final hydrogeologic assessment report, characterization ......final hydrogeologic assessment report...

68
FINAL HYDROGEOLOGIC ASSESSMENT REPORT CHARACTERIZATION FOR DESIGN OF PILOT- SCALE PERMEABLE REACTIVE BARRIERS FOR NITROGEN REDUCTION IN GROUNDWATER ON CAPE COD VINLAND DRIVE, DENNIS, MA May 30, 2017 Prepared for: US Environmental Protection Agency, Region 1 Contract #: EP-BPA-13-W-0001 Prepared by: Danna Truslow, P.G., C.G. Sarah Large Anna Boudreau Peter Shanahan, Ph.D., P.E. Emily DiFranco Ken Hickey 481 Great Road, Suite 3 Acton, Massachusetts 01720 (978) 263-1092 and 454 Court Street, Suite 304 Portsmouth, NH 03801 (603) 766-6670

Upload: others

Post on 12-Apr-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

FINAL HYDROGEOLOGIC ASSESSMENT REPORT

CHARACTERIZATION FOR DESIGN OF PILOT-SCALE PERMEABLE REACTIVE BARRIERS FOR

NITROGEN REDUCTION IN GROUNDWATER ON CAPE COD

VINLAND DRIVE, DENNIS, MA

May 30, 2017

Prepared for:

US Environmental Protection Agency, Region 1

Contract #: EP-BPA-13-W-0001

Prepared by:

Danna Truslow, P.G., C.G. Sarah Large

Anna Boudreau Peter Shanahan, Ph.D., P.E.

Emily DiFranco Ken Hickey

481 Great Road, Suite 3

Acton, Massachusetts 01720 (978) 263-1092

and

454 Court Street, Suite 304 Portsmouth, NH 03801

(603) 766-6670

Page 2: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

ii

Table of Contents

Introduction and Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Work Performed .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 ContinuousSedimentCoresandWellInstallation–.......................................................................4OctoberandNovember2016andMay2017..................................................................................4WaterLevelMeasurementandWaterQualitySampling...............................................................5

December12thto14th,2016...................................................................................................10January12thand13th,2017......................................................................................................10January19th,2017.....................................................................................................................10

WaterLevelMeasurementtoEvaluateTidalInfluencesatWells................................................11GrainSizeAnalysesandSlugTestingtoDetermineHydraulicConductivity.................................11

Grain-SizeAnalyses...................................................................................................................11SlugTesting...............................................................................................................................12

Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SubsurfaceGeology.......................................................................................................................12GroundwaterFlowDirectionsandGradients...............................................................................16

WaterLevelsandHorizontalFlow............................................................................................16UpperSandUnit.................................................................................................................................16LowerSandUnit.................................................................................................................................20

EvaluationofTidalInfluenceonGroundwaterLevelsandHorizontalGradients......................20VerticalHydraulicGradients.....................................................................................................26SummaryofWaterLevelsandGroundwaterFlow...................................................................26

HydraulicConductivityEstimates..................................................................................................27HydraulicConductivityfromGrainSizeDistributions...............................................................27SlugTestAnalyses.....................................................................................................................28SummaryofHydraulicConductivityEstimation........................................................................30Table6aand6b........................................................................................................................31

GroundwaterVelocityEstimates..................................................................................................32WaterQualityDataEvaluation......................................................................................................34

WaterTableWells.....................................................................................................................34PiezometerandWellClusters...................................................................................................34ShallowWellPointsandSurfaceWater....................................................................................47StableNitrogenIsotopeAnalysis..............................................................................................47SummaryofUpperandLowerSandWaterQuality..................................................................50

AnalysisofNitrate-NMassFlux....................................................................................................50SummaryofNitrate-NMassFlux..............................................................................................51

Evaluation of Nitrate-Reducing PRB Technology at the Dennis Site . . . . . . . . . 52 ConceptualDesignFactors............................................................................................................52EvaluationofAnaerobicTreatmentEfficiency..............................................................................53

Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Pilot PRB Design Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Cited references: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Page 3: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

iii

ListofFigures PageFigure1–ExistingandSupplementalWells,WellClusters,DeepWells,

andSamplingPointLocations 6

Figure2–GeologicCrossSectionA-A’ 14

Figure3–GeologicCrossSectionB-B’ 15

Figure4–GroundwaterElevationWaterTable(5-5-17)–

UpperSandUnit 17

Figure5–GroundwaterElevation(5-5-17)-DeepestWells–

LowerSandUnit 21

Figure6a–GroundwaterLevelsatWellsVL-5andVL-6,November26,

2015toJanuary10,2017 22

Figure6b–GroundwaterLevelsatWellVL-5,December2016 24

Figure7–GroundwaterElevationsatVLZ-4dandVLZ-6dandLocalTidal

Elevations 25

Figure8–HorizontalGroundwaterGradientsandVelocityVariationsDue

toTidalInfluence-LowerSandUnit 33

Figure9–Nitrate-NConcentrationinUpperSandandSurfaceWater 38

Figure10–VariationofNitrate-N,DissolvedOxygen,Dissolved

OrganicCarbonandStableNitrogenIsotopeRatios 39

Figure11–VariationofNitrate-N,,TotalAlkalinity,ChlorideandSulfate 40

Figure12–VariationofDissolvedOxygen,DissolvedIron,Dissolved

ManganeseandDissolvedArsenic 41

Figure13–PercentofTotalElectronAcceptorDemandsfor

Denitrification 57

Page 4: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

iv

ListofTables PageTable1–WellandPiezometerConstructionDetails 7

Table2–LaboratoryAnalyzedWaterQualityParameters,Full

HydrogeologicAssessment 9

Table3–SummaryofSiteLithology 13

Table4a–GroundwaterLevelsandElevations 18

Table4b–HorizontalandVerticalHydraulicGradientsatWells

andPiezometers 19

Table5–ResultsofHydraulicConductivityCalculationsfromSieveAnalysis 29

Table6a–CalculationofHydraulicConductivityfromSlugTests 31

Table6b–SummaryofAverageHydraulicConductivityfromSlug

TestAnalysis-UpperandLowerSandUnits 31

Table7–WaterQualityatWaterTableWells 35

Table8–WaterQualityatOne-InchPiezometers 42

Table9–WaterQualityatTwo-InchWellClusters 44

Table10–WaterQualityatShorelineWellPointsandSurfaceWater 48

Table11–SummaryofMassFluxofNitrate-Nitrogen 51

Table12-ExampleEnhancedBioremediationSystemModifications,fromHenry,2010 54Table13-SummaryofPermeableReactiveBarrierCharacteristicsandEmulsifiedVegetableOilSubstrateRequirements 57 AppendicesA.WellInstallationandBoringLogsB.SieveAnalysesandHydraulicConductivityCalculationsC.LaboratoryAnalyticalReportsD.MassFluxofNitrate-NCalculationSheetsE.PRBSubstrateRequirementEvaluationDataSheets

Page 5: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

1

IntroductionandPurposeTheVinlandDrivesiteinDennis,MAwaschosenforcompletionofaFullHydrogeologicAssessment(FHA)fromthefivesitesevaluatedaspartoftheInitialSiteEvaluationphaseoftheUnitedStatesEnvironmentalProtectionAgency,Region1projectentitledSiteCharacterizationforDesignofPilot-ScalePermeableReactiveBarriersforNitrogenReductioninGroundwateronCapeCod.TheDennissiteislocatedinaresidentialneighborhoodadjacenttoKelley’sBay,offthetidalBassRiver.

Theinitialsitecharacterization(ISC)completedduringthewinterandspringof2016includedinstallationofsixwatertablewellsandaclusterofsixpiezometers.Tworoundsofwaterqualitysamplingandwaterlevelmeasurementwerecompletedandasummaryreportwaspreparedfortheproject(WaterVision,2016).Basedonthisinitialworkthefollowingsitecharacteristicswereobserved:

§ Subsurfacematerialsarelargelymediumtocoarsesandwithaone-to-two-

foot-thickshallowclaylens.Asubstantialclaylayerwasdetectedatabout66ft.belowgroundsurface(bgs).Thusthehydrogeologicsequencefromsurfacetodepthisanuppersandunit,ashallowclaylayer,alowersandunit,andalowerclaylayer.

§ Thedepthtogroundwaterwasfoundtobeapproximately35to41ft.bgsacrossthesite.

§ Thegroundwatervelocitywasestimatedat9.0ft./dayintheuppersandunit.§ Nitrate-Nconcentrationswerefoundbetween1.2to6.2mg-N/Latwater

tablewells.§ Nitrate-Nconcentrationsatpiezometerswerebetween2.4to4.3mg-N/L

withthegreatestconcentrationsattheshallowestpiezometer.Nosignificantreducinggeochemicalzonewasencountered.

§ Elevatedchlorideandspecificconductanceinwatertablewellsandshallowpiezometerssuggestanthropogenicinfluencesfromroadsaltand/orsepticsystems.

§ Theshallowclaylayerappearstoactasapartialconfiningunitbasedonstrongupwardgradientsbetweenpiezometersbelowandabovetheclaylayer.

§ Groundwaterwithintheuppersandunitappearstodischargetolocalsurfacewaterbasedonstrongupwardgradientpotential.TheshallowclaylayerwashypothesizedduringtheISCtolikelybediscontinuous(thisfindinghasbeenre-evaluatedinthisstudy)andtonotpreventmigrationofnitrate

Page 6: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

2

tosurfacewater.Noboundarymarshispresentatthewater’sedgeatKelley’sBay.

§ Thedeeperclayencounteredatabout66ft.bgsappearstoboundanthropogenicinfluencestoa20-footintervalbetweenthewatertableandthelowerclayunit.

§ Themassfluxofnitrate-Ninthetreatmentandsaturatedzoneoverthestudydepthwasestimatedat19g/day/mbasedonanestimatedgroundwatervelocityintheuppersand.

AdetailedscopeofworkwasdevelopedfortheFHAtofurtherrefinesubsurfacehydrogeology,waterquality,andmassfluxofnitrate.TheFHAfieldprogramincluded:

o Installationofthreeadditionalwatertablewells-VL-7,VL-8,andVL-9.Two-inchPVCwellswerecompletedwith5-footor10-footscreensacrossthewatertable.

o InstallationofthreeadditionalwellclustersatVL-4,VL-6,andVL-7.Fourwellswerecompletedateachlocationandwereconstructedoftwo-inchPVCwithaone-footscreen.

o Installationoftwo-inchPVCwellscompletedinthelowersandunitattheVL-1,VL-2,VL-8,andVL-9locationswitha7-to-10-foot-longscreen.

o Completionofcontinuouscoresatallnewwelllocations.o Completionofthreefullroundsofwaterlevelmeasurements.o Automatedwaterlevelmeasurementattwowatertable(uppersand)

wellsandfourwellscompletedinthelowersandunittoobservetidalinfluenceongroundwaterlevels.

o Completionofafullroundofwaterqualitysamplingforselectedanalytesincludingsamplesatselectedwellsforstablenitrogenisotopeanalyses.

o SamplingofshallowgroundwaterandsurfacewaterneartheshorelineofKelley’sBay

o Sieveanalysesofsubsurfacesedimentsamples.o Completionofslugtestsatselectedwells.

Page 7: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

3

ThepurposeoftheFHAwastocollectdataneededtodesignapilotscalepermeablereactivebarrierforthesite.Inparticular,theFHAwasintendedtoquantifyhydraulicpropertiesthataffectthemassfluxofnitratebeneaththesite,todefinewhereandtowhatdepthaPRBshouldbeconstructed,andtodefinethegeochemicalconditionsthatneedtobeconsidered.Questionsincluded:

a. HowdoessubsurfacelithologychangeacrossthesiteandhowdoesitdifferfromtheISCcharacterization?

b. IsthegroundwaterflowdirectionandhorizontalgradientestimatedduringtheISCcorrectforthelargerVinlandDriveneighborhood?

c. Howdothegroundwaterflowdirectionandgradientdifferbetween

theuppersandunitandthelowersandunit?

d. Whatisthehydraulicconductivityoftheupperandlowersandunitsandhowdoesitchangeacrossthesite?

e. Howdonitrateconcentrationschangeacrossthesiteandwithdepth?

f. Isdenitrificationoccurringintheupperorlowersandunits?

g. Whatarethegeochemicalcharacteristicsoftheupperandlowersand

unitsthataffectorareimportanttothedesignofnitratetreatmentusingthePRBapproach?

Page 8: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

4

WorkPerformed

ContinuousSedimentCoresandWellInstallation–OctoberandNovember2016andMay2017Thenewwells,cores,andpiezometerswereinstalledinmid-OctoberandlateNovember2016andinMay2017.BoringadvancementandwellinstallationswereperformedusingaGeoprobedirect-pushdrillingrigoperatedbyNewEnglandGeotech,Inc.ofJamestown,RhodeIsland.Atruck-mountedModel6600Geoprobewasusedforsitework.DannaTruslow,PGofWaterVisionLLC(WV)oversawboringadvancement,wellinstallation,andsampling. Asboringswereadvanced,afive-footcorewascollectedintoaclearplasticsleeve.NEGeotechopenedthesleeveformeasurement,sedimentdescription,andsamplecollectionbyWaterVisionLLC.Thelengthofthecorerecoveredwasrecordedalongwithsubsurfacecharacteristicsincludingdegreeofsaturation.Sampleswereplacedintozip-lockplasticbagsandlabeledbywelllocationandsampledepthforlaterinspectionandsieveanalyses.Watertablewellswereconstructedfromtwo-inchdiameterPVCriserandwerecompletedwithfive-orten-footscreens.Wellswerescreenedacrossthewatertableasestimatedbyinitialsaturationencounteredduringcoreadvancement.Wellclusterswerealsocompletedwithtwo-inchPVCandone-footscreens.WellsinstalledinthelowersandadjacenttoVL-1,VL-2,VL-8,andVL-9werecompletedwitheight-toten-footscreens.WelllocationsandelevationsweresurveyedbyComprehensiveEnvironmentalInc.(CEI)inDecember2016andJanuary2017.CEIreturnedtothesiteonApril19,2017tore-surveyseveralexistingandallnewwelllocationsandelevations.AtthattimewellswereresurveyedtothebenchmarkelevationatRM15atLeifEricksonDriveandOldBassRiverRoad(NGVD29)thenconvertedtoNAVD88.TheelevationwasalsomeasuredatthetopflangeboltofthehydrantatthecornerofVinlandandThorwaldDrivetoprovideabenchmarkthatismorelocaltotheprojectsite.DuringtheISConlyoneclusterofmulti-levelwellshadbeeninstalled.Theseone-inchPVCpiezometerswerereferredtoasVLZ-44toVLZ-66withthesuffixrepresentingthetotaldepthofthepiezometer.Thepiezometeridentifierdidnotincludeareferencetothecorrespondingwatertablewelllocation,VL-2.ThethreeadditionalwellclustersinstalledfortheFHAatVL-4,VL-6,andVL-7arenamedVLZ-4a,b,c,ord,etc.,torefertotheadjacentwatertablewelllocation(4,6,or7)andtherelativedepthfromshallow(a)todeep.ThelocationsofwellsandpiezometersateachsiteareshowninFigure1.WellconstructiondetailsfortheexistingandnewwellsareincludedinTable1.Detailedmapsofpiezometerandclusterwell

Page 9: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

5

locationsareincludedinAppendixA.DetaileddescriptivewellcompletionandboringlogsandsummarizedwellcompletionandboringlogsareincludedinAppendixA.

WaterLevelMeasurementandWaterQualitySamplingWaterqualitysampleswerecollectedandwaterlevelsmeasuredfortheFullHydrogeologicAssessment(FHA)atVinlandDriveinDecember2016andJanuary2017.FielddatacollectionoccurredoverseveralfieldvisitstoexpeditecollectionofsamplesforStable15N–NO3analysisscheduledforlateDecember2016atUC–DavisStableIsotopeLaboratory.Weatherandfieldconditionswerealsoafactor.SampleswerealsotakenattheBarnstableandFalmouth-Shorewoodsiteduringthistimeperiod.ThefieldactivitiesoccurredonDecember12to14,2016,January12,13,and19,andMay5,2017andincluded:

1. Developmentandpurgingwellsandpiezometers/multi-levelwells;2. Measurementofwaterlevelsatwatertablewells(fivefullrounds);3. Measurementofwaterlevelsatpiezometers/multi-levelwells(fivefull

rounds);and,4. Measurementoffieldwaterqualityparametersandsamplingateachwater

tablewell,piezometer/multi-levelwell,andsurfacewaterwellpointsforlaboratoryanalysisforarangeofparameters(Table2).

DannaTruslow,SarahLarge,andEmilyDiFrancoofWaterVisionLLCcompletedallfieldmeasurementsandsampling.Uponarrivalatthesiteallwellsandpiezometerswereopenedandwellcapsremovedtoallowequilibrationwiththeatmosphere.Ifdedicatedtubingwaspresentinthewellsthiswasalsoremovedtoallowwaterlevelmeasurement.WaterlevelswerethenmeasuredtothenearesthundredthofafootwithaSolinstwaterlevelmeterandrecordedintheCapePRBfieldbookandfieldsamplingsheets.Calibrationoffieldparametermeterswasalsocompletedbeforesamplingbeganeachday.Fieldparametersvaluesoneachmeterwerealsocheckedattheendofeachdayagainstparameterstandardstogaugeanydriftduringtheday.Twometerswereusedforfieldparametersampling:aYellowSpringsInstrument(YSI)Model556multi-parametersondeandanYSIProfessionalSeriesmulti-parametersonde.

Page 10: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

!(

!(

!(

!(

!(

!(

!(

!(

MAYFAIR ROAD

VIKING DRIVE

FREYDIS DRIVE

NORSEMAN DRIVE

THORWALD DRIVELIEF ERICSON DRIVE

FIOR

D D

RIVE

SAGA ROAD

WILDWOOD STREET

HOLLY STREET

HAWTHORN STREET

CO

UN

TRY CIR

CLE

LINDA WAY

OLD FISH HOUSE ROAD

OLD SAILORS WAY

MULHERN DRIVE

JOANNE DRIVE

¯

LegendSurface Water Sampling Point

Shallow Well Points

New Well Clusters and Deep Wells

New Water Table Wells

!( Existing 2" Groundwater Monitoring Wells

!( Existing Piezometer Cluster (6)

Cross Section Locations

Proposed PRB Alignment

Roads

Sources: Roads and Aerial Photograph from Mass GIS. Contours from the Cape Cod Commission. PRB Alignment, Suface Water Sampling Points, Shallow Well Sampling Points, Existing and New Groundwater Monitoring Well Locations, Existing Piezometer Locations, New Well Cluster Locations and Cross Section Locations from WaterVision LLC.

