fig_mpe_1

Upload: misdi-habibi

Post on 15-Feb-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Fig_MPE_1

    1/28

    Fig. 1.1

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.1

    1. Dispersity of particulate systems,1.1 About rocks, gravel, lumps, nuggets, corn, particles, nanoparticles and

    colloids1.2 Particle characterisation - Granulometry,1.3 Particle size distributions,1.4 Physical particle properties

  • 7/23/2019 Fig_MPE_1

    2/28

    Fig. 1.2

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.2

    Size Scale of Polydisperse (Material) Particle Systems

    10-10

    10-9

    10-8

    10-7

    10-

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    1o

    A 1 nm 1 m 1 mm 1 cm 1 m

    wave length of visible light:

    visual ability of human eye

    X-rays and electron interferences

    ultra-microscope light microscope

    electron microscope

    capacitive und inductive sensors

    dispersity molecular-disperse colloid-disperse

    high-disperse,

    ultra-fine

    fine-disperse coarse-disperse

    pore dispersity microporous mesoporous macroporous

    dispersedelements

    molecules makromolecules,

    colloids

    ultra-fines fines medium grain coarse

    one-dimensional surface coatings, liquid films, membranes

    two-dimensional chains of macromolecules, needles, fibres, threads

  • 7/23/2019 Fig_MPE_1

    3/28

    Fig. 1.3

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.3

    Blatt 2

    Mixtures of Polydisperse (Material) Particle Systems

    10-10

    10-9

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    1

    disper-

    sant

    disperse

    phase 1o

    A 1 nm 1 m 1 mm 1 cm 1 m

    gas gas gas mixture

    liquid aerosol, fog

    solid aerosol, smoke

    transition l-g foam

    liquid gas solution, lyosol,

    hydrosol

    bubble system

    liquid micro-emulsion emulsion

    solid suspension

    solid gas xerogel, porous membrane rigid-foam insulation

    liquid gel liquid filled, porous solid material

    solid mixed crystal, solid solution, s-s alloymonodisperse = uniform-sized elements

  • 7/23/2019 Fig_MPE_1

    4/28

    Fig. 1.4

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.4

    1 10 100 1000 nm

    10

    10

    m

    Quantum effects

    Strongly developed

    surface effects

    Polymers

    Ceramic powders

    Tobacco smoke

    Nanoparticles for

    life sciences

    Bioavailability

    Proteins

    Virus, DNS

    Atmospheric

    aerosols

    Metal powders

    0,001 0,01 0,1 1 m

    Size Scale and Properties of Nanoparticles

  • 7/23/2019 Fig_MPE_1

    5/28

    Fig. 1.5

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.5

    Expression of theParticle Size

    characte-

    ristic size

    Eq./sketch measuring method,

    quantity r = 0...3

    breadth: b

    length: lthickness: t 2/1

    3/1

    6

    lt2bt2lb2,lb,

    b/1l/1

    3

    ,t

    b,

    3

    tlb,

    2

    1b

    +++

    +++

    (1) equivalent diameterd, for b l t(2) equivalent lengthl, for rodsl >> b t(3) equivalent area lb , for chips, plates

    b l >> t(4) equivalent mass tlbs , for extreme

    shaped clusters:

    r = 0 number basis

    r = 1 lengthr = 2 area

    r = 3 volume basis

    image analysis d0

    geometric anal. d0

    geometric anal. d0

    mass balancing d3

    Feret

    diameter

    image analysis,

    number basis d0

    Martin

    diameter 21 AAA += image analysis,

    number basis d0

    sieve

    diameter( ) 2121 aaoraa

    2

    1+ sieving, mass or

    volume basis d3

    volume V

    equivalent

    diameter

    equivalent volume diameter3 /V6

    Coulter counter

    electrical method,

    number basis d0

    area A

    equivalent

    diameter

    equivalent projection area

    diameter /A4

    light extinction,

    number basis d0

    surface area

    ASequiv.diameter

    equivalent surface area diameter /AS

    specific surface diameter SA/V

    light extinction,

    number basis d0

    physical

    feature

    equivalent

    diameter

    Stokes diameter

    ( ) a18v

    dfs

    sSt

    =

    gravitational, centri-

    fugal sedimentation

    and impactor, mass

    basisd3

    aerodynamic diametera

    18vd sa

    =

    sedimentation, mass

    or volume basis d3

    equivalentlight-scattering

    diameter

    low angle laser light-scattering method,

    number basis d0

    b

    t

    a1 a2

    vs

  • 7/23/2019 Fig_MPE_1

    6/28

    Fig. 1.6

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.6

    Characterisation of particle size distributions

    1. Particle size characteristics by 2. Partic le size distribut ion funct ion image analysis (cumulative distr ibution curve)

