fiesta bogota final report report.pdf · la contribución por neblina es relativamente baja en la...

124
ANALISIS CIENTIFICO DETALLADO DEL IMPACTO DEL CAMBIO DEL USO DEL SUELO EN EL SUMINISTRO DE RECURSOS HIDRICOS PARA LA CIUDAD DE BOGOTA D.C E IMPLICACIONES PARA EL DESARROLLO DE ESQUEMAS PES Policy brief Por Luis Leonardo Sáenz Cruz y Dr. Mark Mulligan Department of Geography, King’s College London 2007 El presente estudio usó el modelo FIESTA (http://www.ambiotek.com/fiesta ) e implementó dos componentes adicionales: un modelo de escurrimiento con un componente paramo y un componente para simular el llenado de embalses, buscando ayudar a mejorar el entendimiento acerca de los impactos producidos por el cambio de coberturas vegetales naturales e impactos de conservación a través de esquemas PES sobre los recursos hídricos en áreas aledañas a la capital de Colombia, Bogotá D.C. Los principales resultados indican que la contribución hídrica como resultado de la intercepción de neblina (la cual ocurre de manera mucho más eficiente en bosques que en otro tipo de coberturas vegetales) es estacionalmente importante para el mantenimiento de caudales que alimentan las represas localizadas en las zonas mas secas de la región (Represas del Sisga, Tomine, Chivor y Copa y el lago de Tota). Sin embargo, la continuada deforestación es probable que incremente los caudales en toda la zona aumentando la disponibilidad de volúmenes de agua superficiales para el suministro de agua potable y la generación de energía hidroeléctrica a pesar del descenso en la intercepción de neblina. Este fenómeno se explica teniendo en cuenta que los bosques evapotranspiran mas agua que otros usos del suelo. Por lo tanto, el incremento en los volúmenes de agua superficial a consecuencia de la deforestación (debido a la menor evapotranspiración) es mayor en

Upload: truonghanh

Post on 08-Nov-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

ANALISIS CIENTIFICO DETALLADO DEL IMPACTO DEL CAMBIO DEL

USO DEL SUELO EN EL SUMINISTRO DE RECURSOS HIDRICOS PARA

LA CIUDAD DE BOGOTA D.C E IMPLICACIONES PARA EL

DESARROLLO DE ESQUEMAS PES

Policy brief

Por

Luis Leonardo Sáenz Cruz y Dr. Mark Mulligan

Department of Geography, King’s College London

2007

El presente estudio usó el modelo FIESTA (http://www.ambiotek.com/fiesta) e

implementó dos componentes adicionales: un modelo de escurrimiento con un

componente paramo y un componente para simular el llenado de embalses, buscando

ayudar a mejorar el entendimiento acerca de los impactos producidos por el cambio

de coberturas vegetales naturales e impactos de conservación a través de esquemas

PES sobre los recursos hídricos en áreas aledañas a la capital de Colombia, Bogotá

D.C. Los principales resultados indican que la contribución hídrica como resultado de

la intercepción de neblina (la cual ocurre de manera mucho más eficiente en bosques

que en otro tipo de coberturas vegetales) es estacionalmente importante para el

mantenimiento de caudales que alimentan las represas localizadas en las zonas mas

secas de la región (Represas del Sisga, Tomine, Chivor y Copa y el lago de Tota).

Sin embargo, la continuada deforestación es probable que incremente los

caudales en toda la zona aumentando la disponibilidad de volúmenes de agua

superficiales para el suministro de agua potable y la generación de energía

hidroeléctrica a pesar del descenso en la intercepción de neblina. Este fenómeno se

explica teniendo en cuenta que los bosques evapotranspiran mas agua que otros usos

del suelo. Por lo tanto, el incremento en los volúmenes de agua superficial a

consecuencia de la deforestación (debido a la menor evapotranspiración) es mayor en

Page 2: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

la mayoría de los casos que las perdidas en recursos hídricos superficiales debido a la

disminución en la intercepción de neblina.

Por otro lado, la conversión de paramo a otros usos del suelo lleva a una perdida

significativa de la capacidad de almacenamiento de agua local. Teniendo en cuenta

que el paramo almacena agua durante periodos húmedos y la libera durante periodos

secos, la perdida de paramo podría traer como consecuencia periodos de escasez de

agua en estaciones secas. La implementación de esquemas PES en áreas de paramo

podría así potencialmente ayudar a mantener tales recursos hídricos, especialmente

aquellos que alimentan las principales represas para suministro de agua potable y

generación eléctrica en la región (Golillas y Guavio y la laguna Chingaza).

Palabras clave: FIESTA, Cloud Forest, Paramo, Chingaza Park, Sumapaz,

Bogotá, PES.

