUS®

Benchmark Analysis - Material Calibration

Parametric Analysis

Comparison with ACI predicted Strength

An expression for minimum shear reinforcement

OVERVIEWF I N A L Y E A R P R O J E C T

Page 6: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PROJECT SCOPE

Successfully modelled RC beam in shear and flexure.

Analytically studied different beams with varying

shear reinforcement and shear span ratios which

closely depicts experimental response

Validated modified equation for Ultimate Shear

Strength proposed by Kayani et al. (2014)

Proposing a modified equation for Minimum Shear

Reinforcement

F I N A L Y E A R P R O J E C T

Page 7: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

TIME ALLOCATION

F I N A L Y E A R P R O J E C T

LEARNING PHASE

BENCHMARK ANALYSIS

PARAMETRIC ANALYSIS

5%

RESULT EXTRACTION & INTERPRETATION

15%

15%

20%

60%

Pie chart: Percentage time allocated

Page 8: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

FINITE ELEMENT MODELLING

Can FEM serve as a replacement for experimental

testing?

Software we used?

ABAQUS 6.13 ®

F I N A L Y E A R P R O J E C T

Page 9: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

FOUR POINT BEND TEST

Page 10: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

WHY FOUR POINT BEND TEST?

Reference: Collins et all. (2007)

Page 11: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

Analysed full scale – 20 beams

Benchmark Analysis - 8 beams

Parametric Analysis - 12 beams

BEAMS ANALYZED

Page 12: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

N-SERIES BEAM

Length = 3658 mm ~ 12 ft.

Breath = 254 mm ~ 10 inches

Depth = 457 mm ~ 18 inches

N-Series – Beams without web reinforcement

Page 13: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

A-Series- Beams with ACI minimum shear reinforcement

A-SERIES BEAM

Length = 3658 mm ~ 12 ft.

Breath = 254 mm ~ 10 inches

Depth = 457 mm ~ 18 inches

Page 14: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

Z-Series- Beams with Zararis minimum shear reinforcement

Z-SERIES BEAM

Length = 3658 mm ~ 12 ft.

Breath = 254 mm ~ 10 inches

Depth = 457 mm ~ 18 inches

Page 15: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

M-Series- Beams with minimum shear reinforcement

proposed by Kayani et al.

M-SERIES BEAM

Length = 3658 mm ~ 12 ft.

Breath = 254 mm ~ 10 inches

Depth = 457 mm ~ 18 inches

Page 16: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

M’-Series- Beams with minimum shear reinforcement

proposed by Usman et al.

M’-SERIES BEAM

Length = 3658 mm ~ 12 ft.

Breath = 254 mm ~ 10 inches

Depth = 457 mm ~ 18 inches

Page 17: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

ABAQUS ®F I N I T E E L E M E N T

M O D E L L I N G S T R A T E G Y

Page 18: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

MODELLING GUIDE

Page 19: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

MODELLING

x

y

z

XSYMM

𝑈1 = 𝑈𝑅2 = 𝑈𝑅3 = 0

ZSYMM

𝑈3 = 𝑈𝑅1 = 𝑈𝑅2 = 0

*Where 1, 2 and 3 denote the x, y and z axis respectively

USE OF SYMMETRY

Page 20: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

MODELLING MESH DENSITY

Page 21: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

MODELLING

0

2

4

6

8

10

12

14

16

18

0 5000 10000 15000 20000 25000 30000

Fie

ld O

utp

ut

Vari

ab

le U

2

(mm

)

Element Number

Stable Displacements

after 10,000 elements Element Number as

29,000

MESH DENSITY

Graph: Field Output Variables vs. Element Number

Page 22: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

MODELLING SUMMARY MODULE ABAQUS/STANDARD

ANALYSIS TYPE NON-LINEAR STATIC ANALYSIS

SOLUTION TECHNIQUE NEWTON-RAPHSON METHOD

FAMILYBEAM CONTINUUM/SOLID

REINFORCEMENT WIRE/TRUSS

ELEMENT TYPE

BEAM

C3D8R WITH

HOURGLASS

CONTROL

REINFORCEMENT T3D3

LOADING DISPLACEMENT CONTROL

Page 23: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PLA

TE

SR

OLL

ER

SREAL TIME SNAPSHOTS

Page 24: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

FULL ASSEMBLY

Beam tested at NICE Same beam modelled in ABAQUS®

Page 25: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

SIMULATION

Page 26: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS
Page 27: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

BENCHMARK ANALYSISM A T E R I A L

C A L L I B R A T I O N

Page 28: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

ELASTIC PROPERTIES

• Young’s Modulus = 200𝑮𝑷𝒂/29000ksi

• Poisson’s Ration = 0.3

• Type = Isotropic

PLASTIC PROPERTIES

Grade 40 Steel (𝒇𝒚=276 Mpa*)