    3. Frequency dis tribution of particle size (distribution density curve)

    5. Particle size distribution function Q3(d) and frequency dist ribution of particle size q3(d) of the above example 4.

    4. Example of measured particle size distribution

    a) b)

    dF FERET chord lengthdMMARTIN chord lengthdS maximum chord length

    particle sizefractiond i-1... d iin mm

    mass

    in kg

    massfraction

    Q3(d i)-Q3(d i-1)in %

    cumulativefraction

    Q3(d) in%

    - 0.16 0.16 ... 0.63

    0.63 ... 1.25 1.25 ... 2.5 2.5 ... 5.0 5.0 ... 6.3 6.3 ... 1010 ... 1616 ... 20 + 20

    0.1800.648

    0.9191.9203.0211.0841.7480.7610.2320.054

    1.7 6.1

    8.718.128.610.316.6 7.2 2.2 0.5

    1.7 7.8

    16.5 34.6 63.2 73.5 90.1 97.3 99.5100.0

    10.567 100.0

    dire

    ctionofmeasurement

    dFdMdS

    0.20

    0.15

    0.1

    0.05

    00 4 8 12 16 20

    particle size d in mm

    dm,i=d i-1+ d i 2

    qr(d) Qr(d i) - Qr(d i-1) di- d i-1

    q3

    (d)inmm-1

    1

    0,5

    0dmin d1 d2 dmax

    d

    Qr(d)Qr(d2)

    Qr(d1)

    Qr(d)

    d

    qr(d)

    du d i-1 d i di+1 d0d

    qr(d) =dQ r(d)d(d) Mode dh

    0 4 8 12 16 20

    Particle size d in mm

    100

    80

    60

    40

    20

    0

    Q3

    (d)in%

    Qr(d*

  • 7/23/2019 Fig_MPE_1

    7/28

    Fig. 1.7

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.7

    Normal Distribution (GAUSSIAN Distribution):

    Four - Parameter Log - Normal Distribution:

    WEIBULL Distribution:

    0 5 10 15 x

    qr(x)

    0.3

    0.2

    0.1

    ln x50= 1, ln= 1

    ln x50= 3, ln= 3

    ln x50= 3, ln= 1

    q r(x)

    2.0

    1.0

    n = 0.5 n = 5.5

    n = 3

    n = 2

    n = 1

    for xmin= 0 and x* = x63= 1

    0 1 2 x

    ( )

    ( )

    ( )

    ( )2

    xx4xxu

    with

    dt2

    texp

    2

    1xQ

    :normalizes

    dtt

    2

    1exp

    2

    1xQ

    x

    2

    1exp

    2

    1xq

    168450

    u 2

    r

    x 2

    r

    2

    r

    =

    =

    =

    =

    =

    ( )

    ( )

    ( )

    =

    =

    =

    =

    =

    16

    84ln

    ln

    50

    maxminmax

    max

    min

    x

    0

    2

    ln

    50

    ln

    r

    2

    ln

    50

    ln

    r

    x

    xln

    2

    19

    xlnxlnu

    dddforddd

    ddx

    dtxlntln21exp

    t1

    21xQ

    xlnxln

    2

    1exp

    2x

    1xq

    ( )

    ( )

    =

    =

    n

    min

    minr

    n

    min

    min

    1n

    min

    min

    min

    r

    xx

    xxexp1xQ

    xx

    xxexp

    xx

    xx

    xx

    nxq

    (1)

    (2)

    (3)

    (5)

    (6)

    (7)

    (8)

    (10)

    (11)

    (12)

    (13)

    for xmin= 0 and n = 1 follows the

    Exponential Distribution if =

    Q(x) = 1 - exp(-x)

    1x63

    Typical frequency distributions and cumulative probability distributions

    2<

    1

    1

    q r(x)

