filter design fall11

Upload: vimala-elumalai

Post on 04-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Filter Design Fall11

    1/19

    Digital Filter Design

  • 8/13/2019 Filter Design Fall11

    2/19

    (1) Frequency selective filters: spectral shapers

    lowpass highpass bandpass bandstop

    1. Introduction -- Digital Filter Design

    FIR: - windowing

    - equiripple design

    IIR : - mapping from analog filters

    - impulse invariance

    (2)Filter Design Techniques

    BGL/SNU

  • 8/13/2019 Filter Design Fall11

    3/19

    4. FIR Filter Design by Windowing

    - Given a desired frequency response

    evaluate

    specification.giventheinfallspectrumfrequency

    resultingthethatsuchor,segment offinite

    Therefore, take apractical.notsolong,infinitelyis

    However,coefficients.filterdesiredtheis- Then,

    ,)( jd eH

    deeHnh njjdd )(

    2

    1][

    This process of getting out of is

    called Windowing

    ][nh ][nhd

    (1) Design Concept

    ][nhd

    ][nhd

    ][nhd ][nh

    ,)( jeH

  • 8/13/2019 Filter Design Fall11

    4/19

    4

    2. Window based method:

    -30 -20 -10 0 10 20 30-0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25Ideal LPFc=/4

    Shifting

    -30 -20 -10 0 10 20 30-0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25Ideal LPFc=/4-shifted

    -0.1

    -0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25LPF by Window Design Technique

  • 8/13/2019 Filter Design Fall11

    5/19

    5

    Digital Filter Specifications

    For example the magnitude response of a

    digital lowpass filter may be given as indicated

    below

  • 8/13/2019 Filter Design Fall11

    6/19

    Figure 7.2

    magnitude response of

    equivalent analog system

    monotonous descent

    2/1

    c

    passband

    tolerance

    c

    stopband

    tolerance

    passband

    cutoff

    frequency

    stopband

    cutoff

    frequency

    3dB cutoff

    frequency

    absolute specification

  • 8/13/2019 Filter Design Fall11

    7/19

    7

    Digital Filter Specifications

    In the passband we require that

    with a deviation

    In the stopband we require that

    with a deviation

    1)( jeG

    0)( jeGs

    pp0

    s

    pp

    j

    p eG

    ,1)(1

    ssjeG ,)(

  • 8/13/2019 Filter Design Fall11

    8/19

    8

    Digital Filter Specifications

    Filter specification parameters

    - passband edge frequency

    - stopband edge frequency - peak ripple valuein the passband

    - peak ripple valuein the stopband

    p

    s

    s

    p

  • 8/13/2019 Filter Design Fall11

    9/19

    9

    Digital Filter Specifications

    Practical specifications are often given in

    terms of loss function (in dB)

    Peak passband ripple

    dB

    Minimum stopband attenuationdB

    )(log20)( 10

    jeGG

    )1(log20 10 pp

    )(log20 10 ss

  • 8/13/2019 Filter Design Fall11

    10/19

    (3)Filter Specification(LPF)

    |)(| jeH

    11

    1

    11

    2

    0p

    s

    In some IIR filter design

    11

    1

    1 2 3

    1

    2

    3

    ripplepassband:1

    ripplepassband:2

    ],0[bandpassp

    ],[bandtransitionsp

    ],[bandstop s

    BGL/SNU

  • 8/13/2019 Filter Design Fall11

    11/19

    1

    decide specifications according to application2decide type according to specificationgenerally , if the phase is required ,

    choose FIR.

    3approach specifications using causal and stable discrete-time system

    4choose a software or hardware realization structure, take effects of limited word

    length into consideration

    H(z) or h[n]

    Design steps

    Specifications for bandpass and bandstop filters

    up and down passband cutoff frequency

    up and down stopband cutoff frequency

  • 8/13/2019 Filter Design Fall11

    12/19

    otherwise

    Mnnwnwnhnh d

    ,0

    0,1][],[][][

    )2

    sin(

    )

    2

    )1(sin(

    11)(

    )()(2

    1)()()(

    2/

    )1(

    0

    )(

    M

    ee

    eeeW

    deWeH

    eWeHeH

    Mjj

    MjM

    n

    njj

    jj

    d

    jj

    d

    j

    (2) Rectangular Windowing

  • 8/13/2019 Filter Design Fall11

    13/19

    0 2

    1

    2

    M

    sidelobepeak

    lobemain

    0 2

    )( )( jeW)( j

    d eH

    )( jeH

    )()(j

    eW

    j

  • 8/13/2019 Filter Design Fall11

    14/19

    n

    n

    n

    )( jeW

    )( jeH

    )( jd eH

    cc

    1

    2

    M

    0 M

    ][nhd

    ][nw

    ][nh

    )(e

    ][][][ nhnwnh Rd )()()( jj

    R

    j

    d eHeWeH

  • 8/13/2019 Filter Design Fall11

    15/19

    Window Design Techniques

    Rectangular Window

    otherwise,0

    10,1)(

    Mnnw

    Exact transition width = s-

    p= 1.8/M

    Min. stopband attenuation = 21dB

  • 8/13/2019 Filter Design Fall11

    16/19

    Window Design Techniques

    Bartlett Window

    Exact transition width = s-

    p= 6.1/M

    Min. stopband attenuation = 25dB

    otherwise,0

    12

    1,

    1

    22

    2

    10,

    1

    2

    )( MnM

    M

    n

    Mn

    M

    n

    nw

  • 8/13/2019 Filter Design Fall11

    17/19

    Window Design Techniques

    Hann Window

    Exact transition width = s-

    p= 6.2/M

    Min. stopband attenuation = 44dB

    otherwise,0

    10)],1

    2cos(1[50

    )( MnM-

    n

    .nw

  • 8/13/2019 Filter Design Fall11

    18/19

    Window Design Techniques

    Hamming Window

    Exact transition width = s-

    p= 6.6/M

    Min. stopband attenuation = 53dB

    MATLAB function: w=hamming (M)

    otherwise,0

    10)],1

    2cos(46.0540

    )( MnM-

    n

    .nw

    0 5 10 15 20 25 30 35 40 450

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Hamming Window: M=45

  • 8/13/2019 Filter Design Fall11

    19/19

    Window Design Techniques

    Blackman Window

    Exact transition width = s-

    p= 11/M

    Min. stopband attenuation = 74dB

    otherwise,0

    10)],1

    4cos(08.0)

    1

    2cos(5.0420

    )( Mn

    M-

    n

    M-

    n

    .nw

    0 5 10 15 20 25 30 35 40 450

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1Blackman Window: M=45