figure s1 (a) tem-eds of nanoleaf in microsisal · table s1 zr, ti k edge exafs coordination...

10
1 Figure S1 (a) TEM-EDS of nanoleaf in microsisal. (b) Electron energy-loss spetroscopy (EELS) of nanoleaf. (a) Electronic Supplementary Material (ESI) for CrystEngComm This journal is © The Royal Society of Chemistry 2012

Upload: others

Post on 07-Jun-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

1

Figure S1 (a) TEM-EDS of nanoleaf in microsisal.

(b) Electron energy-loss spetroscopy (EELS) of nanoleaf.

(a)

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 2: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

2

(b)

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 3: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

3

Figure S2 Fourier transforms and fitting of Zr K-edge EXAFS in R space (experiment data: red open circle; fitting data: black solid line).

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 4: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

4

Figure S3 Fourier transforms and fitting of Ti K-edge EXAFS in R space (experiment data: red open circle; fitting data: black solid line).

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 5: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

5

Figure S4 Cross-sectional view of the Na2(Ti0.8Zr0.2)4O9

microsisal attached to the BMG substrate.

ttoopp

cceennttrraall

bboottttoomm

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 6: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

6

Figure S5 The ferroelectric hysteresis loop for the Na2(Ti0.8Zr0.2)4O9

microsisal.

-120 -80 -40 0 40 80 120-150

-100

-50

0

50

100

150

P (µ

C/cm

2 )

E( kV/cm)

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 7: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

7

Figure S6 Relative permittivity versus temperature plots at 100 kHz for the Na2(Ti0.8Zr0.2)4O9

microsisal.

0 200 400 600 800 1000

0

50

100

150

200

ε/ε0

Temperature (°C)

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 8: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

8

Table S1 Zr, Ti K edge EXAFS coordination parameters of Na2(Ti0.75Zr0.25)4O9

nanoleafs

Shell N R(Å) σ2 (10-3 Å 2 ΔE) 0 (eV)

Nanoleaf-Zr Zr-O 5.8±1.1 2.12±0.02 7.9±1.8 -4.5±1.3

Zr-Ti 2.6±0.6 3.26±0.02 6.7±1.2 -4.6±0.8

Shell N R(Å) σ2 (10-3 Å 2 ΔE) 0 (eV)

Nanoleaf-Ti Ti-O 4.2±0.7 1.95±0.01 11.9±0.1 9.9±0.7

Ti-Ti 4.6±0.4 3.07±0.01 14.9±1.1 1.8±1.2

Ti-Zr 1.1±0.1 3.23±0.02 17.4±1.0 6.9±3.1

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 9: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

9

Table S2 The ICP results for water solution (10-5

Element

M) at different duration times.

1h 4h 8h 15h

Be 8.145 22.053 53.274 180.808

Zr 7.122 15.95 22.024 21.344

Ti 1.074 0.357 0.677 0.094

Ni none none none none

Cu none none none none

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012

Page 10: Figure S1 (a) TEM-EDS of nanoleaf in microsisal · Table S1 Zr, Ti K edge EXAFS coordination parameters of Na. 2 (Ti. 0.75. Zr. 0.25) 4. O. 9. nanoleafs Shell N R(Å) σ. 2 (10-3

10

Table S3 The EDS results at different sites along the cross-section of the microsisal attached BMG sample. Top, central and bottom correspond to the microsisal, transition layer and BMG substrate, respectly, in Fig. S4.

Element Top / at% Central / at% Bottom / at%

OK 64.99 70.08

NaK 15.79 14.88

ZrL 04.21 0.20 33.70

TiK 15.02 6.79 51.13

NiK 1.92 03.36

CuK 6.13 11.81

Electronic Supplementary Material (ESI) for CrystEngCommThis journal is © The Royal Society of Chemistry 2012