    0 x16 xh = x50 x84 x

    Qr(x50) = 0,5

    Mode xh = x50 Median

  • 7/23/2019 Fig_MPE_1

    8/28

    Fig. 1.8

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.8

    6. Three - parameter logarithmic normal distribution (L) with upper limit doand transformation (T)

    7. Comparison of particle size distribution functions in a full -logarithmic , RRSB and log - normal diagram (net)

    1 5 10 5 10 5

    99.90

    99.50

    97

    90

    50

    105

    1

    0.20

    0.02

    Qr(

    d)

    L

    d50 do

    16 50

    d or

    T

    3 - parameterdistribution

    transformeddistribution

    8. RRSB - dist ribution in a doub le - logarithmic di agram

    AS,V,K d63in m3/ m3

    n

    40

    60

    80 100 120 150 200 300 500

    1000 2000 500010000

    10-3 10-2 10-1 100 101 102

    99.9

    999590

    63.250

    10

    1

    0.5

    particle size d in mm

    Pol

    cumulativedistribution

    Q3

    (d)in%

    xx

    x

    x

    x

    x

    x

    x

    x

    0

    0.1

    0.3

    0.2

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.01.11.21.31.41.61.82.02.54.0 3.03.5

    10 15 20 25 30987.57.0

    1 Log-Normal distribution2 RRSB-distribution3 GGS-distribution

    particle size d in m

    100 101 102 103 104

    99.9

    6040

    20

    6

    0.5

    10

    cumulativedistributionQ(d)in%

    50

    5

    full-logarithmicnet

    RRSB-net

    2

    4

    10

    11

    0.5

    5

    10

    99.999.5

    989690

    80

    60

    40

    20

    1 2 3 1 2 3 1 2 3

    full-logarith-mic -net

    RRSB-net

    log - normalnet

    99,9

    95

    10-1 100 101 102 103

    10-2 10-1 100 101 102

    Graphical characterisation of selectedparticle size distributions

  • 7/23/2019 Fig_MPE_1

    9/28

    Fig. 1.9

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.9

    Statistical Moments of Particle Size Distributions

    Complete k-th Momentof Particle Size Distribution Qr(d*

  • 7/23/2019 Fig_MPE_1

    10/28

    Fig. 1.10

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.10

    Cumulative Particle Size Distribution, Mass and Number Basis

    mass basis:

    =

    d

    d

    n

    1i

    i,333

    U

    )d(d)d(q)d(Q

    number basis:

    =

    =

    =

    N

    1i3

    i,m

    i,3

    n

    1i3

    i,m

    i,3

    d

    d

    3

    3

    d

    d

    3

    3

    0

    d

    d

    )d(d)d(qd

    )d(d)d(qd

    )d(Qo

    u

    u

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Vert

    eilungsfunktion

    Q0(d)

    in

    %

    0. 5 1 5 10 50 100 500 1000

    Partikelgre in m

    Anzahlverteilung

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    Verteilungsfunktion

    Q3(d)

    in

    %

    0.5 1 5 10 50 100 500 1000

    Partikelgre in m

    Masseverteilung

  • 7/23/2019 Fig_MPE_1

    11/28

    Fig. 1.11

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.11

    Multi-modal Frequency Distribution

    0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    1.8

    particle size d in mm

    frequen

    cydistributionq*(logd)

    subcollective 3

    subcollective 2

    subcollective 1

    0.1 100.010.01.0

    total frequency distribution:

    [ ]q d t q d d d

    tot SC k k o k k kk

    N

    3 3 501, , , , , ln,

    ( , ) , , ,= =

    truncated log-normal distribution:

    q dd d

    d d

    uk

    o k

    k o k

    3

    2

    2 2,

    ,

    ln, ,

    ( ) exp=

    with

    ud d

    d d

    d d

    d dk

    o k

    o k

    o k k

    o k k

    =

    1 50

    50 ln,

    ,

    ,

    , ,

    , ,

    ln ln

    normalisation:

    ( )( )

    ( )q

    dQ d

    d d

    Q d

    d d

    d

    tot

    i

    i

    i

    33 3 3

    1

    ,* ,

    log

    log

    log

    loglog

    = =

    SC,k(t) mass fraction of the k-th

    subcollective (subpopulation)

    q3,k frequency distribution

    of the k-th subcollective

    do,k upper limit of the particle size

    of the k-th subcollective

    d50,k median particle size of the

    distribution function

    ln,k standard deviation of the

    k-th subcollective

    N total number of subcollectives

    [ ] )t,d(Q)d(d2

    uexp

    2

    1,d,d,dQlim tot,3

    u 2

    1k

    kln,k,50k,ok,3k,SCN

    =

    =

    =

  • 7/23/2019 Fig_MPE_1

    12/28

    Fig. 1.12

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.12

    Mass Fraction Related to the Number of Stressing Events

    discrete mass balance model:

