file.elecfans.comfile.elecfans.com/web1/m00/57/04/o4ybaftehzwapg_2acq1g2bxr… · # e ¦ Ù c w / 3...

1
GAIN (dB) 6dB/OCTAVE ROLL-OFF LOOP GAIN OPEN- LOOP GAIN CLOSED- LOOP GAIN NOISE GAIN CLOSED-LOOP BANDWITH LOG FREQUENCY R TOTAL = R 1 + R 2 + R 3 + 1 + 1 + 1 + R 1 R 2 R 3 1 R TOTAL = R 1 +R 2 R 1 R 2 R TOTAL = R N N R R TOTAL = ( ) Z = R 2 + X L 2 (RL ) Z = R 2 + X C 2 (RC ) Z = X L – X C (LC ) Z = R 2 + (X L – X C ) 2 (RLC ) Z = V A I ( ) Z = RX L (RL) Z = V A R 2 + X L 2 I LINE Z = RX C (RC) V A = V L = V C = V R R 2 + X C 2 Z = X L X C (LC) V A = I LINE Z X L X C Z = RX (RLC) R 2 + X 2 X C = X L = 2π fL fC 1 ( ) = = = N P N S E P E S I S I P Z P Z S 常用电容值 pF pF pF pF µF µF µF µF µF µF µF 1.0 10 100 1000 0.01 0.1 1.0 10 100 1000 10,000 1.1 11 110 1100 1.2 12 120 1200 1.3 13 130 1300 1.5 15 150 1500 0.015 0.15 1.5 15 150 1500 1.6 16 160 1600 1.8 18 180 1800 2.0 20 200 2000 2.2 22 220 2200 0.022 0.22 2.2 22 220 2200 2.4 24 240 2400 2.7 27 270 2700 3.0 30 300 3000 3.3 33 330 3300 0.033 0.33 3.3 33 330 3300 3.6 36 360 3600 3.9 39 390 3900 4.3 43 430 4300 4.7 47 470 4700 0.047 0.47 4.7 47 470 4700 5.1 51 510 5100 5.6 56 560 5600 6.2 62 620 6200 6.8 68 680 6800 0.068 0.68 6.8 68 680 6800 7.5 75 750 7500 8.2 82 820 8200 9.1 91 910 9100 助您节省时间的放大器设计参考指南 CLOSED- LOOP BW = f CL B A V N, R1 R1 R3 4kTR3 4kTR1 V N, R3 I N+ I N– V N 4kTR2 V N, R2 R2 NOISE GAIN = GAIN FROM “A” TO OUTPUT = NG = 1 + R2 R1 V OUT GAIN FROM “B” TO OUTPUT = – R2 R1 RTI NOISE = BW × V N 2 + 4kTR3 + 4kTR1 R2 R1 + R2 2 + I N+ 2 R3 2 + I N– 2 R1 × R2 R1 + R2 2 + 4kTR2 R 1 R1 + R2 2 RTO NOISE = NG × RTI NOISE RTI = RTO = BW = 1.57 f CL RESISTANCE () 10,000 1000 10 1 0 10 1k 100k 10M 100 10k 1M 100M 100 e n at 25°C nV Hz : V R = k = (1.38 × 10 –23 J/K) T = R = (Ohms) B = (Hz) = 4kTRB V R 25°C 4kT = 1.65 × 10 –20 W/Hz V R = 1.65 × 10 –20 RB (dB) ( ) db = 10 Log = 20 Log = 20 Log (Gain) P OUT P IN I OUT I IN V OUT V IN db = 10 Log = 20 Log = 20 Log (Gain) P IN P OUT I IN I OUT V IN V OUT RMS = = V RMS = 0.707 V PEAK V AVE. = 0.637 V PEAK V PEAK = 1.414 V EFF. V EFF. = 1.11 V AVE. V PEAK = 1.57 V AVE. V AVE. = 0.9 V EFF. ( ) P VI IR PR I P I 2 P P V 2 I V R V P R V R V 2 I 2 R P I V R www.analog.com/zh/amplifiers V IN V OUT R 1 C R F t = RC = R F C V OUT = V IN –R F × 1 R 1 R F C S + 1 V A V C V B V OUT R 1 R 2 R 3 R F V N R N ©2011 Analog Devices, Inc. All rights reserved. P10040-7.5-6/11 V OUT = V IN V OUT V IN V IN R G R F V OUT C IN R IN V OUT V IN R F V OUT = V IN –R F × R IN C S R IN R IN C S + 1 V OUT R G R1' R1 R2' R2 R3' + + + V OUT =V SIG 1 + 2R1 R G R3 R2 IF R2 = R3, G = 1 + 2R1 R G ~ ~ ~ ~ ~ ~ V CM + + V SIG 2 V SIG 2 A1 A2 A3 × ADC R F R F R G R G V OUT V OUT diff = R F V IN R G V OUT V OCM V IN DEMOD SIGNAL FB IN– IN+ IN COM V SIG 5V FS HI LO V OUT 5V FS MOD ISOLATE V SIG SIGNAL FROM V OUT V ISO UP TO 3500V V OUT = V IN V A V B R 1 R 1 R 2 V OUT R 2 V CM LOAD GND V S V REF1 V REF2 +IN –IN I S R S V SUPPLY GAIN FIXED VALUE AS SPECIFIED ON DATA SHEET R S V SUPPLY PWRA PRAO VGAI VNEG VPOS VCOM GPOS GNEG PrA GAIN CONTROL INTERFACE ATTENUATOR BIAS R FBH R FBL V IN V OUT V IN GAIN (dB) = 20log R FBH + 1 R FBL + 50dB G POS – G NEG + 16.5dB V 1 1000 0dB 60dB V GAIN 1%精度的电阻阻值范围为10.01.00M(另也有1.10 M1.20 M1.30 M1.50 M1.60 M1.80 M2.00 M2.20 M)下表列出了最常用容差(1%)的标准基本电阻值,以及可用的典型阻值范围。要确定基本值以外的其它电阻值,请将其乘以10100100010,000常用1%电阻值 10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.0 13.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.4 17.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.2 23.7 24.3 24.9 25.5 26.1 26.7 27.4 29.0 28.7 29.4 30.1 30.9 31.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.2 42.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.9 56.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.2 75.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6