Supervisor Tesis: Dr. Mark Mulligan

Reader in Geography

Department of Geography, King’s College London

El presente trabajo fue desarrollado para suministrar una base científica mejorada para

progresar en el entendimiento del papel que podrían jugar los esquemas de pago por

servicios ambiéntales (PES) en el mantenimiento de recursos hídricos para el

abastecimiento de agua potable y la generación de energía hidroeléctrica

suministrados por bosques de niebla (TMCFs) y ecosistemas de paramo para la ciudad

de Bogotá D.C., capital de Colombia.

Page 3: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Contribución por intercepción de neblina e hidrología de

bosques de niebla en el área de influencia de Bogota D.C

“Bogotá región” e implicaciones para sus principales

represas

La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre

2500 y 2800msnm), encontrándose entre los 70 a los 80mm año-1 en promedio anual y

es aun menor en áreas de paramo (áreas por encima de 3200msnm), representando de

40 a 60mm año-1. Sin embargo, la intercepción de neblina es el doble de aquella

observada en la Sabana de Bogotá en áreas de bosque de niebla que rodean los

paramos de Chingaza y Sumapaz (150mm año-1) y en zonas de menor altitud (entre

2300 y 700msnm) hacia la cuenca del Magdalena al occidente y las pendientes mas

húmedas hacia el pie de monte llanero y la cuenca del Orinoco al oriente, donde las

áreas de mayor exposición a vientos predominantes y nubosidad con cobertura de

bosques de niebla muestran contribuciones hídricas por indecepción de neblina de

hasta 300mm año-1.

No obstante, la contribución por intercepción de neblina es importante en áreas

secas al norte de la Bogotá región (áreas al norte de la cuenca del río Bogotá, cuenca

del río Ubate-Suarez, cuenca de Chicamocha y los alrededores de las represas del

Sisga, Tomine, Chivor, Copa y el lago de Tota), donde asciende hasta un 40% del

balance hídrico y representa hasta un 10% de los caudales en los meses de Diciembre,

Enero y Febrero. Aunque estas proporciones están por lo general por debajo del 8%

del balance hídrico en la Sabana de Bogotá, áreas de paramo y las mucho mas

húmedas áreas bajas de la región hacia la cuenca del Orinoco, donde la proporción de

los caudales correspondiente a la intercepción de neblina se reduce marcadamente

(por debajo del 4%).

En general: Las contribuciones por intercepción de neblina son de mayor importancia en

áreas secas hacia el norte de la Bogotá región y en los bordes occidentales de la misma hacia

la cuenca del Magdalena, donde las represas del Sisga, Tomine, Chivor, Prado y Copa y el

Lago de Tota se benefician de importantes contribuciones hídricas especialmente en

estaciones secas.

Page 4: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Impactos de deforestación en la contribución por

intercepción de neblina e implicaciones sobre las principales

represas

La deforestación en la Bogotá región en el periodo 1977 – 2000 llevó a una perdida

hídrica potencial de hasta 150mm año-1 por reducciones en la intercepción de neblina,

la cual tuvo lugar especialmente en los bordes occidentales de la región hacia la

cuenca del río Magdalena (por debajo de los 2500msnm), donde se observó la mas

alta deforestación. Esto trajo consigo un descenso en los caudales de hasta cerca de

0.1m3 s-1, equivalente a perdidas anuales acumulados de alrededor de 3.15 Mm3 año-1

en los principales ríos.

Sin embargo, esta reducción fue mucho menos significativa (de 10 a

20mm año-1) en la Sabana de Bogotá (2500 – 2800msnm) y las áreas de paramo.

Menor deforestación observada en esta zona sobre dicho periodo, donde existía ya

muy poco bosque para convertir a otros usos del suelo podría explicar la baja

reducción en la intercepción de neblina en la Sabana de Bogotá. Adicionalmente, el

menor tamaño y sobre todo la baja capacidad estructural de interceptación de neblina

de la vegetación de paramo comparada con la de los bosques de niebla explica el

menor impacto sobre la intercepción de neblina cuando el paramo es convertido a

otros usos del suelo.

Por otro lado, las perdidas por evapotranspiración cayeron a lo largo de toda el

área entre 50 y 250mm año-1 debido a la deforestación. Por lo tanto, los balances

hídricos aumentaron en áreas deforestadas con la consecuente adición de agua por

escurrimiento de hasta 4m3 s-1 a los caudales superficiales en las zonas bajas (cerca de

700 msnm) en los ríos más caudalosos de la región (Guavio y Chivor) a pesar de las

pérdidas potenciales por disminución en la intercepción de neblina.

En el lugar de las represas Guavio y Chivor se observaron los incrementos mas

altos en caudales (de hasta 2.54m3 s-1) con efectos positivos potenciales sobre la

cantidad de agua almacenada para la generación hidroeléctrica pero al mismo tiempo

Page 5: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

efectos negativos sobre la seguridad de operación y el mantenimiento de la represa

(sedimentación y aumento de caudales pico). Sin embargo, la disminución en la

contribución por neblina a los caudales podría haber afectado la regulación de flujos

base en las represas del Sisga, Tomine, Chivor, Copa y el lago de Tota en estaciones

secas.