    1,sc1,n

    1,scS

    n

    d=

    2,sc2,3,n1,sc1,3,n

    3,sc

    SSn

    d

    +=

    1

    N

    1kk,sc ==

    n number of stressing events

    Sk,j kinetic constants for mass transfer from j to k subcollective

    0 12 3

    43

    2

    1

    0,0

    0,20,4

    0,6

    0,8

    1,0

    3

    number of stressing events n

    mass fraction sc,k

    k-th subcollective

    measured

    model

  • 7/23/2019 Fig_MPE_1

    13/28

    Fig. 1.13

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.13

    Application of Image Analysis to Characterise Particle Size1. Image of Microscope by CCD-camera

    2. Definition of Threshold Value

    3. Conversion of Grey Tone Image in a

    Binary Image (Binarisation)

    4. Classification of Particles

    dF,mi

    dF,ma

    Definition of grey tone limits

    for particle detection in a 8-bit

    grey tone image

    Binary image means: whichpixel of original image is shown

    b 0 black or b 255 white

    dequ

    min. and maximum Feret diameter equivalent circle diameter

    /Ad 2 ,

    shape factor2

    4U

    AU

    U= circumference, A= projectionarea

    Presentation of Particle Size Fractions

    in a ColourCode

    direct-light

    transmitted

    light

    pixelnu

    mber

    grey tone distribution0 255(black) (wite)

    particle

    direct-

    lighttrans-

    mitted

    light

  • 7/23/2019 Fig_MPE_1

    14/28

    Fig. 1.14

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.14

    Principle of Laser Light Diffraction

    large diffraction for particle size d wavelength, small diffraction for d >>

    light diffraction pattern

    radial light intensitydistribution at detector

    =max

    min

    d

    d

    i0tottot )d(d)d,r(I)d(qNI

    particle size distribution

    laser

    lense system

    sample cellFourier

    lense

    detector

    r

    computer

    f

    focal distance

    principle of laser light diffractometer

    r

    Fourier lensedetector

    rinzi le of Fourier lense

    Intensity I

    r

    100

    50

    0

    particle size

    particle size distribution

    cumulativedistributionQ

    3in%

    frequencydistributionq3in

    1/mm

  • 7/23/2019 Fig_MPE_1

    15/28

    Fig. 1.15

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.15

    In-Line Particle Size Analysis (Sympatec)

    isokinetic sampling device for a split particle stream:

    rotating sector moving pipe

    D

    D

    d

    particle loaded air stream

    drive for rotating

    sampling device

    dispersion air

    laser beam

    detector with

    sensor array

    nozzle and

    sample cell

    low-angle laserlight-scattering

    instrument

    (LALLS)

    d = 0.5 1750

    m

    inductive sensor

    on-line sampling

    feed opening

  • 7/23/2019 Fig_MPE_1

    16/28

    Fig. 1.16

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.16

    In-Line Particle Size Analysis (Malvern)

    monitoring of size ranges: 0.5 - 200 m

    1.0 - 400 m

    2.25 - 850 m

    Injektion nozzle

    laser

    pressurized air

    particle

    stream

    isokinetic sampling

    particle

    feed back

    detector

  • 7/23/2019 Fig_MPE_1

    17/28

    Fig. 1.17

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.17

    Principle of Photon Correlation Spectrometer (PCS)

    in suspensions at rest: light scattering at dispersed particles, that oscillate by Brownianmolecular motion

    Determination of intensity time function of scattered light (reasons: interferences,change of particle number concentration within the charac-teristic volume element)

    and calculation of autocorrelation function:

    Autocorrelation function (Dp particle diffusion coefficient, K scattered light vector,- retardation time)