Upload: others

Post on 11-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: file.elecfans.comfile.elecfans.com/web1/M00/57/04/o4YBAFtEhzWAPg_2ACq1G2BXR… · # e ¦ Ù c w / 3 É ã R c w ¦ ? Í Õ r Z É F j á / 3 U CLOSED-LOOP BW = f CL B A V N, R1 R1

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = RTO =

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

:

VR =

k = (1.38 × 10–23 J/K)

T =

R = (Ohms)

B = (Hz)

= 4kTRBVR

25°C 4kT = 1.65 × 10–20 W/Hz VR = 1.65 × 10–20RB

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = RTO =

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

:

VR =

k = (1.38 × 10–23 J/K)

T =

R = (Ohms)

B = (Hz)

= 4kTRBVR

25°C 4kT = 1.65 × 10–20 W/Hz VR = 1.65 × 10–20RB

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

常用电容值

pF pF pF pF µF µF µF µF µF µF µF1.0 10 100 1000 0.01 0.1 1.0 10 100 1000 10,0001.1 11 110 11001.2 12 120 12001.3 13 130 13001.5 15 150 1500 0.015 0.15 1.5 15 150 15001.6 16 160 16001.8 18 180 18002.0 20 200 20002.2 22 220 2200 0.022 0.22 2.2 22 220 22002.4 24 240 24002.7 27 270 27003.0 30 300 30003.3 33 330 3300 0.033 0.33 3.3 33 330 33003.6 36 360 36003.9 39 390 39004.3 43 430 43004.7 47 470 4700 0.047 0.47 4.7 47 470 47005.1 51 510 51005.6 56 560 56006.2 62 620 62006.8 68 680 6800 0.068 0.68 6.8 68 680 68007.5 75 750 75008.2 82 820 82009.1 91 910 9100

助您节省时间的放大器设计参考指南

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = RTO =

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

:

VR =

k = (1.38 × 10–23 J/K)

T =

R = (Ohms)

B = (Hz)

= 4kTRBVR

25°C 4kT = 1.65 × 10–20 W/Hz VR = 1.65 × 10–20RB

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = RTO =

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

:

VR =

k = (1.38 × 10–23 J/K)

T =

R = (Ohms)

B = (Hz)

= 4kTRBVR

25°C 4kT = 1.65 × 10–20 W/Hz VR = 1.65 × 10–20RB

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = RTO =

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

:

VR =

k = (1.38 × 10–23 J/K)

T =

R = (Ohms)

B = (Hz)

= 4kTRBVR

25°C 4kT = 1.65 × 10–20 W/Hz VR = 1.65 × 10–20RB

CLOSED-LOOP BW

= fCL

B

A

VN, R1R1

R3

4kTR3

4kTR1

VN, R3IN+

IN–

VN

4kTR2

VN, R2R2

NOISE GAIN =

GAIN FROM“A” TO OUTPUT

=

NG = 1 +R2

R1

VOUT

GAIN FROM“B” TO OUTPUT

= –R2

R1

RTI NOISE = BW ×

VN2 + 4kTR3 + 4kTR1

R2

R1 + R2

2

+ IN+2 R32 + IN–

2 R1 × R2R1 + R2

2

+ 4kTR2R1

R1 + R2

2

RTO NOISE = NG × RTI NOISERTI = RTO =

BW = 1.57 fCL

GAIN(dB)