INPUT MATERIAL PROPERTIES (STEEL)

Grade 60 Steel (𝒇𝒚=414 Mpa*)

0

100

200

300

400

500

600

0 0.01 0.02 0.03 0.04 0.05 0.06

Yie

ld S

tre

ss

(M

Pa)

Plastic Strain*

ELASTIC PROPERTIES

• Young’s Modulus =200 GPa /29000 ksi

• Poisson’s Ration = 0.3

• Type = Isotropic

PLASTIC PROPERTIES

0

100

200

300

400

500

600

700

0 0.01 0.02 0.03 0.04 0.05 0.06

Yie

ld S

tre

ss

(M

Pa)

Plastic Strain*

*Courtesy: Fazal Steel Mills, Industrial Area I-9 , Islamabad

Page 29: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

INPUT MATERIAL PROPERTIES (CONCRETE)

Normal Strength Concrete (NSC)

Compressive Strength ( ) = 4000 psi (27.6 MPa)

Density of concrete 𝑤𝑐 = 2300-2500 kg/m3 for NSC

Poisson’s ratio vc = 0.18

Klink (1985)

Young’s Modulus Ec = 26000 MPa

(ACI 8.5.2)

1.5 0.043 'c c c

E w f

5.075.17105.4 ccc fw

BASIC CONCRETE ELASTIC INPUT PROPERTIES

cf

Page 30: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

ANALOGY

Tension

Stiffening

Bond Slip

&

Dowel ActionPost Failure Stress–

strain

Response

Vd

F

Page 31: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

Inelastic Behavior Of Concrete In

Compression

0

5

10

15

20

25

30

0.000 0.002 0.004 0.006 0.008 0.010

Yie

ldS

tress

(M

Pa

)

Inelastic Strain

0

0.5

1

1.5

2

2.5

3

0 0.001 0.002 0.003

Yie

ld S

tress

(M

Pa)

Cracking Strain

3

( )'

'1 ( )

'

'1.55

4.7

c c

c

c

f

f

f c

Carreira and Chu (1985) Wang and Hsu (1994)

0.4( )cr

t cr

t

f

CONCRETE PLASTIC INPUT PROPERTIES

INPUT MATERIAL PROPERTIES (CONCRETE)

Inelastic Behavior Of Concrete In

Tension

55.14.32

cf

510)16871.0( xfcc

)(4 psiff ccr

el

tt

ck

tcr 0~

Page 32: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

ν = 0.005

ν = 0.01

MATERIAL CALLIBRATION

33%24%15%40%18%43% ѱ = 2 5 ° ν = 0.01

ѱ = 31° ν = 0.01

ѱ = 35°

ѱ = 35°

ѱ = 38° ν = 0.01

ѱ = 38° ν = 0.005

PERCENTAGE ERROR

V i sc os i ty Pa r a meter

(ν )

Dilation Angle

(ѱ)

LOA

D C

AR

RYI

NG

CA

PAC

ITY

AN

D

DIS

PLA

CEM

ENT

AT

FAIL

UR

ELO

AD

CA

RR

YING

CA

PAC

ITY AN

D

DISP

LAC

EMEN

T AT FA

ILUR

E“One test on a good sample is better than 10 tests on a poor sample”

J. Michael Duncan

Page 33: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

LOAD DEFLECTION CURVES

*Z-series represent beams designed for Zararis minimum reinforcement

Comparison of Experimental and FEM determined Mid Point Deflections for Z1* Beam

Graph: Beam Z1 - Load vs. Deflection at midpoint

0

10

20

30

40

50

60

70

80

0 4 8 12 16 20 24 28 32 36

Lo

ad

(to

n)

Deflection (mm)

Model

Experimental

Linear

Page 34: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

Graph: Beam Z1 - Load vs. Deflection at Quarter Point midpointComparison of Experimental and FEM determined Quarter Point

Deflections for Beam Z1*

*Z-series represent beams designed

for Zararis minimum reinforcement

LOAD DEFLECTON CURVES

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Lo

ad

(to

n)

Deflection (mm)

QP1

Model

Page 35: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

MID POINT QUARTER POINT

N-Series

A-Series

Z-Series

M-Series

Page 36: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

SIMULATION OF BEAM WITHOUT SHEAR REINFORCMENT

Page 37: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

NO SHEAR REINFORCEMENT

ACI BEAM ZARARIS’S BEAMMODIFIED

ZARARIS BEAM a

/d=

2.5

a/d

= 3

.0a

/d=

3.5

a/d

= 4

.0

Page 38: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSIST H E C O M P A N Y B A C K G R O U N D SB E A M S W I T H S H E A R

R E I N F O R C E M E N T

Page 39: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSIS

B E A M S W I T H S H E A R R E I N F O R C E M E N T

To analyze the relation between shear span-to-depth

ratio (𝒂/𝒅) and the Ultimate Shear Strength (𝑉𝑢)

Comparison between ACI and Finite Element

Analysis predicted strengths.