    =+=

    2p KD2

    T

    TT

    I,I edt)t(I)t(Ilim)(R withp

    B

    D3

    Tkd

    =

    EINSTEIN equation (d particle size, kB BOLTZMANN constant, T absolutetemperature, - dynamic viscosity)

    autocor

    relationfunctionR

    I,I(

    )

    retardation time

    in

    tensityofscatteredlight

    time t

    fine particle

    coarse particle

    Laser Optik Probenbehlter

    Photomultiplier Korrelator

    Optische Einheit

  • 7/23/2019 Fig_MPE_1

    18/28

    Fig. 1.18

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.18

    Laser

    Detectors

    backscatter

    large angle

    forward angle

    Fourier lens Sample chamber

    Laser

    Detectors

    backscatter

    large angle

    forward angle

    Fourier lens Sample chamber

    Laser

    Detectors

    backscatter

    large angle

    forward angle

    Fourier lens Sample chamber

    Laser

    Detectors

    backscatter

    large angle

    forward angle

    Fourier lens Sample chamber

    1. Physical Principle

    Laser diffraction technique is based on the phenominon that particles scatter lightin all directions (backscattering and diffraction) with an intensity that is dependent

    on particle size

    - the angle of the deflected laser beam is inverse proportional to the particle size

    2. Measurement setup

    Using two laser beams with different wavelength (red and blue light) additional

    information to particles smaller 0,2 m is obtained

    red light setup

    - scattering light hits only forward angle detectors

    blue light setup

    - blue light (wavelength 466 nm) leads to a scattering signal for small particles

    (isotropic scattering pattern) which can be detected from large angle- and

    backscatter- detectors

    page 1

  • 7/23/2019 Fig_MPE_1

    19/28

    Fig. 1.19

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.19

  • 7/23/2019 Fig_MPE_1

    20/28

    Fig. 1.20

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.20

    Principle of Acoustic Attenuation Spectroscopy

    during acoustic wave penetration, amplitude and intensity attenuation (damping) ofultrasonic frequency spectrum (1 to 100 MHz) in high concentrated particle

    suspensions with sizes d = 10 nm 1 mm

    detection of attenuation (damping) spectrum

    correlation between attenuation characteristics

    and particle size distribution (K = 2/

    suspension wave number, k fluid wave number,

    sparticle volume concentration, i = 1...n

    particle size fraction, riparticle radius, Ami

    reflected compression wave coefficient, ARereal

    contribution, m number of acoustic dispersion

    coefficient):

    ( ) miRe0m

    n

    1i3

    i

    3

    i,s

    2

    AA1m2rk

    i231

    kK +

    =

    ==

    Microwave

    and

    DSP module

    Transducer

    Positioning Table

    Control

    module

    Discharge

    Stopper motor

    and digital

    encoder

    Level sensor

    Suspension

    HF Receiver

    LF Receiver

    HF Transmitter

    LF Transmitter

    Stirrer

    entrainmentx >scattering

    RF generator RF detector

    measuring zone

    100

    50

    0

    particle size

    particle size distribution

    cumulativedistributionQ3in%

    frequencydistributionq3in1/mm

    damping

    fre uenc

  • 7/23/2019 Fig_MPE_1

    21/28

    Fig. 1.21

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.21

    Determination of Particle Size Distribution and Zeta-Potential using

    Electroacoustic Effect - Electrokinetic Sonic Amplitude (ESA)

    1. Physical Principle

    Alternating electric field (frequency range 1 to 20 MHz) generates particle oscillations

    at velocities that depend on their size and zeta potential (O' Brien- Theory)

    2. Measurement Setup

    3. Data Analysis

    adjusting q(d)and zeta-potential from

    the measured mobility spectrum

    E

    p

    s ZAESA

    )(

    A(

    ) calibration function

    s volume fraction of particles

    suspension density difference

    p particle density

    Z acoustic impedance (complex resistance)

    )()(,, dddqd sEm

    m measured dynamic mobility

    zeta-potentiald particle diameter

    s volume fraction of particles

    q(d) particle size frequency distribution

    acoustic signal (ESA) as response

    p

    rEE

    v0

    electrophoretic mobility (E)

    suspension

    ESA-Signal

    Processing

    Particle motion in an electric field

    Time

    E;v

    applied e lectric field particle velocity

    0 permittivity of vacuumr permittivity

    v particle velocity

    E electric field strength

    viscosity

    frequency

    phasela

    g

    Mobility Spectrum

    mdyn. mobility

    phaselag

  • 7/23/2019 Fig_MPE_1

    22/28

    Fig. 1.22

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.22

    Particle Density Measurement by HELIUM-Pycnometer

    Determination of porefree particle volume by gas pressure measurement in a double-chamber system by HELIUM gas (migration access of internal pores dPore> 0,1 nm)