VL-5

VL-4

VL-3

VL-2

VL-1

VL-6

0 250 500 750 1,000125Feet

Figure 1. Existing and Supplemental Wells,Well Clusters, Deep Wells, and Sampling Point Locations - Cape Cod Permeable Reactive Barrier Project Full Hydrogeologic Assessment - Vinland Drive Site, Dennis, MA

Kelley's Bay

VL-7

VL-8

VLZ-4 VLZ-6WP-1

WP-2

WP-3

SW-1VL-2D

VLZ-7

VINLANDDRIVE VL-9

B

A'

B'

A

Map created byWaterVision, LLC

January 2017

VLZ-2

CDM-1

VL-9dVL-1d

VL-8d

6
Page 11: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table1-WellandPiezometerConstructionDetailsPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MA

WellDesignation

Dateofinstallation

Landsurfaceelevation(ft.

msl)

TopofPVCcasing(ft.

msl)

Welldiameter(inches)

Totaldepthofboring/core(ft.)

Totaldepthofwell(ft.)

Topofscreen(ft.bgs)*

Bottomofscreen(ft.

bgs)

Elevationoftopofscreen(ft.msl)

Elevationofbottomofscreen(ft.msl)

Completedinupperorlower

sand?VL-1 2/18/16 42.8 42.35 2 50 40 35 40 7.8 2.8 upperVL-1D 5/4/17 42.7 42.49 2 70 63 53 63 -10.3 -20.3 lower

VL-2 2/18/16 47.3 47.00 2 46 46 41 46 6.3 1.3 upperVL-2d 10/17/16 47.4 47.02 2 65 62 52 62 -4.6 -14.6 lowerPiezometersinstalledadjacenttoVL-2:VLZ-44 2/17/16 47.3 47.05 1 44 44 43 44 4.3 3.3 upperVLZ-48 2/17/16 47.2 47.03 1 48 48 47 48 0.2 -0.8 upperVLZ-52 2/17/16 47.2 47.01 1 52 52 51 52 -3.8 -4.8 lowerVLZ-56 2/17/16 47.2 46.97 1 56 56 55 56 -7.8 -8.8 lowerVLZ-61 2/17/16 47.3 46.96 1 61 61 60 61 -12.8 -13.8 lowerVLZ-66 2/17/16 47.3 47.06 1 66 66 65 66 -17.7 -18.7 lowerVLZ-core 2/17/16 47.3 80

VL-3 2/19/16 46.7 46.35 2 50 44 39 44 7.7 2.7 upper

VL-4 2/16/16 45.8 45.51 2 50 43 38 43 7.8 2.8 upperVLZ-4a 11/28/16 45.8 45.43 2 45 45 44 45 1.8 0.8 upperVLZ-4b 11/28/16 45.8 45.53 2 52 52 51 52 -5.2 -6.2 lowerVLZ-4c 11/28/16 45.9 45.51 2 58 58 57 58 -11.2 -12.2 lowerVLZ-4d 11/28/16 45.9 45.70 2 65 63 62 63 -16.1 -17.1 lower

VL-5 2/16/16 43.0 42.54 2 50 40 35 40 8.0 3.0 upper

VL-6 2/18/16 46.3 45.75 2 50 35 40 40 6.3 6.3 upperVLZ-6a 11/29/16 46.3 45.88 2 41 41 40 41 6.3 5.3 upperVLZ-6b 11/29/16 46.3 45.89 2 47 47 46 47 0.3 -0.7 upperVLZ-6c 11/29/16 46.3 45.99 2 58 58 57 58 -10.7 -11.7 lowerVLZ-6d 11/29/16 46.3 46.13 2 70 64 63 64 -16.7 -17.7 lower

VL-7 10/17/16 42.9 42.52 2 65 40 35 40 7.9 2.9 upperVLZ-7a 10/18/16 43.0 42.62 2 40 40 39 40 4.0 3.0 upperVLZ-7b 10/18/16 43.0 42.65 2 53 53 52 53 -9.0 -10.0 lowerVLZ-7c 10/18/16 43.0 42.69 2 57 57 56 57 -13.0 -14.0 lowerVLZ-7d 10/18/16 43.1 42.79 2 61 61 60 61 -16.9 -17.9 lower

VL-8 11/30/16 48.0 48.46 2 55 46 41 46 7.0 2.0 upperVL-8d 5/4/17 48.0 48.50 2 70 65 55 65 -7.0 -17.0 lower

VL-9 11/30/16 37.8 37.54 2 70 40 30 40 7.8 -2.2 upperVL-9d 5/4/17 37.9 37.71 2 70 61 53 61 -15.1 -23.1 lower

*bgs-belowgroundsurfaceSurveyedbyCEIEngineersbenchmarkNGVD29convertedtoNAVD88

7
Page 12: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

8

Wellpurgingandsamplingcommencedafterwaterlevelmeasurementwascomplete.Becausethedepthtowaterexceeds25feetbelowlandsurfaceallsamplingof2-inchwellswasconductedwithaGeoSub,Grundfos,orWhalesubmersiblepumppoweredbyamarinebattery.Finesandwasencounteredinseveralwellsandcausedpumpfoulingandcloggingsobackupequipmentwasrequiredduringthesesamplingrounds.AWaterraHydroliftpumpwasusedtopurgethe1–inch-diameterpiezometers.Wellswerepurgedofatleastthreewellvolumesoruntilfieldparametermeasurementsstabilized.Thesamplesatsurface-waterlocationsWP-1,WP-2,andWP-3(Figure1)weretakenusinga“PushPoint”samplerdevelopedbyMarkHenryofMHEProducts.Thisisa¼-inch-diameterstainlesssteeltubethatisslottedatthetip.Thesamplerwasadvancedbyhandintoshallowsedimentinoradjacenttoawaterbodyandagroundwatersampleextractedusingaperistalticpump.Asurfacewatersamplewasalsocollectedbytakingagrabsamplewithacleanedglasscontainerforfieldparametermeasurementandtransferringitdirectlyintosamplebottlesforthelaboratoryanalyses.Thesurfacewatersamplestakenfordissolvedmetalsanddissolvedorganiccarbonwerelaboratoryfilteredratherthanfieldfiltered.Thesurfacewatersamplingstationwasapproximately10feetfromtheshorelineasshownonFigure1.Fieldmeasurementsofwatertemperature,pH,dissolvedoxygen(DO),specificconductance,andoxidation/reductionpotential(ORP)wereregularlymeasuredusingtheYSIsduringwellpurging.Avisualdescriptionofthepurgedwaterwasalsonoted.Allsamplesweremonitoredforfieldparametersusingtheflow-throughchamber.Allfieldmeasurementsandobservationswerenotedonfieldsheets.Watersamplesweretakeninlaboratory-providedpre-preservedsamplebottlesfortheparameterslistedinTable2.

Page 13: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

9

Table2–LaboratoryAnalyzedWaterQualityParameters,FullHydrogeologicAssessment,VinlandDrive,Dennis,MAPRB

Name Type

Nitrate-N,NitrateandNitrate-N,Nitrite-N,TotalKjeldahlNitrogen

Generalchemistry

Chloride,Sulfate,TotalAlkalinity Generalchemistry

Organiccarbon(dissolved) Carbonanalyses

Iron(dissolved),Manganese(dissolved),Arsenic(dissolved)

Metals

StableNitrogenIsotopesinNitrate(!!"!–!"!) Isotopeanalyses

Groundwatersamplestakenfor!!"N-NO3analyseswerefirstfield-filteredwitha0.01-microncartridgefilterbeforecollectionintosamplebottles.Twosamplebottleswerefilledateachsamplelocation.Thesesamplesweretobefullyfrozenbeforelaboratorydeliverysoadequateheadspacewasprovidedinthesebottlestoallowforwaterexpansionduringfreezing.Groundwatersampleswerethentakenfordissolvediron,manganese,andarsenicandfordissolvedorganiccarbonanalyses.Thesesampleswerefield-filteredwitha0.45-microncartridgefilterbeforecollectionintosamplebottles.Watersamplescollectedfortheremaininganalyseswerenotfield-filtered.Field-collectedsamplesforstandardlaboratoryanalyseswerekeptoniceinlaboratory-providedcoolersuntildeliverytoAlphaAnalyticalLaboratoryinWestborough,Massachusetts.Thestable-isotopenitrogensampleswereimmediatelycooled,thenfrozenforapproximately24hours.Thesampleswerecarefullywrappedandplacedintoinsulatedshippingcontainerswithblueicepackstokeepthesamplesfrozen.Thesampleswerethenovernight-shippedtotheUniversityofCaliforniaatDavisStableIsotopeLaboratoryinDavis,California.Duplicatesamplesforstablenitrogenanalysistakenatallwelllocationswerekeptfrozenandonreserveincasetheinitialsamplesdidnotstayfrozenorweredeemedunusablebythelaboratoryupondelivery.Whentheresultsofthenitrate-Ngeneral-chemistryanalyseswerereceivedfromAlphaAnalytical,theseresultswereprovidedtoUC-Davistoguidethe

Page 14: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

10

isotopeanalyses;isotopeanalyseswereconductedonlyonsampleswithnitratelevelsknowntobeabovedetectionlimits.WaterVisionLLCmaintainedcustodyofallsamplesuntildeliverytoAlphaAnalyticallaboratoryorviaovernightdeliverybyFederalExpresstotheUniversityofCaliforniaatDavisStableNitrogenIsotopeLaboratoryinDavis,California.

December12thto14th,2016

TheweatherduringDecember12to14,2016wascloudywithtemperaturesinthemidtohigh30sandaslightbreeze.ThereweresomemorningshowersbeforefieldworkbeganonDecember14th.ThefollowingwellsweresampledonDecember12th:VLZ-6a,VLZ-6b,VLZ-6c,VLZ-6d,andVLZ-4d.OnDecember14th,VLZ-4cwassampled.NoduplicatewastakenduringtheDecember12thsamplingatDennis.BothDennisandBarnstableweresampledonDecember14thandthefieldduplicatewastakenatBarnstableduringthatsamplingday.

January12thand13th,2017

TheweatherduringJanuary12and13thwasclearwithaslightbreeze;temperatureswereinthehigh40s.OnJanuary12th,VL-3,SW-1,WP-1,WP-2,andWP-3weresampledandVLZ-6bwassampledagainforQA/QCpurposessincesamplingneededtobesplitupbetweentwotimeperiods.TheShorewoodsitewasalsosampledonJanuary12thandtheduplicatewastakenatthatlocation.ThefollowingwellsweresampledonJanuary13th:VL-5,VL-6,VL-7,VL-8,VLZ-4a,VLZ-4b,VLZ-7a,VLZ-7b,VLZ-7c,andVLZ-7d.VL-4couldnotbesampledbecausethewellhadtoolittlewater.OnthesamedayVLZ-7ccouldnotbesampledbecausethewellwasfilledwithfinesandandsiltandcloggedtwopumps.VL-9couldnotbesampledon1/13/17becausethewellwentdryafterpurging4gallonsofwater.AduplicatesamplewastakenatVL-6b(VL-6bDUP)forthissamplinground.

January19th,2017

TheweatherforJanuary19thwascloudywithtemperaturesinthemidtohigh30sandaslightbreeze.OnJanuary19th,VL-1,VL-2,VL-2d,VL-4,andV-6,andVLZ-48throughVLZ-66weresampled.VLZ-44wasnotsampledonJanuary19thbecausetherewasnotenoughwaterinthewellfortheWaterrapumptopurge.SamplingwasagainattemptedatVLZ-7cwithboththeWaterraHydroliftandasubmersiblepumpbutwasunsuccessfulduetoexcessivefinesandandsiltinthewell.AduplicatesamplewastakenatVL-4(VL-4DUP).

Page 15: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

11

WaterLevelMeasurementtoEvaluateTidalInfluencesatWellsTwoHOBOpressuretransducersprogrammedtocollectwaterlevelmeasurementsevery15minuteswereplacedinwatertablewellsVL-5andVL-6inordertomeasurewaterlevelchangesovertimeandtodetermineiftideinfluenceswaterlevelsintheuppersandunit.VL-5waschosenasitwasthewellclosesttoKelley’sBay.VL-6islocatedonThorwaldDriveapproximately600feetfromKelley’sBayandwaspresumedtoexperiencelesstidalinfluence.ThetransduceratVL-5recordedwaterlevelsfromNovember28,2016toJanuary11,2017.TheVL-6transducerrecordedwaterlevelsfromOctober20,2016toJanuary19,2017.Inordertoassesstidalinfluenceonwaterlevelsinthelowersandunit,waterlevelwasalsomeasuredcontinuouslyatfourwellscompletedinthiszone.WaterlevelwasmeasuredusingHOBOpressuretransducersprogrammedtocollectdataat10-minuteintervalsatVL-2d,VLZ-4d,VLZ-6d,andVLZ-7d.ThesemeasurementsweretakenbetweenApril7andMay4,2017.

GrainSizeAnalysesandSlugTestingtoDetermineHydraulicConductivity

Grain-SizeAnalyses

Grain-sizeanalyseswerecompletedbyAlphaAnalyticalLaboratoryusingASTMMethodD-422-63.WaterVisionLLCrequestedthatallsievesizesbeusedtoprovidethemostcompleterangeingrainsizeforhydraulicconductivityestimation.SamplesfromrepresentativedepthsfromtheVL-2,VL-3,VL-4,VL-6,VL-7,andVL-9monitoringwelllocationsweresubjectedtograin-sizeanalysisforatotalof19samples.ThesamplespreparedforanalysisweretakenfromcontinuouscoresamplescollectedduringwellinstallationduringtheISCworkinFebruary2016andthefollow-upFHAworkinOctoberandNovember2016.

Page 16: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

12

SlugTesting

SlugtestswerecompletedonMarch1,2017.TestingwascompletedwithaMidwestGeosciencesH(o)PVCslugdesignedtoachievea24-inchdisplacementinatwo-inch-diameterwell.Theslugistaperedoneachendandhasanoveralllengthof3.8feetandadiameterof1.1inches.Testswerecompletedin11watertableorclusterwells.WaterlevelchangewasmeasuredusinganOnsetHobopressuretransducerprogrammedtocollectwaterlevelmeasurementsatone-secondintervals.Waterlevelsweremeasuredbeforeeachwelltestandseveraltestswerecompletedateachwelltoassurethatagoodresponsewascaptured.

Results

SubsurfaceGeologyContinuouscoreswerecollectedatalllocationspriortoinstallationofmonitoringwells,piezometers,orwellclustersduringtheISCandFHAfieldprograms.ContinuouscoreswerecollectedtothetopofthelowerclayatVL-1,VL-2,VL-4,VL-6,VL-7,VL-8,andVL-9welllocations.Basedonthecharacteristicsencounteredinthesubsurface,theunitshavebeenbrokendownintofouroverallcategoriesforreferenceinthisstudy.Thesaturatedzoneabovetheupperclaylayerisreferredtoastheuppersandandthesaturatedzonebetweentheupperclaylayerandlowerclaylayerisreferredtoasthelowersand.Thetwoclayunitsarereferredtoastheupperclayandthelowerclaylayers.Table3summarizesthesitelithologybydepth,elevation,andoverallthicknessoftheunitsidentifiedbasedonthenewsubsurfacedata.Thehighestgroundwaterlevelmeasuredduringthestudyperioddefinesthetopofthesaturateduppersand.AlsoincludedinthistableissubsurfaceinformationfromawellinstalledonMulhernDriveoffBobCrowellDriveapproximately0.5milesfromVinlandDrive(CDM-1)shownonFigure1.ThewellinstallationandboringlogcompiledbyCDM-SmithforwellCDM-1isalsoincludedinAppendixA.Figures2and3arehydrogeologiccrosssectionsthatillustratethesubsurfacelithologyandwaterlevelsmeasuredatthewellsandpiezometersduringtheFHA.Thelocationsofthecross-sectionlinesareshownonFigure1.

Page 17: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table3-SummaryofSiteLithology

PermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MA

Well

designation/

Continuous

corelocation

Landsurface

elevation(ft.

msl)*

Totaldepth

ofboring/

core

(ft)

Topof

saturated

uppersand

(depthbgs)++*

Topofupper

claylayer

(depthbgs)

Topoflower

sand(depth

bgs)

Topoflower

claylayer

(depthbgs)

Topof

saturated

uppersand

(ft.MSL)**

Topofupper

claylayer

(ft.MSL)

Topoflower

sand

(ft.MSL)

Topoflower

claylayer

(ft.MSL)

Thicknessof

uppersand

(ft)

Thicknessof

upperclay

layer(ft)

Thicknessof

lowersand

(ft)

VL-1 42.8 70 36.5 46.8 52.8 65.6 6.3 0.5 -10.0 -22.8 5.8 10.5 12.8VL-2 47.3 46 40.1 48.5 51.5 66.2 7.2 -1.2 -4.2 -18.9 8.4 3.0 14.7VL-3 46.7 50 39.4 45.2 NA NA 7.3 NA NA NA NA NA NAVL-4 45.8 70 38.4 45.5 50.4 63.8 7.4 0.3 -4.6 -18.0 7.1 4.9 13.4VL-5 43.0 50 35.0 47.2 NA NA 8.0 -4.2 NA NA 12.2 NA NAVL-6 46.3 50 35.0 46.8 55.6 65.6 11.3 -0.5 -9.3 -19.3 11.8 8.8 10.0VL-7 42.9 65 34.7 41.5 52.1 61.3 8.2 1.4 -9.2 -18.4 6.8 10.6 9.2VL-8 48.0 55 37.9 47.1 55.1 65.6 10.1 0.9 -7.1 -17.6 9.2 8.0 10.5VL-9 37.8 70 28.8 45.7 52.2 63 9.0 -7.9 -14.4 -25.2 16.9 6.5 10.8

CDMS-1*** 40.1 63 26.0 45.0 52.0 NA 14.1 -4.9 -11.9 NA 19.0 7.0 >11

NA-Corenotcompletedtothedepthofthisunit

*bgs-belowgroundsurface

++groundwaterdepthbasedonshallowestwaterlevelmeasurementsinwatertablewells

***BoringlogprovidedbyCDM-SmithforwellinstalledoffBobCrowellDrive

**SurveyedbyCEIEngineersbenchmarkNGVD29convertedtoNAVD88

13
Page 18: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen
14
Page 19: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen
15
Page 20: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

16

TheadditionalboringsandthegrainsizeanalysescompletedduringtheFHAillustratethatthegrainsizeandthicknessoftheseunitschangesfromplacetoplaceatthesite.DuringtheISCtheuppersandwascharacterizedasmediumtocoarsesandwithsomezonesofcoarsesandandgravel.Basedonthenewestboringinformation,thisunitwasfoundtobe5.8-feettonearly17-feetthickdependingonlocation,withthegreatestthicknessatVL-5andVL-9.Theupperclaylayerwasfoundtobe3-to4.3-feetthickatVL-2andVL-6duringtheISC.AdditionaldefinitionofthislayershowsthatitthickenstoboththenorthandsouthtowardsVL-7andVL-1.Thelowersandwasfoundtobeapproximately15-feetthickduringtheISCandwascharacterizedasmediumtocoarsesand.Theselithologicunitswerefurtherdefinedwithnewboringinformation.ThisunitalsothinstothenorthandisthickestbetweenVL-1andVL-4.ThenewboringinformationalsoshowsthatboththeupperandlowersandbecomefinertothenorthandwestnearVL-7comparedtocoarsermaterialsfoundatVL-2andVL-6.Multiplezonesofcoarseoxidizedred-brownsandwereencounteredinboththeupperandlowersandunitsatmultiplelocationsandmayactaszonesofpreferentialflow.Thisisespeciallyapparentinsedimentsimmediatelyabovetheupperclaylayer.