Validation of Kayani et al. (2014) Modified

Equation for Ultimate Shear Strength (𝑉𝑢) using

Finite Element Analysis

Proposing a modified equation for Minimum Shear

Reinforcement to attain full flexure capacity

Page 40: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSIS

𝑉𝑢 R E L A T I O N T O 𝑎 / 𝑑

0.9

1

1.1

1.2

1.3

1.4

2 2.5 3 3.5 4 4.5 5

a/d

ACI PREDICTED STRENGTH

TREND LINE

*RSSV = Relative Shear

Strength Value

fail

predicted

V

V

B E A M S W I T H S H E A R R E I N F O R C E M E N T

𝑉𝑢 𝒂/𝒅

Page 41: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSISC O M P A R S I O N O F U L T I M A T E S H E A R

E Q U A T I O N S

ACI CODE

KAYANI et al. (2014)

Page 42: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSISC O M P A R S I O N O F U L T I M A T E S H E A R

E Q U A T I O N S

1.2 0.2     0.21 0.25   du ct v yv

la c aV d f

d d d df bd

Size effect Splitting Tensile Strength

Development Length

Reference - ACI Code 318-11-2, 11-5, 11-15

Reference – Kayani et al Modified Equation (2014)

Page 43: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

0.9

1

1.1

1.2

1.3

1.4

2 2.5 3 3.5 4 4.5 5

RS

SV

a/d

ACI PREDICTED STRENGTH

STRENGTH PREDICTED BYMODIFIED EQUATION

PARAMETRIC ANALYSISV A L I D A T I O N O F M O D I F I E D

E Q U A T I O N

G r a p h – C o m p a r i s o n b e t w e e n A C I a n d M o d i f i e d E q u a t i o n p r e d i c t e d s t r e n g t h

Page 44: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSISB E A M S W I T H S H E A R

R E I N F O R C E M E N T

1

11.7

v c

c

y y

yv

f f

ff

a fd

M I N I M U M S H E A R R E I N F O R C E M E N T R A T I O T O A T T A I N F U L L F L E X U R E C A P A C I T Y

Page 45: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSISB E A M S W I T H S H E A R

R E I N F O R C E M E N T

1

11.7

v c

c

y y

yv

f f

ff

a fd

M I N I M U M S H E A R R E I N F O R C E M E N T R A T I O T O A T T A I N F U L L F L E X U R E C A P A C I T Y

(min)

500.75

yv y

c

v

vf f

f

Reference - ACI Code 318 - 11.4.6.3

Longitudinal reinforcement ratio

Shear span to depth ratio

Page 46: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSISB E A M S W I T H S H E A R

R E I N F O R C E M E N T

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5

2 2.5 3 3.5 4 4.5

α

a/d

G r a p h – R e l a t i o n b e t w e e n α a n d a / d

𝒂/𝒅 α2.5 2.48

3.0 2.35

3.5 2.27

4.0 2.20

Page 47: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

PARAMETRIC ANALYSISB E A M S W I T H S H E A R

R E I N F O R C E M E N T

G r a p h – R e l a t i o n o f % N o m i n a l C a p a c i t y t o T r a n s v e r s e R e i n f o r c e m e n t R a t i o .

0

20

40

60

80

100

120

140

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

% N

OM

INA

L FL

EXU

RE

CA

PAC

ITY

TRANSVERSE STEEL RATIO

No Shear Reinforcement

ACI Min Shear Reinforcement

Zararis Min Shear Reinforcement

Kayani Min Shear Reinforcement

Proposed Min Shear Reinforcement

Linear (Nominal Flexure Capacity)

Page 48: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

CONCLUSIONSB E A M S W I T H S H E A R

R E I N F O R C E M E N T

Finite Element Modelling (FEM) is a technique

which can be used to better understand shear failure

mechanism.

FEM significantly reduces time and effort in

comparison to experimental testing

The equation devised by Kayani et al. provides a

better shear strength prediction than ACI

The proposed equation provides better prediction for

full flexure capacity of RC beams

Page 49: Final Year Project Presentation (June 2015) : INVESTIGATION OF SHEAR BEHAVIOUR OF SLENDER BEAMS USING FINITE ELEMENT ANALYSIS

THANK YOU!T H E T H I N G S W E D O F O R Y O U