6dB/OCTAVEROLL-OFF

LOOPGAIN

OPEN-LOOP GAIN

CLOSED-LOOP GAIN

NOISEGAIN

CLOSED-LOOP BANDWITH

LOG FREQUENCY

RESISTANCE (�)

10,000

1000

10

1

010 1k 100k 10M100 10k 1M 100M

100en at 25°C

nV

Hz

:

VR =

k = (1.38 × 10–23 J/K)

T =

R = (Ohms)

B = (Hz)

= 4kTRBVR

25°C 4kT = 1.65 × 10–20 W/Hz VR = 1.65 × 10–20RB

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

√P

(dB) ( )

db = 10 Log = 20 Log

= 20 Log (Gain)

POUT

PIN

IOUT

IIN

VOUT

VIN

db = 10 Log = 20 Log

= 20 Log (Gain)

PIN

POUT

IINIOUT

VIN

VOUT

( )

RMS = = VRMS = 0.707 VPEAK VAVE. = 0.637 VPEAK VPEAK = 1.414 VEFF. VEFF. = 1.11 VAVE. VPEAK = 1.57 VAVE. VAVE. = 0.9 VEFF.

( )

RTOTAL = R1 + R2 + R3 + …

= = =NP

NS

EP

ES

ISIP

ZP

ZS

1 + 1 + 1 + …R1 R2 R3

1RTOTAL =

R1+R2

R1 R2RTOTAL =

RNN

RRTOTAL =

VI

IR

√PR

IP

I2P P

V2

IV

R

VP

RV

RV2

I2R

B.W.SR.

(Tuned Circuit)

Q =

Q & Resonant Frequency Formulas

RXL Figure of Merit

of a CoilQ =

SR = or Hz2π√LC

1

√LC

.159

L =4π2 SR

2 C

1C =

4π2 SR2 L

1

XC =

XL = 2π fL

2π fC

1

( )

Z = √R2 + XL2 (RL )

Z = √R2 + XC2 (RC )

Z = XL – XC (LC )

Z = √R2 + (XL – XC)2 (RLC )

Z = VA I

( )

Z = RXL (RL) Z =

VA √R2 + XL

2 ILINE

Z = RXC (RC) VA = VL = VC = VR √R2 + XC

2

Z = XL XC (LC) VA = ILINEZ XL – XC

Z = RX (RLC) √R2 + X2

P I

V R

www.analog.com/zh/amplifiers

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

©2011 Analog Devices, Inc. All rights reserved. P10040-7.5-6/11

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

LOAD

GND

VS

VREF1

VREF2

+IN

–IN

IS RS

VSUPPLY

GAIN FIXED VALUE AS SPECIFIED ON DATA SHEET

RS VSUPPLY

DEMOD

SIGNAL

FB

IN–

IN+

IN COM

VSIG

5V FS

HI

LO

VOUT5VFS

MOD

ISOLATE VSIG SIGNAL FROM VOUTVISO UP TO 3500V

VOUT = VIN

PWRA

PRAO VGAI

VNEG VPOS VCOM GPOS GNEG

PrA

GAIN CONTROLINTERFACE

ATTENUATOR

BIAS

RFBH

RFBL

VINVOUTVIN

GAIN (dB) = 20log RFBH + 1 RFBL

+ 50dB GPOS – GNEG + 16.5dB V

1 10000dB 60dB VGAIN

LOAD

GND

VS

VREF1

VREF2

+IN

–IN

IS RS

VSUPPLY

GAIN FIXED VALUE AS SPECIFIED ON DATA SHEET

RS VSUPPLY

DEMOD

SIGNAL

FB

IN–

IN+

IN COM

VSIG

5V FS

HI

LO

VOUT5VFS

MOD

ISOLATE VSIG SIGNAL FROM VOUTVISO UP TO 3500V

VOUT = VIN

PWRA

PRAO VGAI

VNEG VPOS VCOM GPOS GNEG

PrA

GAIN CONTROLINTERFACE

ATTENUATOR

BIAS

RFBH

RFBL

VINVOUTVIN

GAIN (dB) = 20log RFBH + 1 RFBL

+ 50dB GPOS – GNEG + 16.5dB V

1 10000dB 60dB VGAIN

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

VOUT = VIN

VOUTVIN

VIN

RG RF

VOUT

VA

VBR1

R1

R2

VOUT

R2

VCM

ADC

RF

RF

RG

RG

VOUT

VOUTdiff = RF VIN

RG

VOUT

VOCM

–VIN

+VIN

VREF

OUT

10k�

10k�

24.7k�

10k�

10k�

RGVCM

VOUT = 1 + 2 × 24.7k� VIN + VREF RG

VIN

VOUT

R1

C

RF

t = RC = RFC

VOUT = VIN

–RF × 1

R1 RFCS + 1

CIN

RIN

VOUTVIN

VIN

RF

VOUT = VIN

–RF × RINCS

RIN RINCS + 1

VA

VC

VBVOUT

R1

R2

R3

RF

VN

RN

VOUTRG

R1'