GroundwaterFlowDirectionsandGradients

WaterLevelsandHorizontalFlow

UpperSandUnitThewaterlevelmeasurementscompletedduringthisphaseofworkattheexistingandnewwellsconfirmtheoverallwatertableflowdirectionofwesttosouthwesttowardsKelley’sBay(Figure4,Table4a).WaterlevelswereonetotwofeetlowerinDecember2016andJanuary2017comparedtoMay2016whenthehighestwaterlevelswereobservedatthesite.WaterlevelshadreboundedtonearlythesamehighelevationbyMay2017.ThegreatestvariationinwaterlevelswasfoundatVL-6wherethewaterlevelchangedby2.75feetbetweenMay2016andJanuary2017.ThehorizontalgradientcalculatedbetweenVL-6andVL-3(Table4b)wasfoundtobemodestlylowerbasedontheFHAwaterlevelmeasurementsinMay2017,

Page 21: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\ \

\

\

\

\

\

\

\

\

\

\ \\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\ \

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\\

\\

\\ \

\

\

\

\

\ \\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\\

\

\

\\

\

\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\\\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\\

\

\\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\ \

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\\

\\\\

\

\\

\

\\

\

\\

\

\

\

\\

\

\

\

\

\ \\\\

\\

\

\

\

\

\\

\

\

\

\

\

\

\ \

\

\

\

\ \

\

\

\

\

\

\

\

\\

\

\\

\

\

\\

\

\\

\\

\

\

\\

\

\

\

\

\\

\

\\

\

\ \

\

\

\

\

\\\\

\

\

\\

\

\

\ \

\

\

\

\\\ \\

\\\

\\\

\\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\\

\

\

\

\

\

\ \\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\\

\\

\\\

\

\\

\\

\

\ \

\

\

\

\\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\ \

\

\ \\

\\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\ \

\

\

\\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\ \

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\\

\

\

\

\

\

\

\

\

\\

\

\ \

\

\

\\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\ \

\\

\\\

\\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\ \

\

\

\

\

\\\ \

\

\

\\

\ \

\

\

\

\

\

\

\\ \\\

\\

\\

\

\

\ \

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\\\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\\

\\

\

\

\

\

\

\

\

\\

\\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\\

\\

\

\\\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\\

\

\

\

\

\ \\\

\\

\

\

\

\\\

\\

\

\

\

\\\

\\

\

\\

\\\

\\

\

\\

\\\

\

\\\

\ \\\\ \

\ \\

\\\\

\\

\

\\

!(

!(

!(

!(

!(

!(

!(

4

46

02

44

40

42

6

8

38

36

48

34

32

30

24

14

2826

22

12

10

16

50

0

0

0

0

0

48

0

0

0

0

0

0

0

0

0

0

34

0

0

0

0

0

0

0

0

0

0

0

38

0

0

0

0

0

0

0

0

40

0

0

0

0

0

4

00

0

0

0

0

50

0

26

0

0

34

0

0

0

0

0

0

0

40

36

0

0

0

0

0

0

0

0

0

24

44

0

46

0

50

0

0

0

0

0

28

22

0

0 0

0

00

46

0

0 0

0

0

0

0

32

0

0

0

48

48

0

0

0

32

0

00

0

0

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

48

0

0

0

0

0

0

0

50

44

00

0

46

0

0

0

0

32

0

0

0

0 0

0

0

0

0

0

00

0

0

0

0

0

0

50

0

4

0

40

50

0

0

0

0

0

0

0

0

0

40

0

0

0

48

0

00

30

12

0

38

0

0

0

0

0

0

0

44

50

0

0

0

0

0

0

00

0

0

0

0

0

46

0

0

0

0

40

NORSEMAN DRIVE

LIEF ERICSON DRIVE

FIOR

D D

RIVE

THORWALD DRIVE

FREYDIS DRIVE

VIKING DRIVE

JOANNE DRIVE

CO

UN

TRY

CIR

CLE ¯

VL-1

VL-6

0 150 300 450 60075Feet

Figure 4. Groundwater Elevation Water TableContours (5-5-17) - Cape Cod Permeable Reactive Barrier Full Hydrogeologic Assessment- Vinland Drive Site, Dennis, MA

Kelley's Bay

VL-7

VL-8

VLZ-4VLZ-6

WP-1

WP-2

WP-3

SW-1

Map created byWaterVision, LLC

January 2017

VLZ-7

VINLANDDRIVE VL-9

10.56

7.82

6.99

6.64

5.908.76

LegendSurface Water Sampling Point

Shallow Well Points

New Well Clusters and Deep Wells

New Water Table Wells

!( Existing 2" Groundwater Monitoring Wells

!( Existing Piezometer Cluster (6)

Proposed PRB Alignment

Groundwater Elevation Contours (5-5-17)

VL-5

VL-4

Groundwater Flow Direction

Groundwater Table Elevations (5-5-17)

Sources: Surface Water Sampling Points, Shallow Well Sampling Points, Existing and New Groundwater Monitoring Well Locations, Existing Piezometer Locations, New Well Cluster Locations, Groundwater Elevations and Contours, and Groundwater Flow Direction from WaterVision LLC. Roads and Kelley's Bay from Mass GIS, Contours from Cape Cod Commission, and Wetlands from the National Wetlands Inventory (NWI).

6.57

6.62

9.54

6.68

VL-39

86 7

6

98

7

VLZ-2

VL-8d

VL-9dVL-1d

10

10

VL-2DVL-2

17
Page 22: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table4a-GroundwaterLevelsandElevationsPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MA

WellTopofPVC

casing(ft.msl)*

Screenedinupperorlower

sand?3/31/16 5/6/16 12/14/16 1/13/17 4/24/17 5/5/17 3/31/16 5/6/16 12/14/16 1/13/17 4/24/17 5/5/17

VL-1 42.35 upper 36.48 35.98 37.68 37.78 36.48 36.45 5.87 6.37 4.67 4.57 5.87 5.90VL-2 47.00 upper 40.40 40.05 41.70 41.77 40.40 40.36 6.60 6.95 5.30 5.23 6.60 6.64VL-3 46.35 upper 39.77 39.38 41.07 41.12 39.78 39.73 6.58 6.97 5.28 5.23 6.57 6.62VL-4 45.51 upper 38.86 38.40 40.16 40.21 38.93 38.83 6.65 7.11 5.35 5.30 6.58 6.68VL-5 42.54 upper 35.40 34.98 36.98 36.95 35.62 35.55 7.14 7.56 5.56 5.59 6.92 6.99VL-6 45.75 upper 35.82 35.33 37.95 38.08 36.30 36.21 9.93 10.42 7.80 7.67 9.45 9.54VL-7 42.52 upper 36.17 36.24 34.74 34.70 6.35 6.28 7.78 7.82VL-8 48.46 upper 39.78 39.90 38.02 37.90 8.68 8.56 10.44 10.56VL-9 37.54 upper 30.48 30.57 28.85 28.78 7.06 6.97 8.69 8.76CDM-1 42.20 upper 27.82 14.38

WellTopofPVCcasing

Screenedinupperorlower

sand?3/31/16 5/6/16 12/14/16 1/13/17 4/24/17 5/5/17 3/31/16 5/6/16 12/14/16 1/13/17 4/24/17 5/5/17

VL-1 42.35 upper 36.45 5.90VL-1d 42.49 lower 33.68 8.81VL-2 47.00 upper 41.70 41.77 40.40 40.36 5.30 5.23 6.60 6.64VL-2d 47.02 lower 39.52 39.65 38.11 37.98 7.50 7.37 8.91 9.04VLZ-44 47.05 upper 40.40 40.02 41.72 41.78 40.45 40.38 6.65 7.03 5.33 5.27 6.60 6.67VLZ-48 47.03 upper 40.35 40.03 41.65 41.71 40.39 40.30 6.68 7.00 5.38 5.32 6.64 6.73VLZ-52 47.01 lower 37.81 37.12 39.42 39.56 38.08 37.98 9.20 9.89 7.59 7.45 8.93 9.03VLZ-56 46.97 lower 37.64 37.27 39.40 39.55 37.98 37.89 9.33 9.70 7.57 7.42 8.99 9.08VLZ-61 46.96 lower 37.72 37.12 39.41 39.57 38.05 37.91 9.24 9.84 7.55 7.39 8.91 9.05VLZ-66 47.06 lower 37.82 37.24 39.47 39.65 38.13 37.97 9.24 9.82 7.59 7.41 8.93 9.09VLZ-4a 45.43 upper 40.06 41.12 38.86 38.75 5.37 4.31 6.57 6.68VLZ-4b 45.53 lower 37.85 38.05 36.50 38.32 7.68 7.48 9.03 7.21VLZ-4c 45.51 lower 37.83 38.03 36.52 36.33 7.68 7.48 8.99 9.18VLZ-4d 45.70 lower 37.98 38.21 36.69 36.50 7.72 7.49 9.01 9.20VLZ-6a 45.88 upper 38.15 38.25 36.48 36.38 7.73 7.63 9.40 9.50VLZ-6b 45.89 upper 38.10 38.24 36.46 36.35 7.79 7.65 9.43 9.54VLZ-6c 45.99 lower 37.90 38.08 36.48 36.29 8.09 7.91 9.51 9.70VLZ-6d 46.13 lower 38.05 38.15 36.54 36.35 8.08 7.98 9.59 9.78VLZ-7a 42.62 upper 36.18 36.16 34.81 34.65 6.44 6.46 7.81 7.97VLZ-7b 42.65 lower 35.18 35.51 33.93 33.67 7.47 7.14 8.72 8.98VLZ-7c 42.69 lower 35.01 35.35 33.85 33.70 7.68 7.34 8.84 8.99VLZ-7d 42.79 lower 34.91 35.31 33.92 33.54 7.88 7.48 8.87 9.25VL-8 48.46 upper 37.90 10.35VL-8d 48.50 lower 38.15 10.56VL-9 37.54 upper 28.78 8.76VL-9d 37.71 lower 28.33 9.38

*SurveyedtoNGVD29benchmarkatOldBassRiverRoadandLeifEricsonDriveandconvertedtoNAVD88

DepthtoWater(feet)

DepthtoWater(feet) WaterSurfaceElevation(feetabovemeansealevel)*

WaterSurfaceElevation(feetabovemeansealevel)*

18
Page 23: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table4b-HorizontalandVerticalHydraulicGradientsatWellsandPiezometersPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MA

Well

TopofPVCCasing(ftmsl)

Screenedinupperorlower

sand?VL-1 42.35 upperVL-2 47.00 upperVL-3 46.35 upperVL-4 45.51 upper

VL-5 42.54 upperVL-6 45.75 upperVL-7 42.52 upperVL-8 48.46VL-9 37.54 upper

VLZ-6d 46.13 lowerVLZ-66 47.06 lower

Well

TopofPVCCasing(ftmsl)

Screenedinupperorlower

sand?VL-1 42.35 upper

VL-1d 42.49 lower 0.127 stronglyupward

VL-2 47.00 upper

VL-2d47.02

lower 0.200 stronglyupward

0.150 stronglyupward

VLZ-44 47.05 upper

VLZ-48 47.03 upper 0.008 upward -0.007 slightlydownward

0.013 upward 0.015 upward

VLZ-52 47.01 lower 0.630 stronglyupward

0.723 stronglyupward

0.552 stronglyupward

0.575 stronglyupward

VLZ-56 46.97 lower 0.033 upward -0.048 downward -0.005 slightlydownward

0.012 upward

VLZ-61 46.96 lower -0.018 downward 0.028 upward -0.004 slightlydownward

-0.006 slightlydownward

VLZ-66 47.06 lower 0.000 flat -0.004 slightlydownward

0.008 sightlyupward 0.008 sightlyupward

VLZ-4a45.43

upper

VLZ-4b45.53

lower 0.330 stronglyupward

0.076 stronglyupward

VLZ-4c45.51

lower 0.000 flat 0.328 stronglyupward

VLZ-4d 45.70 lower 0.008 slightlyupward 0.004 slightlyupward

VLZ-6a45.88

upper

VLZ-6b45.89

upper 0.060 upward 0.008 slightlyupward

VLZ-6c 45.99 lower 0.027 stronglyupward

0.015 upward

VLZ-6d 46.13 lower -0.001 slightlydownward

0.006 slightlyupward

VLZ-7a42.62

upper

VLZ-7b42.65

lower 0.079 stronglyupward

0.078 stronglyupward

VLZ-7c 42.69 lower 0.053 stronglyupward

0.002 slightlyupward

VLZ-7d 42.79 lower 0.050 stronglyupward

0.065 stronglyupward

VL-8 48.46 upper

VL-8d 48.50 lower 0.013 upward

VL-9 37.54 upper

VL-9d 37.71 lower 0.030 upward

0.007 0.008

HorizontalGradientVL-8toVL-712/14/16

HorizontalGradientVL-8toVL-75/5/17

HorizontalGradient-VLZ-8dtoVL-7d5/5/17

0.004

lessthan-0.009-slightlydownward

Verticalgradientrankings0.05orgreater-stronglyupward0.009to0.049-upwardlessthan0.009-slightlyupward

-0.05orgreater-stronglydownward-0.009to0.049-downward

HorizontalGradientVL-6toVL-33/31/16

HorizontalGradient-VL-6toVL-35/6/16

HorizontalGradientVL-6toVL-312/14/16

HorizontalGradient-VL-6toVL-35/5/17

0.011 0.012 0.008 0.010

**benchmarkNGVD29convertedtoNAVD88

Verticalgradientbetweenadjacentscreens3/31/16

Verticalgradientbetweenadjacentscreens5/6/16

Verticalgradientbetweenadjacentscreens12/14/16

Verticalgradientbetweenadjacentscreens5/5/17

19
Page 24: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

20

decreasingto0.010fromthegradientof0.012observedduringtheISC.Asacheckonthehorizontalgradientoverawiderarea,awellinstalledintheuppersandunitduringthefallof2016byCDM-SmithnearthecornerofMulhernStreetandBobCrowellRoad(Figure1)wasalsoevaluatedwithrespecttothehydraulicgradientintheuppersandunit.Thiswellisapproximately1800feetnortheastofVL-3.ThewatertableelevationmeasuredatCDM-1was14.38ft.mslonMay5,2017.Usingthegroundwaterelevationof6.68ft.mslatVL-3measuredonthesamedate,thehydraulicgradientis0.004,approximatelyhalfthegradientthanmeasuredbetweenVL-6andVL-3onMay5,2017.

LowerSandUnitGeologicandhydrologicdatacollectedduringtheISCsuggestedthattheoverlyingupperclaylayerhydrogeologicallyconfinesthelowersandunit.WaterleveldatacollectedinDecember2016andJanuary2017suggestedthattheflowdirectionandgradientinthelowersanddifferedfromtheupperzoneflowdirectionandgradient.Initially,thedirectionofhorizontalgroundwaterflowinthelowersandwasestimatedbycomparingthewaterlevelsmeasuredinthedeepestpiezometerorwellintheVL-2,VL-4,VL-6,andVL-7clusters.Afterfurtherevaluationofdata,measurementsoftidalinfluenceonthelowerzone(describedinafollowingsection),andinstallationofadditionalwellsinthelowersand,afullroundofwaterlevelmeasurementswereagainmadetoprovideanearlysynopticmeasurementofthepiezometricsurfaceinthelowersand.The13wellscompletedinthelowersandwereallmeasuredoverthespanofaboutonehouronMay5,2017.TheresultingflowdirectionandgradientarebasedonafullroundofwaterleveldatacollectedonMay5,2017usingthewaterlevelsmeasuredinthedeepestpiezometerorwellintheVL-2,VL-4,VL-6,andVL-7clusterwellsandinVL-1d,VL-9dandVL-8dcompletedinthelowersandunit.TheMay5,2017waterlevelmeasurementsareshowninFigure5.TheestimatedflowdirectionissouthwesttowardKelley’sBaysimilartotheuppersandunit.Thehorizontalgradientislessthanintheuppersand.ThegradientcalculatedbetweenVLZ-7dandVLZ-6dis0.004basedontheMay5,2017roundofmeasurements.

EvaluationofTidalInfluenceonGroundwaterLevelsandHorizontalGradients

Figure6aillustratesthecontinuouswaterlevelmeasurementsmadeatwatertablewellsVL-5andVL-6fromNovember2016toJanuary2017.Thedepthswerethenconvertedtowaterlevelelevationfortheplot.VL-5islocatedonVinlandDriveandislessthan200feetfromthebay(Figure1).VL-6islocatedonThorwaldDriveandismorethan500feetinlandfromKelley’sBay.ThedailyprecipitationmeasuredatHyannisAirportinBarnstableoverthattimeisalsoincludedonFigure6a(Weather

Page 25: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\\\

\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\\

\

\

\\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\ \

\

\

\

\

\\

\

\

\

\

\

\ \

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\\

\ \

\ \

\

\\

\\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \\

\\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\ \

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\\ \

\\

\

\

\

\

\

\

\

\ \

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\ \

\\

\

\

\

\

\

\

\\

\ \

\

\\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\ \

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\ \

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\ \

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\\

\

\

\

\\

\

\

\

\\

\ \

\

\

\\

\

\

\

\

\\

\

\

\\

\\\

\\

\

\

\\\

\\

\ \

\\

\\

\

\

\\

\

\

\\

\

\\

\

\\

\

\

\\

\

\

\\

\

\

\

\\

\\

\

\\

\

\\

\

\ \

\

\\

\

\\

\

\

\

\

\

\\

\

\

\\

\

\

\

\\

\\

\\\\

\

\ \\\\

\\\ \\\\

\

\

\\

\

\

\

\

\

\

\

\

\\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\ \

\

\

\\

\

\ \

\

\\

\

\

\\\

\\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\ \

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\\

\

\

\\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\ \\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\ \

\\

\

\

\\

\

\

\

\

\

\

\

\\\\

\

\\

\

\

\

\\\

\ \

\\

\ \

\

\

\

\

\

\

\

\ \

\

\\

\

\

\\

\\

\

\

\\

\\

\

\ \

\

\

\

\

\

\

\

\

\\

\ \

\

\

\

\

\

\

\\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\\

\

\

\\

\

\

\

\\

\\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\ \\

\\

\

\

\

\\

\

\

\

\

\\

\

\\

\\

\

\

\

\\ \

\

\

\

\

\\

\\\

\

\ \

\

\\

\

\

\\

\

\

\

\

\

\

\

\\

\

\\

\\\\

\

\

\\

\

\\

\

\

\\

\ \\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\\

\

\

\\\ \

\

\

\

\

\

\

\

\\

\

\

\

\ \\

\\

\\

\

\\

\

\

\

\

\

\\\ \

\\

\\

\

\

\

\\

\\

\

\\

\

\

\\

\

\

\\\ \

\

\

\

\

\

\\

\\

\

\\

\

\ \

\

\

\\

\\

\

\

\\

\

\\

\ \

!(

!(

!(

!(

!(

!(

!(

4

46

02

44

40

42

6

8

38

36

48

34

32

30

24

14

2826

22

12

10

16

50

0

0

0

0

0

48

0

0

0

0

0

0

0

0

0

0

34

0

0

0

0

0

0

0

0

0

0

0

38

0

0

0

0

0

0

0

0

40

0

0

0

0

0

4

00

0

0

0

0

50

0

26

0

0

34

0

0

0

0

0

0

0

40

36

0

0

0

0

0

0

0

0

0

24

44

0

46

0

50

0

0

0

0

0

28

22

0

0 0

0

00

46

0

0 0

0

0

0

0

32

0

0

0

48

48

0

0

0

32

0

00

0

0

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

48

0

0

0

0

0

0

0

50

44

00

0

46

0

0

0

0

32

0

0

0

0 0

0

0

0

0

0

00

0

0

0

0

0

0

50

0

4

0

40

50

0

0

0

0

0

0

0

0

0

40

0

0

0

48

0

00

30

12

0

38

0

0

0

0

0

0

0

44

50

0

0

0

0

0

0

00

0

0

0

0

0

46

0

0

0

0

40

NORSEMAN DRIVE

LIEF ERICSON DRIVE

FIOR

D D

RIVE

THORWALD DRIVE

FREYDIS DRIVE

VIKING DRIVE

JOANNE DRIVE

CO

UN

TRY

CIR

CLE ¯

VL-2

VL-1

VL-6

0 150 300 450 60075Feet

Figure 5. Groundwater Elevations (5-5-17)- Deepest Wells - Cape Cod Permeable Reactive Barrier Full Hydrogeologic Assessment - Vinland Drive Site, Dennis, MA

Kelley's Bay

VL-7

VL-8

VLZ-4 VLZ-6

WP-1

WP-2

WP-3

SW-1

Map created byWaterVision, LLC

January 2017

VL-2D

VLZ-7

VINLANDDRIVE VL-9

9.25

9.20

9.04

9.78

LegendSurface Water Sampling Point

Shallow Well Points

New Well Clusters and Deep Wells

New Water Table Wells

!( Existing 2" Groundwater Monitoring Wells

!( Existing Piezometer Cluster (6)

Proposed PRB Alignment

Groundwater Elevation Contours (5-5-17)

VL-5

VL-4

Groundwater Flow Direction

Sources: Surface Water Sampling Points, Shallow Well Sampling Points, Existing and New Groundwater Monitoring Well Locations, Existing Piezometer Locations, New Well Cluster Locations, Groundwater Elevations and Contours, and Groundwater Flow Direction from WaterVision LLC. Roads and Kelley's Bay from Mass GIS, Contours from Cape Cod Commission, and Wetlands from the National Wetlands Inventory (NWI).