    Pressure measurement in probe chamber: (VCellVProbe) p1

    Pressure test in probe and expansion chamber: (VCellVProbe) + VExp p2

    Calculation of probe volume and solid density, pre-measurement of particle mass msby balance

    1p/p

    VVV

    21

    Exp

    CellobePr =

    and obePr

    ss

    V

    m=

    pressureprobe chamber

    filter

    Helium

    feed valve

    overpressurevalve

    prep./ test valve

    discharge valve

    VProbe

    VExp

    5

    VExp

    35

    VExp

    150

    VCell 5,

    VCell 35,VCell 150

    P

  • 7/23/2019 Fig_MPE_1

    23/28

    Fig. 1.23

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.23

    Measurement of Particle Surface by Gas Adsorption according to

    BRUNAUER, EMMET and TELLER Physical adsorption of gas molecules at particle surfaces in multi-layers due to VAN

    DER WAALS interaction

    BET- line, valid for: 0.05 < p/p0< 0.3

    Adsorpt mono-layer coverage:

    ba

    1V mono,g +

    =

    BET- constant:

    aba

    TRHHexpC multimBET +=

    =

    Hm free molar adsorption enthalpy ofmono-layer

    Hmulti molar bonding enthalpy of nmulti-layers Hcondensation

    Particle Surface:

    l,mmono,gAg,MS

    V/VNAA = AM,g cross-sectional area of adsorpt

    moleculeNA AVOGADRO-number

    Vm,l molar volume of condensed adsorpt

    ( ) 0BETmono,gBET

    BETmono,g0g

    0 p/pCV

    1C

    CV

    1

    p/p1V

    p/p

    +

    =

    gas supplyP

    PTdosingvalve

    probe chamber

    dewar vessel

    p0- test chamber

    liquid nitrogenN2 at T = 77 K

    p0= 101 kPa

    T

    vacuum

    standard vessel

    0 0.35 1

    ads

    orbedgasvolumeV

    g

    desorption

    adsorption

    BET range sorption isotherms

    relative partial pressure of gas p/p0

    adsorbedgas molecules(adsorpt)

    adsorptiv

    particle surface(adsorbens)

    ( )0g0

    p/p1V

    p/p

    0p/p

    BETmono,g CV

    1a

    =

    ( )

    BETmono,g

    BET

    CV

    1Cb

    =

    relative gas pressure

  • 7/23/2019 Fig_MPE_1

    24/28

    Fig. 1.24

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.24

    Regular Packing Structures

    porosity

    , coordination number k

    lattice type primitive basic face- face-centred space-centred

    centred

    z c

    b

    y

    x

    a

    cubic

    a = b = c

    = = = 90

    monodisperse

    sphere

    packing

    d = const.

    hexagonal

    a = b = c

    = = 90

    = 120

    sphere

    packing

    a0 0,1nm k = 6 k = 12 k = 8

    = 0,4764 = 0,3955

    k = 12

    = 0,2595

    a0

    d

    octahedron

    vacancy

    tetrahedron

    vacancy

  • 7/23/2019 Fig_MPE_1

    25/28

    Fig. 1.25

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.25

  • 7/23/2019 Fig_MPE_1

    26/28

    Fig. 1.26

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.26

    Stressing and Flow of Wet Particle Dispersions

    ad

    > 1 0 < < 0.2a

    dad

    = 0

    ss

    < 0.066 0.3

    S < 1

    i>30

    =duxdy

    y

    x

    ux

    dy

    uxdy

    vxux

    a

    a

    d

    d

    da

    a

    d

    d

    a

    a

    d

    d

    a

    vxdy

    contactcontactdeformation

  • 7/23/2019 Fig_MPE_1

    27/28

    Fig. 1.27

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering

    Fig_MPE_1 Mechanical Process Engineering - Particle Technology Disperse Systems Prof. Dr. J. Tomas 31.03.2014 Figure 1.27

    Sampling

  • 7/23/2019 Fig_MPE_1

    28/28

    Fig. 1.28

    Prof. Dr. J. Tomas, chair of Mechanical Process Engineering