R1

R2'

R2

R3'+

+

+

VOUT = VSIG 1 +2R1RG

R3R2

IF R2 = R3, G = 1 +2R1RG

~~

~~

~~

VCM

+

+

VSIG2

VSIG2

A1

A2

A3

×

LOAD

GND

VS

VREF1

VREF2

+IN

–IN

IS RS

VSUPPLY

GAIN FIXED VALUE AS SPECIFIED ON DATA SHEET

RS VSUPPLY

DEMOD

SIGNAL

FB

IN–

IN+

IN COM

VSIG

5V FS

HI

LO

VOUT5VFS

MOD

ISOLATE VSIG SIGNAL FROM VOUTVISO UP TO 3500V

VOUT = VIN

PWRA

PRAO VGAI

VNEG VPOS VCOM GPOS GNEG

PrA

GAIN CONTROLINTERFACE

ATTENUATOR

BIAS

RFBH

RFBL

VINVOUTVIN

GAIN (dB) = 20log RFBH + 1 RFBL

+ 50dB GPOS – GNEG + 16.5dB V

1 10000dB 60dB VGAIN

LOAD

GND

VS

VREF1

VREF2

+IN

–IN

IS RS

VSUPPLY

GAIN FIXED VALUE AS SPECIFIED ON DATA SHEET

RS VSUPPLY

DEMOD

SIGNAL

FB

IN–

IN+

IN COM

VSIG

5V FS

HI

LO

VOUT5VFS

MOD

ISOLATE VSIG SIGNAL FROM VOUTVISO UP TO 3500V

VOUT = VIN

PWRA

PRAO VGAI

VNEG VPOS VCOM GPOS GNEG

PrA

GAIN CONTROLINTERFACE

ATTENUATOR

BIAS

RFBH

RFBL

VINVOUTVIN

GAIN (dB) = 20log RFBH + 1 RFBL

+ 50dB GPOS – GNEG + 16.5dB V

1 10000dB 60dB VGAIN

LOAD

GND

VS

VREF1

VREF2

+IN

–IN

IS RS

VSUPPLY

GAIN FIXED VALUE AS SPECIFIED ON DATA SHEET

RS VSUPPLY

DEMOD

SIGNAL

FB

IN–

IN+

IN COM

VSIG

5V FS

HI

LO

VOUT5VFS

MOD

ISOLATE VSIG SIGNAL FROM VOUTVISO UP TO 3500V

VOUT = VIN

PWRA

PRAO VGAI

VNEG VPOS VCOM GPOS GNEG

PrA

GAIN CONTROLINTERFACE

ATTENUATOR

BIAS

RFBH

RFBL

VINVOUTVIN

GAIN (dB) = 20log RFBH + 1 RFBL

+ 50dB GPOS – GNEG + 16.5dB V

1 10000dB 60dB VGAIN

1%精度的电阻阻值范围为10.0到1.00M(另也有1.10 M、1.20 M、1.30 M、1.50 M、1.60 M、1.80 M、2.00 M和2.20 M)。

下表列出了最常用容差(1%)的标准基本电阻值,以及可用的典型阻值范围。要确定基本值以外的其它电阻值,请将其乘以10、100、1000或 10,000。

常用1%电阻值

10.0 10.2 10.5 10.7 11.0 11.3 11.5 11.8 12.1 12.4 12.7 13.013.3 13.7 14.0 14.3 14.7 15.0 15.4 15.8 16.2 16.5 16.9 17.417.8 18.2 18.7 19.1 19.6 20.0 20.5 21.0 21.5 22.1 22.6 23.223.7 24.3 24.9 25.5 26.1 26.7 27.4 29.0 28.7 29.4 30.1 30.931.6 32.4 33.2 34.0 34.8 35.7 36.5 37.4 38.3 39.2 40.2 41.242.2 43.2 44.2 45.3 46.4 47.5 48.7 49.9 51.1 52.3 53.6 54.956.2 57.6 59.0 60.4 61.9 63.4 64.9 66.5 68.1 69.8 71.5 73.275.0 76.8 78.7 80.6 82.5 84.5 86.6 88.7 90.9 93.1 95.3 97.6