VLZ-2

VL-8d10.35

VL-1d8.81 VL-9

9.38

Groundwater Elevations (5-5-17) *Values from deepest well within cluster

9.01

10.0

10.0

9.5

9.5

9.0

9.0

VL-3

21
Page 26: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

-40.00

-39.50

-39.00

-38.50

-38.00

-37.50

-37.00

DailyPrecipita-o

nTo

tal(inches)

Waterlevel(feetbelow

land

surface)

DateofMeasurement

Figure6a-GroundwaterLevelsatWellsVL-5andVL-6,November26,2016toJanuary10,2017

WellVL-6 WellVL-5 DailyPrecipita<onTotal(inches)

22
Page 27: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

23

Underground,2017).Bothwellsexhibitaslowdeclineinwaterleveloverthistimeperiod,consistentwithexpectedseasonalpatterns,althoughthedecreaseatVL-5waslessthanthatatVL-6.AtVL-6,thewaterleveldroppedapproximately0.15feetoverthemeasurementperiodandwasnotobviouslyinfluencedbytides.Incontrast,thewaterleveldeclinedlessthan0.1feetatVL-5buttherewerealsochangesinwaterlevelatthewellthatappeartoberesponsestoprecipitationeventsratherthantidalinfluence.TheVL-5wellislessthan10feetfromaleachingcatchbasinjustwestofVinlandDrive.ThenoticeableincreasesinwaterlevelatVL-5appeartooccuronetotwodaysafterstorms.ThedischargeofrunofftothestormdrainislikelycausingtheseoccasionalrisesinwaterlevelatVL-5.AgraphofcontinuouswaterlevelelevationmeasurementsatVL-5overafive-dayperiodinDecember2016(Figure6b)whennoprecipitationwasmeasuredshowsthattheremaybeaveryslighttidalinfluenceonwaterlevelsintheuppersand.AlsoincludedinthisfigurearetidalelevationsfromtheChatham,MAtidegage(NOAA,2017).Figure7illustratescontinuouswaterlevelelevationsmeasuredfromApril17toApril21,2017atVLZ-4dandVLZ-6dinthelowersandunit.AlsoincludedinthisfigurearetidalelevationsfromtheChatham,MAtidegage(NOAA,2017).Overthismeasurementperiodtherewasapproximately0.15feetofvariationduetotidalinfluenceatVLZ-4dandVLZ-6dcomparedtoatidalrangeofover5.2feetmeasuredinChatham.Insummary,thereappearstobelittlevariationinwaterlevels(ontheorderof0.01feet)intheuppersandunitduetotidalfluctuations.Incontrastthetidalinfluenceonwaterlevelsintheconfinedlowersandissignificantlygreaterwithasmuchas0.15feetofvariationoverthe12.5-hourtidalcycle.Becauseestimatingthemassfluxofnitrate-Natthesiteisanimportantaspectofthisstudy,gradientvariationsthatcouldimpactfluxwereevaluatedinthelowersandduetotheobviousinfluenceoftidalchangeonthisconfinedaquifer.AlthoughthewaterlevelchangesappeartobesynchronoustherewasdifferenceintheamplitudeofchangebetweentheupgradientwellVLZ-6dandthelowerwellVLZ-4d.ThevariationinthehorizontalhydraulicgradientduetotidalchangeinthelowersandunitisillustratedinFigure8.VLZ-6dandVLZ-4ddonotfallexactlyalongagroundwaterflowlinebutthegradientbetweenthetwowellscanbeestimatedbysubtractingthedifferenceinelevationbetweenthewellsthendividingbytheprojecteddistancebetweenthewellsalongaflowline.Thisresultsinamodestvariationinhorizontalhydraulicgradientbetween0.0025and0.0029overfourtidecyclesinsyncwithtidalvariation.

Page 28: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

0

1

2

3

4

5

6

5.40

5.42

5.44

5.46

5.48

5.50

5.52

5.54

5.56

5.58

5.60

12/20/160:00 12/21/160:00 12/22/160:00 12/23/160:00 12/24/160:00 12/25/160:00

Grou

ndwaterLevelEleva0o

natwell(feet)

AxisTitle

Figure6b-GroundwaterLevelsatWellVL-5,December2016

WaterLevelEleva6on(:.msl) Chatham,MATideEleva6on

24
Page 29: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

1.00

2.00

3.00

4.00

5.00

6.00

7.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

2017-04-170:00:00 2017-04-180:00:00 2017-04-190:00:00 2017-04-200:00:00

Tida

lEleva*o

n(..m

sl)

Eleva*

onofw

aterlevelatw

ells(.

.msl)

DateandTimeofMeasurement

Figure7-GroundwaterEleva*onsatWellsVLZ-4dandVLZ-6dandLocalTidalEleva*ons

VLZ-6d VLZ-4d Chatham,MATideGuage

25
Page 30: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

26

VerticalHydraulicGradients

Verticalgradients(Table4b)weremeasuredonlyatVL-2duringtheISC,asthatwastheonlylocationwhereaclusterofprogressivelydeeperwellshadbeeninstalled(VLZ-44toVLZ-66).TheseISCmeasurementdocumentedupwardgradientsbetweenadjacentpiezometersintheuppersandandastronglyupwardgradientbetweenpiezometersimmediatelyaboveandbelowtheupperclaylayer.Withtheinstallationofadditionalwells,similarverticalflowcharacteristicsweredocumented.Upwardgradientsweredocumentedintheuppersand.ThegreatestupwardgradientsareinwellscompletedalongVinlandDriveapproximately200to300feetfromtheshorelineofKelley’sBay.Atwellpairsorclusters500to700feetfromtheshoreline—VL-8,VL-6,andVL-9—upwardgradientsaremoremoderate.

SummaryofWaterLevelsandGroundwaterFlow

GroundwaterflowstothesouthwesttowardsKelley’sBayinboththeupperandlowersandunits.Thehorizontalgradientisovertwotimesgreaterintheuppersandthaninthelowersandunit.Verticalgradientsareupwardfromthelowertotheuppersandwiththelargestgradientobservedinthewellclustersclosesttothebay.Thedatacollectedduringthisroundconfirmthatthelowersandunitisconfinedbasedontheobservedverticalgradientsbetweentheloweranduppersand,thestrongertidalinfluenceonthelowersand,andbytheconfirmedpresenceoftheupperclaylayeratallsitewells.Thethicknessoftheupperclaylayervariesfrom3to10.6feet.ThisiscontrarytotheconclusionsoftheISCthatinferredthattheclaylayerwaslocallydiscontinuous.

Page 31: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

27

HydraulicConductivityEstimatesThehydraulicconductivityoftheupperandlowersandwasestimatedbyevaluatingbothgrainsizeandslugtestdata.

HydraulicConductivityfromGrainSizeDistributions

BoththeKozeny-CarmenandAlyamani&Sensolutionswereusedtoestimatehydraulicconductivityfromthegrainsizedatageneratedbysieveanalyses.ThelaboratoryreportsarecontainedinAppendixB.Sincesampleswithuniquecharacteristicsfromdiscretedepthswereselectedforsieveanalyses,theestimatedhydraulicconductivityvaluesarelikelyrepresentativeofsmallintervalsofthehydrogeologicunitstested.ForinstanceatVL-2,azonevisuallydescribedasafinetocoarsesandaswellasasamplevisuallydescribedasacoarsegrainedsandandfinegravelwerebothselectedforgrainsizeanalysistorepresenttherangeofsedimentpropertiesandhydraulicconductivityatagivenhorizontallocation.Table5providesasummaryoftheanalysescompletedandthesedimentgrainsizefractionvaluesusedintheanalysis.TheKozeny-Carmenequationissuitableforawidevarietyofsoilconditionsexceptforclayeysoilsorthosewithaneffectivegrainsizeabove3mm(Odong,2007).

! = ! !!

!!!!! !

!!"!!"# (1)

whereK=hydraulicconductivity(m/s) ρ=densityofwaterat10°C(106g/m3) g=accelerationduetogravity(9.8m/s2) ν=dynamicviscosityofwaterat10°C(1.307m2/s) n=porosityofsedimentsample(dimensionless),0.30wasassumedforalllocations d10=effectivegrainsizewhere10%ofgrainsarefinerand90%arecoarser(m)ThecalculationspreadsheetforthisformulaisincludedinAppendixB.TheAlyamani&SenformulawasalsousedtoestimateK.Thismethodisappropriateforsedimentswithauniformitycoefficientof20orless.Theuniformitycoefficientistheratioofthed60andd10effectivegrainsizeforagivensample(Odong,2007).Allsamplesanalyzedarebelowthissuggestedratiolimit,butVL-2(45.4’-46.3’depth)isverycloseat19.8. K = 1300 i+ 0.025 d!" − d!" ! (2)

Page 32: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

28

whereK=hydraulicconductivity(m/day) i=interceptongrainsizeaxisfromlinebetweend50andd10 d10=effectivegrainsizewhere10%ofgrainsarefinerand90%arecoarser(m)

d50=effectivegrainsizewhere50%ofgrainsarefinerand50%arecoarser(m)ThegraphicallyderivedinterceptestimatesareincludedinAppendixBalongwiththecalculationspreadsheet.Table5summarizestheresultsofthegrain-size-derivedhydraulicconductivityvalues.Valuesarehighlyvariablewithinthecoresamplelocationandbetweenlocations.TheKozeny-CarmenapproachyieldsthelowervaluesofK.TheKvaluesderivedateachlocationwiththetwomethodswereaveragedforeachsampleandthenaveragedagainforthehydrogeologicunit(uppersandandlowersand)atthatlocation.KvalueswerehighestatVL-2andVL-6,withaveragesof186and327ft./dayintheupperandlowersandunitsrespectively.LowerKvalueswereestimatedatVL-4andVL-7,withaveragesof6and127ft./dayintheupperandlowersandunitsrespectively.

SlugTestAnalyses

SlugtestanalyseswerecompletedusingtheUSGSBouwer&Ricespreadsheetprogram(Halford&Kuniansky,2002).Severalslugtestswerecompletedateachwell.Forallwatertablewellswherethescreenwasnotcompletelyentirelywithinthesaturatedzone,onlyrisingheadtestswereanalyzed.Forwellswherescreenswerecompletelyentirelywithinthesaturatedzone,fallingheadtestsweregenerallychosenforanalysis.Consistentwiththepermeablesandsediments,mostofthewellsrecoveredveryquicklyafterslugadditionorremoval.Becausethetwo-inchPVCwellswerecompletedwithin2½-inchboreholes,gravelpackeffectsshouldbeminimal.TestsattemptedatVL-2d,completedwitha10-footscreenwithinthelowersand,werenotsuccessfulasthewaterlevelsrecoveredtooquicklytoanalyze.

Page 33: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table5-ResultsofHydraulicConductivityCalculationsfromSieveAnalysesVinlandDrive,DennisMA

Depth d10 d50

Kozeny-CarmenSolution

Alyamani&SenSolution

AveragedHydraulic

ConductivityHydrogeologic

Unit

AverageHydraulic

Conductivityfor

hydrogeologicunittested

(ft) (mm) (mm) (ft/day) (ft/day) (ft/day) (ft/day)VL-2 45.5-46.3 0.76 9.89 375 864 620 uppersand 328VL-2 46.3-47 0.12 0.24 9.5 61.4 35.5 uppersandVL-2 51.25-52.8 0.26 0.67 43.6 206 125 lowersand 213VL-2 55-56.2 0.34 0.93 73.7 288 181 lowersandVL-2 56.2-57.5 0.25 0.38 41.8 246 144 lowersandVL-2 60-62 0.44 0.67 123 682 403 lowersand

VL-4 41-45 0.08 0.33 3.7 10.7 7.2 uppersand 7.2VLZ-4 50.4-52.5 0.31 0.68 62.8 267 165 lowersand 127VLZ-4 60-63.4 0.20 0.34 24.9 154 89.4 lowersand

VLZ-7 40-41.5 0.08 0.33 4.6 7.52 6.0 uppersand 6.0VLZ-7 52.1-53.4 0.15 0.24 15.4 123 69.3 lowersand 42.9VL-7 55-58.2 0.15 0.25 13.9 95.9 54.9 lowersandVL-7 60-61.3 0.07 0.10 2.7 6.16 4.5 lowersand

VL-6 40-42.8 0.21 0.49 29.1 138 83.6 uppersand 187VLZ-6 45-46.7 0.42 1.31 116 464 290 uppersandVLZ-6 55.6-57.4 0.30 0.62 58.2 334 196 lowersand 302VLZ-6 60-62.5 0.25 0.51 41.3 226 133 lowersandVLZ-6 65-65.55 0.51 1.05 168 982 575 lowersand

VL-9 30-37.6 0.20 0.53 26.9 109 68.0 uppersand 68.0

Welllocation

29
Page 34: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

30

TheresultsoftheseanalysesareincludedinAppendixC.TestswereperformedattheVL-2,VL-3,VL-4,andVL-6watertablewellsandattheVL-4andVL-6wellclusters.ResultsaresummarizedinTable6.AtVL-2,screenedovermuchoftheuppersand,theresultingKwas110ft./day.DatacollectedduringtheVL-2dtestdidnotyieldresultsthatcouldbeanalyzedduetoquickwaterlevelrecoveryalthoughtheanalysisshowedthatthehydraulicconductivityvaluewasatleast370ft./day.AtVL-3,alsoawatertablewellscreenedintheuppersand,theKvaluewasfoundtobe140ft./day.AtVL-4,hydraulicconductivityvalueswerelowerintheuppersandat52ft./daythanatotherlocations.InthelowersandatVL-4,valuesof23to110ft./dayweredocumented.TestsatVL-6,VLZ-6a,andVLZ-6b,allscreenedintheuppersand,resultedinKvaluesof32to370ft./day.AtVLZ-6cand-6d,Kvalueswere120and300ft./dayrespectively.ThesevaluesaresomewhatlowerthanthosereportedbyLeBlancetal.(1986)—200to300ft./day—althoughthosevaluesweredeterminedatpublicwater-supplywellsandarelikelybiasedhigh.Althoughcomputedhydraulicconductivityvaluesvariedwidelybetweenwellsandscreenedintervals,theoverallpatternsuggeststhatthehydraulicconductivityofsedimentishighestinthecentralportionoftheVinlandDrivesite(nearVL-2andVL-6)butislowertothenorthnearVL-4andVL-7duetothepresenceoffinergrainedsedimentsandfewercoarse-grainedsandzones.

SummaryofHydraulicConductivityEstimation

ThepurposeofthehydraulicconductivityanalyseswastorefinethemassfluxestimatesmadeduringtheISC,forwhichhydraulicconductivitywasassumedtobe300ft.perdayuniformly.ThehydraulicconductivityvaluesderivedfromtheslugtestanalyseswereaveragedtoresultinthevalueslistedinTable6b.Theestimatedaverageconcentrationfortheuppersandis50ft./dayandforthelowersandis70ft./dayinthevicinityofVL-4andVL-7and150and260ft./dayrespectivelyinthevicinityofVL-2andVL-6.

Page 35: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table6a-CalculationofHydraulicConductivityfromSlugTestsVinlandDrive,DennisMA

VL-2 uppersand 41-46 110VL-2d lowersand 52-62 >370*

VL-3 uppersand 39-44 140

VL-4 uppersand 38-43 52VLZ-4b lowersand 51-52 23VLZ-4c lowersand 57-58 110

VL-6 uppersand 35-40 32VLZ-6a uppersand 40-41 86VLZ-6b uppersand 46-47 370VLZ-6c lowersand 57-58 120VLZ-6d lowersand 63-64 300

*Estimate-wellrecoveredtooquicklytoevaluatetest

VinlandDrive,DennisMAHydraulic

Conductivity(ft./day)

5070150260

WelllocationHydrogeologic

Unit

Screenedinterval(ftbgs)

SlugTestK(ft/day)

Table6b-SummaryofAverageHydraulicConductivityfromSlugTestAnalyses-UpperandLowerSandUnits

VinlandDriveArea

uppersandVL-4toVL-7arealowersandVL-4toVL-7areauppersandVL-2toVL-6arealowersandVL-2toVL-6area

31
Page 36: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

32

GroundwaterVelocityEstimates UsingthelithologiccharacterizationandhydraulicgradientsdevelopedfromthefielddatafortheVinlandDrivesite,weusedDarcy’sLawtoestimategroundwatervelocity: V=(Kix)/n (3)where:

Visthegroundwatervelocity(ft./day);Kisthehydraulicconductivity(ft./day)fromrecenttests;ixisthehorizontalhydraulicgradient(ft./ft.);andnistheporosity(dimensionless),assumedtobe0.3.

ThehorizontalhydraulicgradientintheuppersandunitestimatedfromtheMay2017fielddatais0.010ft./ft.,TheestimatedhydraulicconductivityvaluesforthewatertablewellsintheVL-4andVL-2areasis50and150ft./dayrespectively.Thisresultsinanestimatedvelocityrangeof1.7feetperdayto5.0feetperday.ThiscontrastswiththeISCvalueof9ft./daybasedonthegreaterestimatedhydraulicconductivityandthegreaterhorizontalgradientof0.012measuredinspring2016.Inthelowersandunit,thevelocityofflowwasestimatedusingthehydraulicgradientof0.004measuredinMay2017.UsingtheestimatedlowersandhydraulicconductivityforVL-4andVL-2,thevelocityrangeisestimatedat2.0to3.5ft./day.AnevaluationofthechangeingroundwatervelocityduetochanginghydraulicgradientduetotidalfluctuationisshowninFigure8.Thevelocitychangebetween2.2and2.5feetperdayforwellscompletedinthehigherconductivityareassuchasVL-2.UsingthesomewhatlowerhydraulicconductivityatVLZ-4,thevelocityvariesbetween1.3and1.4feetperday.

Page 37: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

1.00

1.20

1.40

1.60

1.80

2.00

2.20

2.40

2.60

0.0020

0.0022

0.0024

0.0026

0.0028

0.0030

0.0032

2017-04-170:00:00 2017-04-180:00:00 2017-04-190:00:00

Grou

ndwaterVelocity

(2./da

y)

Horizon

talG

roun

dwaterGradien

t

MeasurementDate

Figure8-HorizontalGroundwaterGradientandVelocityVaria@onDuetoTidalInfluence-LowerSandUnit

HorizontalGradient-LowerSand GroundwaterVelocity-LowerSandatVL-2

GroundwaterVelocity-LowerSandatVLZ-4

33
Page 38: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

34

WaterQualityDataEvaluation

WaterTableWells

Table7liststhefield-measuredandlaboratory-analyzedconstituentsfortheWinter2016-2017samplingatexistingandnewwatertablewellsandtheprevioustworoundsofsamplinginAprilandMay2016.Dissolvedoxygen(DO)andnitrate-Narehighlightedinblueandgreenrespectivelyforeaseoftablereview.Field-measuredpHatwatertablewellsrangedfrom4.6to5.3.Field-measuredspecificconductance(SC)wasmeasuredbetween127and406µS/cmwiththehighestreadingsatVL-3andVL-8.Field-measuredDOwasgenerallyhigh,varyingbetween7.6and9.6mg/L.Figure9showstheconcentrationsofselectedconstituentsatwatertablewells.Nitrate-NwashighestatVL-4andVL-8,at7.0and7.5mg-N/Lrespectively,withlowernitrate-Nlevels,1.7to4.2mg-N/L,atotherwatertablewells.Theseconcentrationsarehigheroverallthanthoseobservedinspring2016.Allnitrate-Nlevelsaresufficientlyelevatedtobeindicativeofthepresenceofwastewater.DOCconcentrationswereatorbelow1mg/Linallwellsasin2016.TotalKjeldahlNitrogenorTKN(thesumoforganicnitrogenandammonianitrogen)wasthehighestatVL-5andVL-7at1.7and3.8mg-N/Lrespectivelyandbelowdetectionlimitsatmostotherwells.Ammonia-Nwasnotanalyzedinthisroundsincevaluesweregenerallyverylowinspring2016,sotheseelevatedTKNvaluessuggestthateitherammonia-NororganicNishigheratthesewells.Concentrationsofdissolvedironweregenerallylow,lessthan1mg/L.Sulfateconcentrationswerebetween10and16mg/LatallwellswiththehighestconcentrationatVL-8.ChlorideinVL-3andVL-8,withconcentrationsof71and85mg/Lrespectively,waselevatedcomparedtootherwells,consistentwiththefield-measuredSCvalues.

PiezometerandWellClusters

DifferencesinconstituentconcentrationswithdepthatthepiezometerclusterlocationatVL-2andthewellclustersatVL-4,VL-6,andVL-7areillustratedinFigures10through12.Alinerepresentingthetopoftheupperclaylayerisincludedineachgraph.Table8includesthelaboratoryanalysesattheVL-2piezometerclusterandTable9liststheresultsfortherecentlyinstalledwell

Page 39: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table7-WaterQualityatWaterTableWellsPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationSamplingDateFieldMeasurementspH(SU) 4.6 5.4 4.8 4.8 5.0 4.8 4.5 5.2 4.6Temperature(°C) 12.3 15.1 11.8 11.9 12.9 11.8 12.3 12.2 12.3DissolvedOxygen(DO;mg/L) 8.7 9.4 9.3 29.4 R 9.3 8.0 9.1 10.0 9.5SpecificConductance(uS/cm) 218 200 127 277 286 146 280 323 320RedoxPotential(ORP;mV) 308 347 216 256 312 218 259 345 281LaboratoryAnalysespH(SU) 4.4 4.3 NM 5.0 4.5 NM 4.6 4.4 NMNitrateasN(mg/L) 2.2 2.6 1.8 4.4 4.5 4.2 5.8 7.1 4.2δ15N-NO3(0/00) NM NM NM NM NM NM NM NM 5.53NitriteasN(mg/L) <0.01 <0.01 <0.019 <0.01 <0.01 <0.019 <0.01 <0.01 <0.019AmmoniaasN(mg/L) <0.028 0.037 J NM <0.028 <0.028 NM 0.032 JE <0.028 NMTotalKjeldahlNitrogen(TKN)(mg/L) 0.308 0.083 J <0.066 0.392 0.3 U <0.066 0.351 JE <0.132 E 0.072 JTotalNitrogen(mg/L) 2.5 2.6 1.8 4.8 4.5 4.2 5.8 7.1 4.2Orthophosphate(mg/L) 0.007 0.008 NM 0.005 0.008 NM 0.011 E 0.007 NMTotalAlkalinity(mg/LCaCO3) 2.20 2.2 2.2 3.50 2.9 2.7 2.90 2.5 NDChloride(mg/L) 41.4 34.3 32.6 72.2 40.9 37.6 56.0 42.8 71.2Sulfate(mg/L) 14.1 10.2 12.9 11.1 10.6 9.46 13.6 11.8 11.2DissolvedIron(mg/L) 0.39 0.042 J <0.01 1.3 <0.02 <0.01 6.0 E <0.02 0.03 JDissolvedManganese(mg/L) 0.0277 0.0263 0.016 0.0717 0.0429 0.036 0.0871 E 0.0449 0.063DissolvedBoron(mg/L) 0.0188 J 0.0174 J NM 0.0369 0.0328 NM 0.0343 0.0286 NMDissolvedArsenic(mg/L) <0.002 <0.002 0.004 J 0.0033 J <0.002 0.003 J 0.0073 E <0.002 <0.002DissolvedOrganicCarbon(mg/L) 0.72 J 1.1 0.73 J 0.95 J 0.79 J 0.7 J 1.0 J 0.97 J 0.85 JNotes:

J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.R-SuspectederrorinfieldDOmeasurementsNS-NotSampled/NM-NotMeasuredE-ExceedsRPDof20%withduplicatesampleGreycellmeansdataquestionableandshouldnotbereliedupon

5/6/16VL-2VL-1

1/19/174/1/16 3/31/16 5/6/16 1/12/171/19/17 4/1/16 5/6/16VL-3

35
Page 40: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table7-WaterQualityatWaterTableWellsPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationSamplingDateFieldMeasurementspH(SU)Temperature(°C)DissolvedOxygen(DO;mg/L)SpecificConductance(uS/cm)RedoxPotential(ORP;mV)LaboratoryAnalysespH(SU)NitrateasN(mg/L)δ15N-NO3(0/00)NitriteasN(mg/L)AmmoniaasN(mg/L)TotalKjeldahlNitrogen(TKN)(mg/L)TotalNitrogen(mg/L)Orthophosphate(mg/L)TotalAlkalinity(mg/LCaCO3)Chloride(mg/L)Sulfate(mg/L)DissolvedIron(mg/L)DissolvedManganese(mg/L)DissolvedBoron(mg/L)DissolvedArsenic(mg/L)DissolvedOrganicCarbon(mg/L)Notes:

J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.R-SuspectederrorinfieldDOmeasurementsNS-NotSampled/NM-NotMeasuredE-ExceedsRPDof20%withduplicatesampleGreycellmeansdataquestionableandshouldnotbereliedupon

4.4 5.5 5.2 4.7 6.0 5.0 5.2 6.1 5.212.2 13.5 12.2 11.7 12.9 12.3 12.4 14.2 12.27.1 7.3 9.2 9.8 9.8 9.4 10.0 10.3 9.4303 278 186 166 90 136 179 131 157298 336 190 297 290 294 225 285 178

4.6 4.4 NM 5.0 5.0 NM 5.8 4.9 NM6.2 7.4 7 1.9 1.0 1.7 1.2 0.41 3.8NM NM NM NM NM NM NM NM NM

<0.01 <0.01 <0.019 <0.01 <0.01 <0.019 <0.01 0.014 J <0.019<0.028 0.047 J NM 0.035 J <0.028 NM 0.089 <0.028 NM2.41 0.164 J <0.066 0.384 0.098 J 1.7 4.36 0.169 J <0.0668.6 7.4 7 2.3 1 0.19 J 5.6 0.41 3.8

0.006 0.007 NM 0.006 0.009 NM 0.005 0.007 NM3.60 2.4 2.1 E 4.10 5.9 3.3 12.30 4.8 3.856.6 43 44.8 29.6 15.5 24.5 32.3 20.1 41.111.9 11.7 8.2 10.6 4.49 10.3 15.6 13.6 101.7 <0.02 <0.01 0.12 0.023 J <0.009 0.15 <0.02 <0.01

0.0637 0.0497 0.063 0.0204 0.013 0.0221 0.0321 0.0157 0.0350.0237 J 0.018 J NM 0.0198 J 0.0112 J NM 0.0134 J 0.0101 J NM0.0033 J <0.002 0.003 J,E <0.002 <0.002 <0.0019 <0.002 <0.002 0.0049 J

0.86 J 0.84 J 0.69 J 0.89 J 1.2 0.63 J 0.79 J 1.1 0.71 J

VL-61/19/17

VL-51/13/174/1/16 5/6/164/1/16 5/6/16 4/1/16 5/6/16

VL-41/19/17

36
Page 41: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table7-WaterQualityatWaterTableWellsPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationSamplingDateFieldMeasurementspH(SU)Temperature(°C)DissolvedOxygen(DO;mg/L)SpecificConductance(uS/cm)RedoxPotential(ORP;mV)LaboratoryAnalysespH(SU)NitrateasN(mg/L)δ15N-NO3(0/00)NitriteasN(mg/L)AmmoniaasN(mg/L)TotalKjeldahlNitrogen(TKN)(mg/L)TotalNitrogen(mg/L)Orthophosphate(mg/L)TotalAlkalinity(mg/LCaCO3)Chloride(mg/L)Sulfate(mg/L)DissolvedIron(mg/L)DissolvedManganese(mg/L)DissolvedBoron(mg/L)DissolvedArsenic(mg/L)DissolvedOrganicCarbon(mg/L)Notes:

J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.R-SuspectederrorinfieldDOmeasurementsNS-NotSampled/NM-NotMeasuredE-ExceedsRPDof20%withduplicatesampleGreycellmeansdataquestionableandshouldnotbereliedupon

5.0 4.9 5.311.9 11.9 11.69.6 8.4 7.6204 406 197259 279 307

NM NM NM2.4 7.5 2.8NM NM NM

<0.019 <0.019 <0.019NM NM NM0.654 3.8 0.189 J

3 11 2.8NM NM NM3.3 3.1 641.6 85.3 41.910.9 16 5.82

0.036 J 0.26 0.240.0289 0.0478 0.0206NM NM NM

<0.0019 <0.0019 <0.00190.63 J 0.98 J 0.69 J

VL-7 VL-91/13/171/13/17

VL-81/13/17

37
Page 42: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\ \

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\\

\\

\\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\ \\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\\\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\ \

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\ \

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\\\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\\

\\

\

\

\\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\\ \

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\ \

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\\

\\

\

\

\

\

\

\

\

\

\\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\ \

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\\

\\

\ \

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\ \

\

\\

\

\ \

\

\

\\\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\\

\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\\

\

\

\

\

\ \\

\

\

\

\

\

\

\

\

\\ \

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\\\

\

\

\

\

\\

\

\

\

\

\

\\

\ \\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\\

\

\

\

\

\\

\\

\

\

\

\

\\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\\

\

\

\

\

\\

\

\

\\\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\\

\\\

\

\\

\

\

\

\\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\\

\\\\

\\\\

\\\

\

\\\\

\\

\

\\

\

\ \

\

\

\

\

\

\

\

\

\

\\

\

\

\

\\

\\

\

\ \

\

\

\

\

\

\

\

\\\

\

\\

\\

\

\

\

\\

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\ \

\

\

\

\

\

\

\\

\

\

\

\\

\ \

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\ \\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\ \

\\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\\

\

\\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\ \

\

\\

\

\

\

\

\

\

\

\ \

\\

\

\

\

\

\

\

\

\\

\\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\ \

\

\\

\

\

\

\

\\

\

\

\ \

\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\ \

\

\

\

\

\

\

\

\\

\

\

\

\

\

\ \

\

\

\

\ \

\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\\

\

\ \

\

\

\\

\

\

\\

\

\\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\\

\

\\\

\

\

\

\

\

\

\

\

\\\

\

\

\

\

\

\

\\\

\

\

\

\

\

\\

\

\

\

\\\

\

\

\\

\

\\

\

\

\

\ \

\

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\\

\

\

\

\

\\

\

\

\

\

\

\

\ \

\\

\

\

\

\

\

\

\

\

\

\

\\\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\ \

\

\

\\

\\

\

\

\

\

\

\\

\\

\

\\

\

\

\

\

\

\\\

\\

\

\

\

\\

\

\ \

\\

\

\

\

\

\\

\\\

\

\

\

\\ \

\

\

\

\

\\

\

\\

\

\

\\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\\

\

\

\\

\ \\

\

\\

\

\

\

\

\

\

\

\

\

\

\

\\

\

\

\

\

\

\

\

\\

\

\\

\ \

\

\

\

\

\\

\

\

\

\\

\

\

\

\

\

\

\\

\

\\

\

\

\\

\

\\\

\\

\ \

\

\

\\

\ \

\

\\

\

\\

\ \

\ \\

\\

\

\\\

\

\

\

\

\

\

\\ \\

\\

\\

\

\

\\

\

\\

\

\

\

\\

\

\ \\

\\ \

\

\

\\

\

\

\\

\\ \

!(

!(

!(

!(

!(

!(

!(

4

46

02

44

40

42

6

8

38

36

48

34

32

30

24

14

2826

22

12

10

16

50

0

0

0

0

0

48

0

0

0

0

0

0

0

0

0

0

34

0

0

0

0

0

0

0

0

0

0

0

38

0

0

0

0

0

0

0

0

40

0

0

0

0

0

4

00

0

0

0

0

50

0

26

0

0

34

0

0

0

0

0

0

0

40

36

0

0

0

0

0

0

0

0

0

24

44

0

46

0

50

0

0

0

0

0

28

22

0

0 0

0

00

46

0

0 0

0

0

0

0

32

0

0

0

48

48

0

0

0

32

0

00

0

0

10

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

4

0

0

0

48

0

0

0

0

0

0

0

50

44

00

0

46

0

0

0

0

32

0

0

0

0 0

0

0

0

0

0

00

0

0

0

0

0

0

50

0

4

0

40

50

0

0

0

0

0

0

0

0

0

40

0

0

0

48

0

00

30

12

0

38

0

0

0

0

0

0

0

44

50

0

0

0

0

0

0

00

0

0

0

0

0

46

0

0

0

0

40

NORSEMAN DRIVE

LIEF ERICSON DRIVE

FIOR

D D

RIVE

THORWALD DRIVE

FREYDIS DRIVE

VIKING DRIVE

JOANNE DRIVE

CO

UN

TRY

CIR

CLE ¯

VL-2

VL-1

VL-6

0 150 300 450 60075Feet

Figure 9. Nitrate Concentrations in Upper Sandand Surface Water (mg/L) (1-12-17, 1-13-17, 1-19-17)- Cape Cod Permeable Reactive Barrier Full Hydrogeologic Assessment- Vinland Drive Site, Dennis, MA

Kelley's Bay

VL-7

VL-8

VLZ-4

VLZ-6

WP-1

WP-2

WP-3

SW-1

Map created byWaterVision, LLC

January 2017

VL-2D

VLZ-7

VINLANDDRIVE VL-9

7.5

2.4

1.7

4.2

1.82.8

LegendSurface Water Sampling Point

Shallow Well Points

New Well Clusters and Deep Wells

New Water Table Wells

!( Existing 2" Groundwater Monitoring Wells

!( Existing Piezometer Cluster (6)

Proposed PRB Alignment

VL-5

VL-4

Nitrate as N (mg/L)(1/12/17, 1/13/17, 1/19/17)

Sources: Surface Water Sampling Points, Shallow Well Sampling Points, Existing and New Groundwater Monitoring Well Locations, Existing Piezometer Locations, New Well Cluster Locations, and Nitrogen Concentrations from WaterVision LLC. Roads and Kelley's Bay from Mass GIS, Contours from Cape Cod Commission, and Wetlands from the National Wetlands Inventory (NWI).

4.2

3.8

7.0

VL-3

3.0

<0.019

0.78 8.7

1.8

VLZ-2

VL-8d

VL-9VL-1d

38
Page 43: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Figure10-VariationofNitrate-N,DissolvedOxygen,DissolvedOrganicCarbon,andStableNitrogenIsotopeRatiosVinlandDrive,Dennis,MA,Dec2016toJan2017

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsNm

ated

ElevaNo

nofGroun

dwaterSam

pmle(S

msl)

ConcentraNonofConsNtuent(mg/L)

VLZ-2

DissolvedOrganicCarbon Nitrate-N DissolvedOxygen

5.2

2.01

5.16

5.19

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsNm

ated

ElevaNo

nofGroun

dwaterSam

pmle(S

msl)

ConcentraNonofConsNtuent(mg/Lor0/00)

VLZ-4

DissolvedOrganicCarbon Nitrate-N StableN15(0/00) DissolvedOxygen

5.81

5.28

5.48

5.76

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsNm

ated

ElevaNo

nofGroun

dwaterSam

pmle(S

msl)

ConcentraNonofConsNtuent(mg/L)or0/00

VLZ-6

DissolvedOrganicCarbon Nitrate-N StableN15(0/00) DissolvedOxygen

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsNm

ated

ElevaNo

nofGroun

dwaterSam

pmle(S

msl)

ConcentraNonofConsNtuent(mg/L)

VLZ-7

DissolvedOrganicCarbon Nitrate-N DissolvedOxygen

39
Page 44: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Figure 11 - Variation of Nitrate-N, Total Alkalinity, Chloride, and SulfateVinland Drive, Dennis, MA, Dec 2016 to Jan 2017

-25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60 70

Es-m

ated

Eleva-o

nofGroun

dwaterSam

pmle(?

msl)

Concentra-onofCons-tuent(mg/L)

VLZ-2

Nitrate-N TotalAlaklinity Sulfate Chloride-25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60 70

Es-m

ated

Eleva-o

nofGroun

dwaterSam

pmle(?

msl)

Concentra-onofCons-tuent(mg/L)

VLZ-6

Nitrate-N TotalAlaklinity Sulfate Chloride

-25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60 70

Es-m

ated

Eleva-o

nofGroun

dwaterSam

pmle(?

msl)

Concentra-onofCons-tuent(mg/L)

VLZ-7

Nitrate-N TotalAlaklinity Sulfate Chloride-25

-20

-15

-10

-5

0

5

0 10 20 30 40 50 60 70

Es-m

ated

Eleva-o

nofGroun

dwaterSam

pmle(?

msl)

Concentra-onofCons-tuent(mg/L)

VLZ-4

Nitrate-N TotalAlaklinity Chloride Sulfate

40
Page 45: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Figure 12 -Variation of Nitrate-N, Dissolved Iron, Dissolved Manganese, and Dissolved ArsenicVinland Drive, Dennis, MA, Dec 2016 to Jan 2017

TheMnlineslookincorrectbecausethevaluesareinthetenthousandthsIthinkIoriginallytookthelessthansymbolsoffofthedata.

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsFm

ated

ElevaFo

nofGroun

dwaterSam

pmle(L

msl)

ConcentraFonofConsFtuent(mg/L)

VLZ-2

DissolvedIron DissolvedManganese Nitrate-N DissolvedArsenic

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsFm

ated

ElevaFo

nofGroun

dwaterSam

pmle(L

msl)

ConcentraFonofConsFtuent(mg/L)

VLZ-4

DissolvedManganese Nitrate-N DissolvedIron DissolvedArsenic

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsFm

ated

ElevaFo

nofGroun

dwaterSam

pmle(L

msl)

ConcentraFonofConsFtuent(mg/L)

VLZ-6

DissolvedIron DissolvedManganese Nitrate-N DissolvedArsenic

-25

-20

-15

-10

-5

0

5

0 1 2 3 4 5 6 7 8 9 10

EsFm

ated

ElevaFo

nofGroun

dwaterSam

pmle(L

msl)

ConcentraFonofConsFtuent(mg/L)

VLZ-7

DissolvedManganese Nitrate-N DissolvedIron DissolvedArsenic

41
Page 46: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table8-WaterQualityatOne-InchPiezometersPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationScreenbottomelevation(ftmsl)SamplingDateFieldMeasurementspH(SU) 4.7 5.0 NS 5.8 5.7 5.7 5.7 5.3 5.6Temperature(°C) 11.7 12.9 NS 11.6 11.8 11.7 12.3 11.87 11.3DissolvedOxygen(DO;mg/L) 7.1 9.3 NS 4.2 4.1 4.6 6.3 4.7 4.9SpecificConductance(uS/cm) 381 286 NS 235 219 196 206 185 180RedoxPotential(ORP;mV) 301 312 NS 127 100 271 220 137 304LaboratoryAnalysespH(SU) 4.8 NS NS 5.9 5.5 NM 5.8 5.3 NMNitrateasN(mg/L) 4.3 NS NS 2.4 2.5 3.6 4.0 3.9 3.5NitriteasN(mg/L) <0.010 NS NS <0.010 <0.010 <0.019 <0.010 <0.010 <0.019AmmoniaasN(mg/L) <0.028 NS NS 0.029 J 0.036 J NM 0.031 J <0.028 NMTotalKjeldahlNitrogen(TKN)(mg/L) <0.066 NS NS <0.066 0.35 0.23 J 1.09 0.66 <0.066TotalNitrogen(mg/L) 4.3 NS NS 2.4 2.8 3.6 5.1 3.9 3.5Orthophosphate(mg/L) 0.005 NS NS 0.006 0.006 NM 0.02 0.019 NMTotalAlkalinity(mg/LCaCO3) 2.50 NS NS 14.4 14.2 12.2 10.0 9 8.6Chloride(mg/L) 88.9 NS NS 34.3 36.2 31.7 31.5 30.1 31Sulfate(mg/L) 11.6 NS NS 18.1 16.3 11.8 11.3 10.7 10DissolvedIron(mg/L) 0.19 NS NS 0.93 0.51 0.027 J 3.6 0.9 <0.0090DissolvedManganese(mg/L) 0.0636 NS NS 0.466 0.419 0.194 0.108 0.104 0.0027 JDissolvedBoron(mg/L) 0.0415 NS NS 0.0250 J 0.0202 J NM 0.0306 0.0271 J NMDissolvedArsenic(mg/L) 0.0031 J NS NS <0.0020 <0.0020 0.0052 0.0052 0.0027 J 0.0028 JDissolvedOrganicCarbon(mg/L) 0.72 J NS NS 0.57 J 0.57 J 0.54 0.68 J 0.69 J 0.49 JNotes:

J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.

R-SuspectederrorinfieldpHandORPmeasurements

NS-NotSampled/NM-NotMeasured

E-ExceedsRPDof20%withduplicatesample*NS-lowwaterleveldidnotpermitcollectionofagroundwatersampleGreycellmeansdataquestionableandshouldnotbereliedupon

4/1/16 5/6/16

VLZ-52-4.8

1/19/175/6/2016* 4/1/164/1/16 5/6/16

VLZ-443.3

1/19/2017*

VLZ-48-0.8

1/19/17

42
Page 47: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table8-WaterQualityatOne-InchPiezometersPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationScreenbottomelevation(ftmsl)SamplingDateFieldMeasurementspH(SU)Temperature(°C)DissolvedOxygen(DO;mg/L)SpecificConductance(uS/cm)RedoxPotential(ORP;mV)LaboratoryAnalysespH(SU)NitrateasN(mg/L)NitriteasN(mg/L)AmmoniaasN(mg/L)TotalKjeldahlNitrogen(TKN)(mg/L)TotalNitrogen(mg/L)Orthophosphate(mg/L)TotalAlkalinity(mg/LCaCO3)Chloride(mg/L)Sulfate(mg/L)DissolvedIron(mg/L)DissolvedManganese(mg/L)DissolvedBoron(mg/L)DissolvedArsenic(mg/L)DissolvedOrganicCarbon(mg/L)Notes:

J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.

R-SuspectederrorinfieldpHandORPmeasurements

NS-NotSampled/NM-NotMeasured

E-ExceedsRPDof20%withduplicatesample*NS-lowwaterleveldidnotpermitcollectionofagroundwatersampleGreycellmeansdataquestionableandshouldnotbereliedupon

5.4 5.2 5.3 4.9 5.0 5.1 5.4 5.4 5.412.1 11.6 11.7 10.6 11.6 11.4 11.3 11.1 11.16.5 6.2 5.4 7.2 6.5 6.9 6.5 7.1 6.5212 188 177 169 179 192 189 197 200212 152 299 212 142 292 234 94 266

5.4 5.2 NM 5.4 5.1 NM 5.5 5.3 NM4.2 3.9 3.6 2.8 3.2 4.4 3.2 3.2 3.7

<0.010 <0.010 <0.019 <0.010 <0.010 <0.019 <0.010 <0.010 <0.019<0.028 <0.028 NM <0.028 E <0.028 NM 0.030 J 0.031 J NM<0.066 0.288 J <0.066 <0.066 E 0.203 J <0.066 <0.066 0.074 J <0.066

4.2 3.9 3.6 2.8 3.2 4.4 3.2 3.2 3.70.008 0.009 NM 0.004 JE 0.012 NM 0.008 0.013 NM6.70 6.8 7 5.40 4.7 4.7 7.20 8.4 733.3 31.9 30.8 31.9 32.2 34.4 36.8 33.8 36.210.8 10.3 9.76 12.0 9.42 9.11 12.6 11.8 10.7

0.038 J 0.69 0.01 J 0.13 E 0.022 J <0.0090 0.14 0.67 <0.00900.0105 0.0263 0.0059 J 0.0275 0.0209 0.0220 0.0141 0.0464 0.0080 J0.0329 0.029 J NM 0.0325 0.0283 J NM 0.0366 0.0306 NM0.0025 J <0.0020 0.0028 J 0.0024 J <0.0020 0.0038 J <0.0020 0.002 0.0025 J

0.68 J 0.75 J 0.79 J 0.49 JE 0.69 J 0.78 J 0.55 J 0.66 J 0.54 J

4/1/16 5/6/16

VLZ-56-8.8

1/19/17

VLZ-66-18.7

1/19/173/31/16 5/6/16

VLZ-61-13.8

1/19/17 3/31/16 5/6/16

43
Page 48: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table9-WaterQualityatTwo-InchWellClustersPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MA

SampleID/LocationScreenbottomelevation(ftmsl)

SamplingDateFieldMeasurementspH(SU) 5.6 4.7 5.4 6.4 5.6 4.7 4.8 4.7Temperature(°C) 11.5 11.8 11.7 13.2 11.7 12 11.7 11.7DissolvedOxygen(DO;mg/L) 8.0 8.2 7.9 8.4 5.6 9.3 6.8 7.9SpecificConductance(uS/cm) 189 303 183 176 167 195 243 251RedoxPotential(ORP;mV) 279 298 261 155 182 193 180 193LaboratoryAnalysespH(SU) NM NM NM NM NM NM NM NMNitrateasN(mg/L) 4.4 8.1 3.3 4.9 3.4 2.8 4.6 4.6δ15N-NO3(

0/00) NM 5.2 2.01 5.16 5.19 5.81 5.28 5.34NitriteasN(mg/L) <0.019 <0.094 <0.019 <0.019 <0.019 <0.019 <0.019 <0.019AmmoniaasN(mg/L) NM NM NM NM NM NM NM NMTotalKjeldahlNitrogen(TKN)(mg/L) <0.066 0.65 0.3 <0.066 <0.066 2.20 E <0.066 0.121 JTotalNitrogen(mg/L) 4.4 8.8 3.6 4.9 3.4 5.0 4.6 4.6Orthophosphate(mg/L) NM NM NM NM NM NM NM NMTotalAlkalinity(mg/LCaCO3) 6.3 2 5.6 5.9 11.9 6.5 E 5.3 NDChloride(mg/L) 33.3 64 33.2 27.0 25.9 38.8 45.1 46.9Sulfate(mg/L) 10.1 8.76 10.3 10.4 11.4 12.3 13.4 13.8DissolvedIron(mg/L) <0.01 0.02 J <0.0090 0.53 0.10 0.54 E 1.9 0.06DissolvedManganese(mg/L) 0.025 0.0906 0.0274 0.0951 0.032 0.054 0.096 0.047DissolvedBoron(mg/L) NM NM NM NM NM NM NM NMDissolvedArsenic(mg/L) <0.002 <0.0019 <0.0019 <0.0019 <0.002 <0.002 <0.002 0.002 JDissolvedOrganicCarbon(mg/L) 0.53 J 0.7 J 0.48 J 0.51 J 0.38 J 0.83 J 0.83 J 0.72 JNotes:J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.R-SuspectederrorinfieldDOmeasurementsNS-NotSampled/NM-NotMeasuredE-ExceedsRPDof20%withduplicatesampleGreycellmeansdataquestionableandshouldnotbereliedupon

12/12/1612/14/16

-12.2 -17.1VLZ-4dVLZ-4cVL-2d

1/13/17 1/13/17

0.8 -6.2-14.6

1/19/17

VLZ-4a VLZ-4b VLZ-6b-0.7

1/12/17

5.3

12/12/16

VLZ-6a

12/12/16

44
Page 49: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table9-WaterQualityatTwo-InchWellClustersPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationScreenbottomelevation(ftmsl)

SamplingDateFieldMeasurementspH(SU)Temperature(°C)DissolvedOxygen(DO;mg/L)SpecificConductance(uS/cm)RedoxPotential(ORP;mV)LaboratoryAnalysespH(SU)NitrateasN(mg/L)δ15N-NO3(0/00)NitriteasN(mg/L)AmmoniaasN(mg/L)TotalKjeldahlNitrogen(TKN)(mg/L)TotalNitrogen(mg/L)Orthophosphate(mg/L)TotalAlkalinity(mg/LCaCO3)Chloride(mg/L)Sulfate(mg/L)DissolvedIron(mg/L)DissolvedManganese(mg/L)DissolvedBoron(mg/L)DissolvedArsenic(mg/L)DissolvedOrganicCarbon(mg/L)Notes:J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.R-SuspectederrorinfieldDOmeasurementsNS-NotSampled/NM-NotMeasuredE-ExceedsRPDof20%withduplicatesampleGreycellmeansdataquestionableandshouldnotbereliedupon

VLZ-7c-14.01/13&

1/19/2017

5.1 5.2 5.1 5.7 NS 6.011.9 13.4 11.8 11.5 NS 11.67.0 7.2 8.9 7.3 NS 5.8189 197 197 206 NS 156140 135 245 211 NS 185

NM NM NM NM NS NM4.2 5.0 2.7 3.0 NS 2.15.48 5.76 NM NM NS NM

<0.019 <0.019 <0.019 <0.019 NS <0.019NM NM NM NM NS NM

0.073 J <0.066 0.988 0.23 J NS 0.9324.2 5.0 3.7 3.0 NS 3.0NM NM NM NM NS NM8.3 9.1 3.3 6.2 NS 13.232.1 33.1 39.5 40.8 NS 24.810.4 12.1 10 9.56 NS 10.80.34 0.79 0.052 <0.0090 NS 0.37

0.108 0.169 0.0346 0.019 NS 0.0569NM NM NM NM NS NM

<0.002 <0.002 <0.0019 <0.0019 NS <0.00190.45 J 0.63 J 0.6 J 0.44 J NS 0.37 J

VLZ-6c-11.7

12/12/16

VLZ-7d-17.9

1/13/17

VLZ-7b-10.0

1/13/17

VLZ-7a3.0

1/13/17

VLZ-6d-17.7

12/12/16

45
Page 50: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

46

clusters.TheVLZ-44piezometerwasnotsampledduringthewinter2017round,aswaterlevelsweretoolowtoproperlypurgeandsamplethepiezometer.AdditionallyVLZ-7cwasnotsampledduetothehighvolumeoffinesandandsiltinthewell.AttheVLZ-2piezometers,thefield-measuredpHvariesbetween5.7and5.2withthehighestvalueintheshallowpiezometer.Atthenewwellclusters,pHvariedbetween4.7and6.4withthelowestvaluesatVLZ-4aandhighestatVLZ-4c.SCvaluesweresimilaratallpiezometers(180to200µS/cm).Atthewellclusters,SCwasmeasuredat160to300µS/cmwiththehighervaluesmeasuredintheuppersand.Figure10illustratestheconcentrationsofnitrate,DOC,andDOversuselevation.StablenitrogenisotoperatioswereanalyzedforsamplesfromtheVLZ-4andVLZ-6clustersandarealsoshownonthegraph,butarediscussedinafollowingsection.Nitrate-Nconcentrations(thedashedbluelinesinFigure9)are2.1to8.1mg-N/Ldependingondepthandlocation.AlthougheachwellclusterhasauniquepatternofDO(solidgreenlines)concentrationwithdepth,theuppersandgenerallyhasslightlyhigherDOconcentrations(9.3to4.6mg/L)thanthelowersand(8.4and5.6mg/L).DOCconcentrationsareallbelow1mg/Linboththeupperandlowersandunits.AtVLZ-2andVLZ-4theDOandnitrate-Nconcentrationsvarysimilarlywithdepth.Figure11illustratesvariationinchloride,alkalinity,andsulfatewithelevation.Chlorideatmultilevelwellsisashighas64mg/Lbutdropsto25mg/Linthedeepestsamplingintervalinthelowersand.Totalalkalinityvariesfrom2.0to12.2mg/Lbutgenerallyincreaseswithdepth.Sulfatevariesonlyslightlybetween8.8and13.4mg/Latallwellclusters.Figure12illustratestheconcentrationpatternsfordissolvedoxygen,dissolvediron,dissolvedmanganese,anddissolvedarsenic.Arsenicisatorbelowthemethoddetectionlimitatallwellclustersandpiezometers.Theconcentrationofdissolvedironhardlyvarieswithdepthandisnowherehigherthan0.8mg/L.ManganeseconcentrationsgenerallyincreasefromthesurfacetojustabovethelowerclayatallwellclustersbutVLZ-6.DissolvedmanganesewasbelowthelimitofdetectionatmanywellsandtheremainingconcentrationswerestillverylowexceptatVLZ-6wherehigherconcentrationsofmanganeseweredetectedatalldepths.Althoughmanganeseandironfollowsimilardissolutionpatternsasafunctionofredoxstate,manganeseismoresensitivetoDOconcentrationandwilldissolveathigherDOlevelsthaniron.ThehighestmanganeseconcentrationwasdetectedatVLZ-6b(atanelevationof-0.7ft.msl),whichisjustabovetheupperclaylayer.

Page 51: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

47

ShallowWellPointsandSurfaceWater

Shallowgroundwater(lessthan2feetbelowlandsurface)wassampledinthreelocationsneartheedgeofKelley’sBay(Figure8,Table10).AtWP-1,samplingwasattemptedclosetothewater’sedge,buttheelevatedSCmeasuredinthewatersuggestedthatthesamplewasbrackishandnotfreshwater.Severalsamplesfurtherinlandwereattemptedclosertotheedgeofthebluff,butevenatadistanceofgreaterthan150feetfromtheshorelinewhereWP-1wasfinallytaken,theSCwasstillelevatedcomparedtofreshwater.Nitrate-Natthislocationwasbelowdetectionlimits.TheSC,chloride,sulfate,andalkalinityconcentrationsofthissampleallsuggestthatgroundwaterwasbrackishatthetimeofsampling.Thepresenceofbrackishwaterisconsistentwithtidally-drivenwaterexchangebetweenthebayandgroundwater.WatersamplesfromWP-2andWP-3werefreshgroundwaterbasedonSC(lessthan300µS/cm).AtWP-2andWP-3thenitratewas8.7and3.0mg/Lrespectively.TheDOwasunusuallylowat2.9and2.5mg/LcomparedtogroundwaterfromtheuppersandmeasuredalongVinlandDrive.Dissolvedironandarsenicwereclosetoorbelowdetectionlimitsandmanganesewasbelow1mg/Lforbothpoints.AsampleofsurfacewaterfromKelley’sBaywasalsosampledforallparameters(Table10).Nitrate-Nwas0.78mg/LandSC,chloride,sulfate,andalkalinitywereallatelevatedconcentrationstypicalofsalinewaters.

StableNitrogenIsotopeAnalysis

Thetwostableisotopesofnitrogenare15Nand14N.Theorganisms(anaerobicbacteria)thatcausedenitrificationpreferentiallyutilize14Nsothat15Nbecomesenrichedcomparedto14Nduringthesebiologicalreactions(Pabich,2001).Theratioof15N/14Niscapturedas!!"N(reportedinpartsperthousand,0 00): δ!"N = 1000 !!!! (4)where, a=relativeabundanceof15Ninatmosphericair,and

s=relativeabundanceof15Ninthesample.!!"Nhasastablevalueof0.3660 00inairintheatmosphere(Kendall,1998).ThisratiocanbeanalyzedforNH4,NO3,orN2ingroundwatertodeterminetheratio!!"N.The!!" of nitrate-NwasanalyzedforthisstudysinceitisthespeciesofinterestattheVinlandDrivesite.Forclarity,stablenitrogenisotopeanalysescompletedforthisstudyarelistedas!!"N–NO3tospecifythattheratiowas

Page 52: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table10-WaterQualityShorelineWellPointsandSurfaceWaterPermeableReactiveBarrierFullHydrogeologicAssessment-VinlandDrive,Dennis,MASampleID/LocationSamplingDateFieldMeasurementspH(SU) 5.6 6.0 5.4 5.1Temperature(°C) 6.7 7.1 10.3 10.9DissolvedOxygen(DO;mg/L) 10.5 7.5 2.9 2.5SpecificConductance(uS/cm) 21179 16395 291 223RedoxPotential(ORP;mV) 348 74 125 138LaboratoryAnalysesNitrateasN(mg/L) 0.78 <0.019 8.7 3NitriteasN(mg/L) <0.019 <0.019 <0.094 <0.019TotalKjeldahlNitrogen(TKN)(mg/L) 0.683 0.578 0.085 J <0.066TotalNitrogen(mg/L) 1.5 0.58 8.7 3TotalAlkalinity(mg/LCaCO3) 45.60 27.4 ND 3.3Chloride(mg/L) 7000 5170 49.4 43.6Sulfate(mg/L) 953 684 9.13 11.1DissolvedIron(mg/L) 0.11 1.5 <0.01 0.01 JDissolvedManganese(mg/L) 0.0215 0.1 0.108 0.016DissolvedArsenic(mg/L) <0.0019 0.007 <0.002 0.002 JDissolvedOrganicCarbon(mg/L) 8 J 13 J 0.74 J

Notes:J-Dataindicatesapresenceofacompoundthatmeetstheidentificationcriteria.Theresultislessthanthequantitationlimitbutgreaterthanzero.Theconcentrationgivenisanapproximatevalue.R-SuspectederrorinfieldDOmeasurementsNS-NotSampled/NM-NotMeasuredE-ExceedsRPDof20%withduplicatesampleGreycellmeansdataquestionableandshouldnotbereliedupon

SW-1 WP-1 WP-2 WP-31/12/17 1/12/17 1/12/17 1/12/17

48
Page 53: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

49

measuredinnitrate-N.Measurementsof!!"N–NO3havebeenusedatavarietyofsitestounderstandtheextentofdenitrificationingroundwaterandtoevaluatethesourcesofnitrate-Ndetectedingroundwaterbasedonapparentenrichmentof15N(Cravotta,1997;Robertson&Merkely,2009;Kendalletal.,2007;Degnanetal.,2015).Thevariationin!!"N–NO3valuesingroundwatercanreflectdifferentsourcesofnitrate-Nandfractionationduetobiologicalprocesses.SincetheVinlandDrivesiteisinadevelopedareaunderlainbyasandandgravelwatertableaquifer,therearelikelymultiplesourcesofnitratecontributingtothesubsurfaceconcentrations.Theseincludeinfiltratingprecipitation,vehicleemissiondeposition,fertilizer,andsepticdischarge.AreviewofstableisotopeconcentrationsbyKendalletal.(2007)indicatesthefollowingrangesof!!"N–NO3forthesesources:

PrecipitationfortheCapeCodarea- -5.4to-3.50 00Vehicleemissions- -13to+3.70 00Fertilizer–inorganic- -4to+40 00Fertilizer–organic- +2to+300 00Animalandhumanwaste +10to+200 00

Arecentstudyoftheimpactsofblastingonwaterqualityalsoprovidedsomerangesof!!"N–NO3fromsepticsystemsinsouthernNewHampshire(Degnanetal.,2015).Groundwaterdowngradientofsepticinfluencewasfoundtohaveratiosbetween11.4and15.30 00.ThehigherratiowasinanareaoflowDO,wheredenitrificationmayhavebeenactive.Othersreported!!"N–NO3ingroundwaterdowngradientofsepticsystemsas70 00(Foggetal.,1998)and8.1to13.90 00(Aravenaetal.,1993).Itislikelythatthenitrate-NdetectedinthesubsurfaceatVinlandDriveistheresultofamixtureofprecipitation,vehicleemissions,septicwaste,andfertilizersources.Themosteffectivemeansofidentifyingsourcesusesacombinationofstableoxygenandstablenitrogenisotopeanalysisofnitrate-Ninsoilandgroundwater.Todeterminetheimpactofdenitrificationon!!"N–NO3,additionalanalysessuchasDO,DOC,anddissolvedmetalsareneeded(Kendalletal.,2007).ThesamplingofselectedlocationsanddepthsattheVinlandDrivesite(Figure10)identified!!"N–NO3ingroundwaterbetween5.2and5.80 00atmostwellswithonemuchlowerdelta-valuedetectedatVLZ-4bat2.00 00.UC-Daviswasaskedtore-runthissampletoverifythislowervalueandthere-analysisyielded1.90 00comparedtotheoriginalvalueof2.00 00.

Page 54: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

50

Overall,measured!!"N–NO3ratiosdonotsuggestthatdenitrificationisoccurringtoanygreatextentwithintheupperorlowersandzone.ThesubsurfaceconditionsdonotappeartobeconducivetodenitrificationwithagenerallyhighDOandlowDOC.Manganesedoesappeartobemoresolublewithdepthindicatingthatsomechemicalreductionisoccurringatinthelowersandunit.

SummaryofUpperandLowerSandWaterQuality

Theuppersandhydrogeologicunitis6to17feetthickintheVinlandDriveareaandthelowersandis9to15feetthick.Althoughnitrate-Nconcentrationsdifferbetweenwelllocations,thehighestconcentrationshavebeendetectedintheuppersandwiththehighestconcentrationfoundneartheshorelineatWP-2andatVL-4.DOisgenerallyhigherintheuppersandaswell(greaterthan7mg/L)exceptatoneVLZ-2piezometercompletedjustabovetheupperclay.TheexceptionisattheshallowgroundwaterwellpointsamplesWP-2andWP-3wheretheDOisbelow3mg/L.Thismayreflectlocalconditionssuchasproximitytoanaerobicmudinshorelineandbaysediments.Chlorideiselevatedatsomeuppersandwellsbutmostotherionicspeciesarefoundonlyatlowconcentrationsanddissolvedmetalsarealsoatlowconcentrationsorbelowdetectionlimits.Nitrate-Ninthelowersandhydrogeologicunitisbelow5mg-N/Latallsampledlocationsincontrasttothehigherconcentrationsfoundintheuppersandunit.DOisstillrelativelyelevatedinthelowersandwiththelowestconcentrationatVLZ-4dat5.8mg/L.Dissolvedioniccompoundsaregenerallylowinthelowersandwithminorincreasesinalkalinitywithdepth.Dissolvedmanganeseincreaseswithdepthinthelowersandatmostlocations.Overall,theredonotappeartobegeochemicalconditionsthatsuggestactivedenitrificationingroundwaterintheareastudied.Thisisconfirmedbytherelativelyconsistentandlow!!"N–NO3insamplesrecentlyanalyzedinboththeupperandlowersandunits.

AnalysisofNitrate-NMassFluxThemassfluxanalysiscompletedaspartoftheISCwasupdatedtoreflectthelithology,hydraulicconductivity,andnitrate-NconcentrationsobservedduringcompletionoftheFHA.FourmassfluxanalyseswerecompletedforboththeupperandlowersandunitusingdatafromtheVLZ-2,VLZ-4,VLZ-6,andVL-8welllocations,whichbrackettheoverallrangeofconditionsattheVinlandDriveFHAstudysite.The2016hydraulicgradientof0.012wasusedformassfluxanalysisintheuppersandasitwasmeasuredoverseveralmonthsandislikelytorepresentaseasonalhighvalue.ThegradientbetweenVL-8dandVLZ-7d(0.004)wasusedforevaluatingmassfluxinthelowersand.Table11summarizesthemassfluxattheselocations.AppendixDcontainsadescriptionofthemassfluxmethodologyandthecalculationtables.Themodestchangesinhorizontalgradientsduetotidalinfluence

Page 55: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

51

inthelowersandwerenotincludedinthemassfluxcalculations.Asdescribedinafollowingsection,thePRBwillbedesignedtoprovideathree-daytraveltimethroughthetreatmentzone,thereforechangesingradientandvelocityoverthe12-hourtidalcyclewillbeaveragedoutduringpassagethroughthePRB.Forthisreason,thetidalvariationinvelocityshouldnotgreatlyinfluencetheoverallmassfluxofnitrate-NatVinlandDrive.Table11–SummaryofMassFluxofNitrate-NitrogenVinlandDrive,Dennis,MA

WellLocation

SandUnitDesignation

WeightedAverageNitrate-N

Concentration(mg-N/L)

SaturatedThickness

ofTreatmentZone(ft.)

Nitrate-NitrogenMassFluxinSandUnit

(g/day/m)

TotalNitrate-NitrogenMassFluxatWellLocation(g/day/m)

VLZ-2

upper 3.8 9.5 5.811

lower 3.7 14.7 5.5VLZ-4 upper 8.1 6.5 2.9

4lower 3.9 13.4 1.0

VLZ-6 upper 4.0 13.0 6.911

lower 4.5 14.1 4.5VL-8 upper 7.5 9.0 11.3

14lower 3.2 10.6 2.5

Massfluxintheuppersandisestimatedbetween2.9g/day/m(VL-4),and11.3g/day/m(VL-8).Inthelowersand,massfluxisestimatedat1.0to5.5g/day/mwiththelowervaluesatVL-4andVL-8.Thetotalmassfluxoverbothunitsrangesfrom4g/day/matVL-4to14g/day/matVL-8.AtVL-8thehigherconcentrationofnitrate-N(7.5mg/L)andcoarseuppersandsedimentcontributedtothehigherfluxestimateatthislocation.

SummaryofNitrate-NMassFlux

Nitrate-Nconcentrationsvariedacrossthesitebetweenwellsites,butoverallconcentrationsweresimilaratwellssampledduringboththeISCandFHA.Thisarealvariabilitycontributedtodifferencesinthecomputedmassfluxacrossthesite.Additionallyhydrogeologicdifferencescontributedtomassfluxvariation.Although

Page 56: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

52

mediumtocoarsesandsarepredominantthroughoutthesite,sedimentcoresrecoveredatVL-4andVL-7andespeciallyinthelowersandunitcontainedmorefinesandandsiltthansedimentscollectedatotherwelllocationsinthestudyarea.Thisresultedinlowerhydraulicconductivityvaluesbasedonslugtestanalysesinthisnorthwesternareaofthesite.ThemeasuredhydraulicconductivityfortheuppersandatVL-2andVL-6wassomewhatlowerthanoriginallyestimatedfortheISCaswell.Finally,thehydraulicgradientinthelowersandis0.004,whichisconsiderablymoremoderatethanthegradientmeasuredintheuppersand.There-estimatedvaluesofmassfluxofnitrate-NatthesitearesomewhatlowerthanthosecalculatedfortheISCatVLZ-2(19.4g/day/m).ThischangereflectstheadditionalhydrogeologicandwaterqualitydatacollectedduringtheFHA.

EvaluationofNitrate-ReducingPRBTechnologyattheDennisSiteThesectionpresentsaconceptualdesignofapilot-scalePRBattheDennissite.Thisinitialdesignwillhelpindeterminingtheadditionalanalysesrequiredbeforepilotimplementationandprovidespreliminaryestimatesofsubstratetypeandusage.SeveralpractitionerswerecontactedforadditionalinformationonPRBlayoutandsubstrate(C.Jacob,personalcommunication,2016;F.Hostrop,personalcommunication,2017;B.Elkins,personalcommunication,2017)anddesignandestimatingtoolswereusedtoevaluatesubstraterequirements(EOSInc,website2017;Henry,2010).ForthepurposesofthisevaluationitwasassumedthatthePRBwouldconsistofinjectedliquidsubstratealonganappropriatewidthandlengthwithinthechosentreatmentzoneatdepth.

ConceptualDesignFactorsTheconceptualdesignofthepilotPRBrequiresthedeterminationofthefollowingfactors:

ThePRBorientationandwidth(perpendiculartogroundwaterflow).BasedontheFHAresults,VinlandDriveisroughlyperpendiculartogroundwaterflowandwouldbeaconvenientlocationforthePRB.Aof100feet(measuredperpendiculartoflow)isassumedforapilotPRB.ThePRBlength(paralleltogroundwaterflow).Thisdistanceshouldadequatetoallowadequatecontactwithinjectedsubstratetoallowdenitrificationbutnotgreatenoughtoallowreactionstoproceedtostronglyreducingconditions.Athreetofourdaycontactperiodwasadvisedtomeettheserequirements.

Page 57: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

53

Treatmentzonedepth–Treatmentofboththeupperandlowersandunitwasevaluated.Thetypeandformulationofsubstratetobeinjectedthatwillprovideacarbonsourceforanaerobicbacteriatodenitrifygroundwaterthroughrespiration.Aliquidinjectedsubstrate(alsoknownasinjectate)willbeappropriategiventhedepthtoandthehydraulicconductivityofthetreatmentzone.EmulsifiedVegetableOil(EVO)appearstobethemosteffectivesubstratefortheVinlandDrivesite.Itisdesignedforhighergroundwatervelocities(0.5ft./day),canbeformulatedtoadheretosandgrainswithoutreducinghydraulicconductivity,andhasahighcarboncontentandhydrogenyield(Hostrop&Begley,2017;Henry,2010).Thereareseveralcommercialsourcesofthisproduct.Thevolumeofsubstrateneededandthefrequencyofreplenishmentrequiredtocontinuetreatment.

EvaluationofAnaerobicTreatmentEfficiencyThehydrogeologicandwaterqualityinformationcollectedaspartoftheDennisFHAwasevaluatedusingtheSubstrateEstimatingToolforEnhancedAerobicBioremediationofChlorinatedSolventsspreadsheetanalysistool(Henry,2010)tofurtherevaluateplacementofapilotPRBandtoestimatethevolumeofsubstratethatmayberequired.Thespreadsheettoolprovidesastoichiometricanalysisofreducingreactionsbasedonknownsitehydrogeologicandgeochemicalconditionsandgeneralcharacteristicsofsubstrates.Reducingreactionsinclude(inorderofthermodynamicfavorabilityandthusreactionsequence):aerobicrespiration(utilizationofoxygentoproduceanaerobicconditions),denitrification,sulfatereduction,manganesereduction,ironreduction,andmethanogenesis.Fornitratetreatmentonlythefirsttworeactionslistedareneeded,butsomesulfatereduction,metalsreduction,andmethanogenesismayoccur.Eachcommerciallyavailablesubstratehasuniquecharacteristicsthatmaynotbefullyrepresentedintheanalysis.AppendixBofthebackgrounddocumentationforthespreadsheettool(Henry,2010)explainstheconceptualmodelandmethodology.Althoughdevelopedforchlorinatedsolvents,itcanalsobeusedforanalyzingtheeffectivenessofvariousPRBsubstratesfordenitrification.Thismayoverestimatetheuseofsubstrateasitassumesthatreactionswillproceedtoreducingconditionssufficientforbreakdownofchlorinatedsolventsbydechlorinationanddenitrificationoccursatlessreducingconditionsasdetailed

Page 58: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

54

above.ThisevaluationonlyprovidesbroadguidanceinevaluatingPRBtreatment,asotherin-situfactorsmustbeconsideredinthedesignandimplementationofatreatmentPRBthroughcolumntestingandadditionalin-situanalyses.Table12highlightschemicalandphysicalcharacteristicsthatcanimpactsubstrateutilization.TheconditionsfoundattheVinlandRoadsite(inbluetext)inDennis,MAmayrequiresubstrateamendmenttoaccommodatetheseconditions.Table12-ExampleEnhancedBioremediationSystemModifications,fromHenry,2010

PotentialCondition Modification

LowpHorlowbufferingcapacity

• Additionofabufferingcompound

• Useofwaterpushforsolublesubstrates

• Useofslower-releasesubstrates

Lowpermeability/groundwatervelocity

• Closelyspacedinjectionpoints

• Targetedinjectionsintolowpermeability�horizons

Highpermeability/groundwatervelocity

• Highersubstrateloadingrates

• Morefrequentinjections

• Multiplerowsofinjectionwellsorbiowalls

• Highretention(coarsedroplet)EVO�products

(Modified from AFCEE et al., 2004 and Suthersan et al., 2002.)

AsindicatedinTable12thelowpHandlowalkalinityofgroundwateratthesitemayrequireadditionofabufferingcompoundtothePRBinjectate.Incorporationofgranulatedlimestoneintheinjectatetoenhancealkalineconditionshasbeensuggested(F.Hostrop,personalcommunication2017).EVOsubstratealsoincorporatesthesuggestedwaterpush(injectionofadditionalwaterordissolutionofsubstrateinwater)andslower-releasesubstratebymodifyingthedropletsizeandadherencetoparticles(stickiness)forEVOinjections.Thehighpermeabilityandgroundwatervelocityatthesitemayrequirehighersubstrateloading,useofseveralrowsofinjectionsitestoachievethecorrectPRBthickness,andinjectateamendedtobestronglyretainedonsediment.Further,zonesofcoarsesandwhich

Page 59: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

55

mayallowforpreferentialgroundwaterflowcouldrequirestillgreaterratesofEVOusagecomparedtoareasoflowerhydraulicconductivity.OuranalysisassumedaPRBthatis100feetwide(perpendiculartogroundwaterflow)and24feetlong(paralleltogroundwaterflow)toachievethenecessaryreactiontimebasedonsitegroundwatervelocities,witha1-yearperformanceperiodforthepilotstudy.Asafetyfactorofthreewasincorporatedintotheestimateofthevolumeofinjectateneeded.Betweenthesafetyfactorandtheinclusionofsulfatereductionandmethanogenesisinthereactions,theestimatedvolumeofinjectateislikelyveryconservative.Thesaturatedthicknessoftheaquiferswasvariedbasedonwellsitecharacteristics.MosthydrogeologicandwaterqualityinputparametersnecessaryforthecalculationwasassessedaspartoftheFHA,butforafewparametersforwhichfielddatawereunavailable,valuesfromasimilarevaluationinFalmouth,MAwereused(F.Hostrop,personalcommunication,2017).AppendixEcontainstheinputdatapagesandtheoutputdatapagesproducedbythespreadsheettool.AtVL-2,geochemicalconditionsatVL-6andVL-2wereaveragedforspreadsheetinput.AtVL-8lowersand,geochemicalconditionsforVL-4wereassumed,asVL-8dwasnotsampledduringtheFHA.Table13summarizestheresultsofthisanalysisandinitialresultsarealsographicallypresentedinFigure13.Denitrificationwilloccurafteraerobicrespirationiscomplete.TheEVOdemandisconservativelycalculatedtoincludesulfatereductionandmethanogenesis,IronandmanganesereductionanddechlorinationreactionsarenotrepresentedinTable13orFigure13astheyareeitheraverysmallfractionoftheoveralltotalordonotapplytothissiteevaluation.Thisevaluationdeterminedthat17to22%ofthetotalelectronacceptordemandforPRBtreatmentwouldbeutilizedforaerobicrespirationand42to60%wouldbeusedfordenitrification.Somesulfatereduction(13to25%oftheestimateddemand)andmethanogenesis(8-14%)mayalsooccurbutthepilottestwouldbeusedtoevaluatethesereactionsandminimizeexcessEVOusageforthefinalPRBdesign.ThevolumeofEVOestimatedbythespreadsheettoolforthepilottestforaerobicrespirationanddenitrificationonly,dependingonlocationandsandunitfallsbetween500and650gallonsforayear-longpilottestDependingonwelllocations,nitratereductionwouldutilize42to60%oftheEVOinjectedbasedonelectronreceptordemand.TheuppersandatVL-8andtheuppersandatVL-4representthehighestutilizationofEVOfordenitrificationandthelowestutilizationwasestimatedatVL-8inthelowersand.Variabilityof

Page 60: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

Table 13 - Summary of Permeable Reactive Barrier Characterics and Emulsified Vegetable Oil Substrate Requirements Vinland Drive, Dennis, MA

VL-2 VL-2 VL-4 VL-4 VL-8 VL-8Upper Sand Lower Sand Upper Sand Lower Sand Upper Sand Lower Sand

Width (perpendicular to groundwater flow) 100 100 100 100 100 100 feetLength (parallel to groundwater flow) 24 24 24 24 24 24 feetSaturated Thickness (based on lithology and measured water levels) 8.4 14.7 7.1 13.4 9.2 10.5 feetDesign Period of Performance - pilot test 1 1 1 1 1 1 years

Percent of Total Electron Receptor Demand *

VL-2Upper Sand

VL-2Lower Sand

VL-4 Upper Sand

VL-4 Lower Sand

VL-8 Upper Sand

VL-8 Lower Sand

Aerobic Respiration 16% 19% 18% 22% 17% 22%Nitrate Reduction 44% 43% 60% 42% 52% 42%Sulfate Reduction 25% 22% 13% 21% 21% 22%Methanogenesis 12% 13% 9% 12% 8% 12%

Estimated EVO use for Design Period (gallons) 500 520 650 530 570 530

Estimated Mass Flux of Nitrate-N (g/day/m) ** 5.8 5.5 2.9 1.0 11.3 2.5

Gallons of EVO required to denitrify 1 g/day/m of nitrate-N mass flux 90 100 220 530 50 210

* Based on Evaluation using the Substrate Estimating Tool for Enhanced Bioremediation of Chlorinated SolventsEnvironmental Security Technology Certification Program - (Henry, 2010), Appendix E

** Based on mass flux evaluation completed for the FHA, Appendix D

PRB Characteristics Modeled Units

56
Page 61: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

0% 10% 20% 30% 40% 50% 60% 70%

AerobicRespira6on

NitrateReduc6on

Figure13-PercentofTotalElectronAcceptorDemandforDenitrifica;onatPRB-VinlandDriveSite,Dennis,MA

VL-2UpperSand

VL-2LowerSand

VL-4UpperSand

VL-4LowerSand

VL-8UpperSand

VL-8LowerSand

57
Page 62: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

58

hydrogeologiccharacteristicsandgeochemistrybetweenwelllocationsaccountsforthevariationinestimatedelectrondonorusageandefficiencywithrespecttodenitrification.AroughevaluationofEVOusageefficiencywasestimatedbycalculatingtheestimatednumberofgallonsofEVOneededperunitmassfluxofnitrate-Nateachlocation.ThissuggeststhatthePRBwouldbelessefficientintreatingnitrate-NwithinthelowersandatVL-4comparedtotheothersitesevaluated..ThisdifferenceinefficiencyarisesatthislocationbecausetheconcentrationofdissolvedoxygenishigherrelativetotheconcentrationofnitrateatVL-4andthusahigherportionofthesubstrateisutilizedbyaerobicrespiration.VL-8uppersandwouldutilizethelowestnumberofgallonsper1g/m/daymassfluxforthepilot-scaletest.

ConclusionsAsstatedintheintroduction,thepurposeoftheFHAwastogathersufficientdatatodesignapilotscalepermeablereactivebarrierforthesiteand,inparticular,toanswerquestionsaboutsubsurfacepropertiesthatwillbeusedtopredictmassfluxofnitrate-nitrogenbeneaththesite,todefinewhereandtowhatdepthaPRBshouldbeconstructed,andtodetermineifthereareuniquegeochemicalconditionsthatwillneedtobeconsidered.ThefollowingsummaryanswersthequestionsposedintheintroductiontothisreportandtoprovidethesitecharacteristicsthatwillberelevanttopilotPRBdesign.

• Subsurfacematerialsarelargelyfinetocoarsesandswitha3-to10-foot-thickshallowclaylayerthatseparatestheuppersandfromthelowersandunit.Theuppersandis6-to17-feetthick.Itappearstobethickesttothesouthandeast.Thelowersandis9-to15-feetthick.SedimentsarecoarsestinthecentralportionoftheneighborhoodsurroundingVL-2andVL-6andbecomefinertothenorthwestinthevicinityofVL-7.ContrarytowhatwassuggestedbytheISCresults,theshallowclaylayerappearstobecontinuouswithinthestudyarea.

• Inboththeupperandlowersandunits,lensesofcoarsesandmayactaspreferentialflowpaths.ManycoarsezoneswerenotedduringboringadvancementandmayberesponsiblefortheelevatedhydraulicconductivityvaluesestimatedatVL-2andVL-6.

• Asubstantialclaydepositunderliesthelowersandunit.Thisdeepclaylayerappearslocallytoboundanthropogenicinfluencestowaterqualitytoa26-to35-footintervalbetweenthewatertableandthelowerclayunit.

Page 63: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

59

• Thedepthtothewatertablefromthegroundsurfaceisapproximately28to40ft.acrossthesite.Waterlevelsatmostwellsvariedlessthantwofeetovertheseasons.AtVL-6,whichisfarthestfromKelley’sBay,waterlevelsvaried2.75feetoverthelastyear.

• ThecoastaltideinKelley’sBaycausesonlyminorvariationinwaterlevelsin

wellsonVinlandDriveintheshallowsandunit.

• Tidalvariationaffectswaterlevelsinthelowersandunit.ThewaterlevelatVL-4d,whichis200feetfromtheshoreline,variedapproximately0.22feetoveratidalcycle.Similarly,thewaterlevelatVL-6d,whichisapproximately550feetfromtheshoreline,varied0.18feetoveratidalcycle.Waterlevelmeasurementsinwellsscreenedinthelowersand,therefore,aresensitivetotimingandshouldbetakenoverashorttimespaninordertocorrectlyestimategroundwaterflowdirectionandgradient.

• Groundwaterinboththeupperandlowersandunitsflowssouthwest

towardsKelley’sBayandisroughlyperpendiculartoVinlandDrive.Thegradientintheuppersandhasbeenmeasuredbetween0.008and0.012overthestudyperiod.Thelowersandunithasahorizontalgradientof0.004basedonafullroundofwaterleveldataatdeepwellsinMay2017.Thegradientinthelowersandexhibitsa0.0004changeoverallinsynchwiththetidalcycle.

• Theshallowclaylayeractsasaconfiningunitbasedonstrongupward

gradientsbetweenpiezometersscreenedbelowandabovetheclaylayer.Groundwaterintheupperandlowersandunitappearstodischargetolocalsurfacewaterbasedonstrongupwardgradients.

• Hydraulicconductivityhasbeenestimatedtovarybetween50ft./dayto260

ft./daywithintheupperandlowersandunits.ThesedimentsinthecentralportionofthesitearemoreconductivethanthesedimenttothenorthwestbetweenVL-4andVL-7.Theestimatedgroundwatervelocityis1.7to6ft./daybasedonestimatedhydraulicconductivityandhorizontalgradients.Thisvelocityvariesslightlywiththetidecycleinthelowersand.

• Nitrate-Nconcentrationsarefoundbetween1.7to8mg-N/Latwatertable

wells.Shallowgroundwater(uppersand)sampledneartheshorelineatKelley’sBaycontained3.0to8.7mg-N/Lnitrate-N.

• Nitrate-Nconcentrationsinthelowersandare2.1to5mg-N/L.

Page 64: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

60

• Nitrate-Nwasmeasuredat0.78mg/LatSW-1,asurfacewatersamplefromKelley’sBayattheVinlandDriveshoreline.

• NosignificantreducingzonewasencounteredalthoughDOwasfoundto

decreasewithdepthatmostwellclusters.DOwasalsolowneartheshorelineinthevicinityofwellpointsWP-2andWP-3.Manganesesolubilityincreaseswithdepthinthelowersand.

• Thenitrogenisotoperatio!!"N–NO3doesnotchangesignificantlywith

depth,whichappearstoconfirmtheconclusionthatdenitrificationisnotadominantgeochemicalprocessinupperorlowersandunits.

• Elevatedchlorideandspecificconductanceinwatertablewellsandthe

shallowpiezometerssuggestsanthropogenicinfluencesfromroadsaltand/orsepticsystems.

• Themassfluxofnitrate-Ninthetreatmentandsaturatedzoneoverthestudy

depthisestimatedbetween4and13g/day/mwiththehigherfluxinthecenterofthesitesurroundingVL-2andVL-6andatVL-8wherenitrate-Niselevated.ThetidalinfluenceinthelowersandwasnotfelttochangethemassfluxenoughtoimpactPRBspecifications.

• AspreadsheettoolbyHenry(2010)wasusedtomakepreliminaryestimates

ofelectrondonorutilizationbybacteria,theEVOneededtocreatereducingconditions,andthechemicalreductionofoxygen,nitrate,andsulfateThesefactorsvaryaccordingtosite-specificgeochemicalconditionsandhydrogeologiccharacteristics.Basedontheresultsofthespreadsheettool,aerobicrespirationwillutilize16to22%ofelectrondonordemandduringtreatmentandnitratereductionwillrequire42to60%ofelectrondonordemandinPRBtreatment.Becausethisevaluationpresumesthatreducingconditionswilldrivetothelevelrequiredforsulfatereductionandmethanogenesis,itlikelyoverestimatesthevolumeofEVOrequired,asonlytheaerobicrestorationreactionmustoccurbeforethedenitrificationprocesscanproceed.

Page 65: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

61

PilotPRBDesignRecommendationsTheresultsoftheFHAsuggestthefollowingPRBdesignparameters: PRBAlignment-Groundwaterflowsalongasimilarpathintheupperandlowersand—predominantlysouthwesttowardsKelley’sBay.APRBalignmentalongVinlandDrivewouldbeperpendiculartogroundwaterflow,whichisthedesiredorientation.Thisalignmentisapproximately200feetfromtheshoreline,whichistherecommendedsetbackdistancetoreducepossiblenegativeimpactstosurfacewaterfromPRBtreatmentconstituentsandgeochemicalchange. PRBLocation–Theconcentrationofnitrate-Nvariesacrossthesite,butrepeatedanalysisofthisparameteratseverallocationssuggeststhattheconcentrationshaveremainedsimilaroverthepastyear.Plumesfromindividualon-sitesepticsystemsprobablyremainfairlydistinctleadingtotheobservedarealvariabilityofnitrate-Nandotherconstituentsassociatedwithsepticsystemdischarge.ApilotPRBcouldbemosteffectivelytestedinareaswithhighernitrate-NsuchastheuppersandnearVL-4andnearVL-8.Ifsimultaneoustreatmentinboththeupperandlowersandistested,themassfluxandhydrogeologiccharacteristicsatVL-2suggestsimilarPRBefficienciesintheupperandlowersandandbetweensites.TestingtwositeswithdifferinghydraulicconductivitycouldalsoproveusefulforPRBpilottestevaluationsfortypicalhydrogeologicconditionsonCapeCod. WaterlevelsatPRBlocations–Waterlevelsfluctuateapproximatelytwofeetovertheyearintheuppersandwiththelowestwaterlevelsmeasuredinwinter.PRBsubstrateinjectionshouldbeplannedtoaccommodatethesewaterlevelchanges. Additionalsamplecollection–Abench-scalecolumntestusingsedimentcoresfromthesiteisrecommendedwherepilottestingisplannedtobetterevaluatein-situconditions.Acoreofsedimentfromthezoneofinterestwouldbetaken,sealed,andsenttoalaboratoryfortestingwithEVOtodeterminerequiredamendmentstoadjustforthelowalkalinityandpHandelevateddissolvedoxygenandtherelativelyhighgroundwatervelocitydocumentedatthesite.Groundwaterfromthatlocationwouldalsobecollectedforuseinthecolumntest.Groundwatersamplesforanalysisofcarbondioxideandmethanegasconcentrationsarealsorecommendedtobetterdefineexistingbiologicalactivity. Monitoringnetworkevaluation–TheexistingmonitoringnetworkwouldsufficeforpilottestingbutadditionalwellscouldbeusefulformonitoringEVOmigrationandutilization.Thepilottestwillprovidevaluableinformationonthe

Page 66: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

62

degreeofchemicalreductionbeyondnitrificationsothePRBthicknessandinjectionvolumeandfrequencycanbemodifiedtoreduceunnecessarygeochemicalreactions.ThoroughreviewoftheresultsofrecentpilottestingattheOrleans,MApilotPRBsitewouldalsobehelpfultodeterminetheoptimalspacingandparametersfortesting.

Citedreferences:AFCEE,NavalFacilitiesEngineeringServiceCenter(NFESC),andtheEnvironmentalSecurityTechnologyCertificationProgram(ESTCP).2004.PrinciplesandPracticesofEnhancedAnaerobicBioremediationofChlorinatedSolvents.PreparedbyParsonsInfrastructure&TechnologyGroup,Inc.,Denver.Colorado.August.(availableathttp://www.afcee.brooks.af.mil/products/techtrans/).Aravena,R.,M.L.Evans,andJ.A.Cherry,1993.Stableisotopesofoxygenandnitrogeninsourceidentificationofnitratefromsepticsystems.GroundWater.Vol.31,No.2,Pg.180-186.March-April1993.

Cravotta,CharlesA.,1997.Useofstableisotopesofcarbon,nitrogen,andsulfurtoidentifysourcesofnitrogeninsurfacewatersinthelowerSusquehannaRiverBasin,Pennsylvania.USGSWater-SupplyPaper2497.

Degnan,J.R.,J.K.Bohlke,K.Pelham,D.M.Langlais,G.J.Walsh,2015,IdentificationofGroundwaterNitrateContaminationfromExplosivesUsedinRoadConstruction:Isotopic,Chemical,andHydrologicEvidence.EnvironmentalScienceandTechnology.Vol.50,No.2,Pg.593-603.

Elkins,Brad.2017.PersonalcommunicationregardingtheestimateofEVOsubstrateanduseoftheESTCPER-0627estimatingtool.

EOSRemediationLLC,2017,EOSDesignTool,http://www.eosremediation.com/,WebsiteaccessedMay2017

Fogg,G.E.,D.E.Rolston,D.L.Decker,D.T.Louie,andM.E.Grismer,1998.SpatialVariationinNitrogenIsotopeValuesbeneathNitrateContaminationSources.GroundWater.Vol.36,No.3,Pg.418-426.May-June1998.

Halford,K.JandE.L.Kuniansky,2002,DocumentationofSpreadsheetsfortheAnalysisofAquifer-TestandSlug-TestData.U.S.GeologicalSurveyOpen-FileReport02-197 Henry,B.,2010.LoadingRatesandImpactsofSubstrateDeliveryforEnhancedAnaerobicBioremediation.ESTCPProjectER-0627.EnvironmentalSecurityTechnologyCertificationProgram.February2010.(https://clu-

Page 67: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

WaterVision,LLC

63

in.org/download/contaminantfocus/dnapl/Treatment_Technologies/ER-0627-FR-1.pdf)Hostrop,F.andJ.Begley,2017,EmulsifiedVegetableOil,Whatitis,howitremovesnitrate,howitcompares,howit’smanufactured,andwhyandhowweinjectit.WaquoitBayNationalEstuarineResearchReserveConference,April5,2017.Hostrop,Fritz.2017.PersonalcommunicationregardingtheestimateofEVOsubstrateanduseoftheESTCPER-0627estimatingtool.TerraSystems,Inc.

Jacobs,Clint.2016.PersonalcommunicationregardingPRBdesign.LandauAssociates,Inc.Kendall,C.,1998.Tracinganthropogenicinputsofnitrogentoecosystems.In:Kendall,Carol,andJ.J.McDonnell,Editors.IsotopeTracersinCatchmentHydrology.ElsevierScienceB.V.,Amsterdam.pp.519-576.Kendall,C.,E.M.Elliott,andS.D.Wankel,2007.Tracinganthropogenicinputsofnitrogentoecosystems.In:Michener,R.andK.Laitha,editors,2007.Stableisotopesinecologyandenvironmentalscience,2nded.BlackwellPublishing,Malden,MA.Chapter12.LeBlanc,D.R.,J.H.Guswa,M.H.Frimpter,andC.J.Londquist,1986.Ground-waterresourcesofCapeCod,Massachusetts.HydrologicInvestigationsAtlasHA-692.U.S.GeologicalSurvey,Washington,D.C.MTEnvironmentalRestoration,2015.FalmouthAcapesketPeninsulaGroundwaterInvestigationPhase2Report.December21,2015.NOAA,2017,Tides&Currentspage.NationalOceanicandAtmosphericAdministration.,https://tidesandcurrents.noaa.gov/inventory.html?id=8447505,April2017.Odong,Justine,2007,EvaluationofEmpiricalFormulaeforDeterminationofHydraulicConductivitybasedonGrain-SizeAnalysis,JournalofAmericanScience.Vol.3,No.3,pg.54-60.Pabich,W.J.,2001.DenitrificationofAnthropogenicNitrogeninGroundwater:MeasurementandModelingUsingStableIsotopicandMassBalanceApproaches.Ph.D.Thesis.DepartmentofCivilandEnvironmentalEngineering,MassachusettsInstituteofTechnology,Cambridge,Massachusetts.Robertson,W.D.,andL.C.C.Merkley,2009.In-StreamBioreactorforAgricultural

Page 68: Final Hydrogeologic Assessment Report, Characterization ......final hydrogeologic assessment report characterization for design of pilot-scale permeable reactive barriers for nitrogen

64

NitrateTreatment.JournalofEnvironmentalQuality.Vol.38,No.1,pp.230–237.

Suthersan,S.S,Lutes,C.C.,Palmer,P.L.,Lenzo,F.,Payne,F.C.,Liles,D.S.,andBurdick,J.2002.FinalTechnicalProtocolforUsingSolubleCarbohydratestoEnhanceReductiveDechlorinationofChlorinatedAliphaticHydrocarbons.SubmittedtoESTCPandAFCEEunderContract#41624-99-C-8032.December19,2002.WaterVisionLLC,2016.CapeCodPermeableReactiveBarriersInitialHydrogeologicSiteCharacterizationResultsandEvaluationofSiteSuitabilityforPermeableReactiveBarrierInstallation,VinlandDriveSite,Dennis,Massachusetts,September30,2016.