Perdida de paramo e implicaciones para las represas en la

región

Buscando mejorar el entendimiento sobre el impacto de la remoción de paramo en

áreas especificas de la región el presente estudio acopló al modelo FIESTA un

modelo de escurrimiento y flujo subsuperficial con un componente para simular la

retención y la liberación de agua del paramo. Los modelos fueron parametrizados para

la cuenca del Guavio en el Departamento de Cundinamarca debido a que esta cuenta

con una importante proporción de áreas de paramo pertenecientes al Parque Nacional

Natural de Chingaza y con dos de las mas importantes represas de la región, Guavio y

Golillas.

Un año de simulación hidrológica del fenómeno de precipitación – escorrentía

superficial y subsuperficial en la cuenca del Guavio indica que bajo condiciones de

muy baja evapotranspiración observadas en las áreas de paramo, la vegetación de

paramo, la cual cubre el suelo con una importante capa de biomasa (2.8kg m-2), juega

En general: La contribución por neblina se encuentra ya en sus niveles más bajos en la

sabana de Bogotá debido a que muchos de sus bosques de niebla han sido actualmente

convertidos a otros usos de suelo, pero no así en las pendientes inclinadas que rodean los

parques de Chingaza y Sumapaz y en algunas áreas de los bordes orientales y occidentales de

la Bogotá región (por debajo de los 2500msnm). La deforestación ha incrementado

potencialmente los caudales hacia la mayoría de las represas en la región. Sin embargo, un

aumento en la deforestación amenaza la regulación de flujos base estacionalmente

especialmente en las áreas mas secas de las cuencas de los ríos Bogotá, Ubate-Suarez y

Chicamocha, donde la contribución hídrica por intercepción de neblina corresponde a una

proporción importante de los balances hídricos.

Page 6: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

un rol esencial en el almacenamiento inicial de agua con una muy baja tasa de

liberación vertical y horizontal (cerca de 0.2mm hr-1), antes de que el agua se infiltre

en el perfil de suelo (infiltración vertical al suelo y flujo subsuperficial horizontal).

Los resultados de un año de simulación hidrológica en la cuenca del Guavio

indicaron que la perdida de paramo sobre el periodo 1977 – 2000 condujo a una

reducción ligera de los caudales en los lugares de las represas de Guavio y Golillas de

cerca de 0.17 y 0.0303m3 s-1 (0.24% y 0.35% de los caudales de los ríos Guavio y

Chuzque en el año 1977 respectivamente), lo cual representó la perdida de un

volumen de almacenamiento de cerca de 5.6 y 1 Mm3 para ambas represas al año

2000 respectivamente.

Mas investigación es necesaria para entender mejor el impacto de la remoción

de paramo sobre el fenómeno de escurrimiento en cuencas dominadas por vegetación

de paramo sobre escalas de tiempo mas largas (mas de un año de simulación

hidrológica).

Finalmente, a pesar de los beneficios potenciales de mantener la cantidad de la

oferta hídrica, la conservación de paramo es probablemente mas importante para

mitigar los procesos erosivos y de sedimentación que ocurren en todos pero

especialmente en los mas extremos eventos de precipitación, particularmente en las

pendientes mas inclinadas de los Andes orientales, y que junto con servicios

ambientales como el control de inundaciones son esenciales para la operación segura,

económica y eficiente de las represas en la región.

En general: Las condiciones climáticas y topográficas y los altos balances hídricos

comparados con aquellos observados en la Sabana de Bogotá hacen esenciales las áreas de

paramo para el suministro sostenible de recursos hídricos para la ciudad de Bogotá. La

importancia de la conservación del paramo esta intrínsicamente ligada a el mantenimiento

de la calidad del agua y la regulación hídrica. Mas investigación es necesaria para entender

mejor la generación del fenómeno de escurrimiento en cuencas de paramo con y sin

intervención humana.

Page 7: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Implicaciones para la implementación de esquemas PES

La deforestación ha llevado y llevará al aumento de los caudales de los ríos que

suplen las principales represas en la región, debido a la reducción en

evapotranspiración, y esto potencialmente ha generado y generará incrementos en la

cantidad de los recursos hídricos disponibles en las represas para el suministro de

agua potable y la generación hidroeléctrica. Aunque no así en áreas secas del norte y

el suroeste de la región, en los alrededores de las represas del Sisga, Chivor, Copa

Prado y el lago de Tota, donde la reducción en la contribución hídrica por pedida de

intercepción de neblina afecta los caudales de los ríos estacionalmente (periodos

secos). Esto ocurre similarmente en las cuencas con cobertura de paramo

correspondientes a las represas de Golillas, la Regadera y la Laguna de Chingaza,

donde la disminución en evapotranspiración es casi nula o incluso esta puede

incrementarse en algunos casos cuando el paramo es convertido a cultivos o pastos de

mayor evapotranspiración comparada con la de la vegetación de paramo.

Para los equipamientos y obras de infraestructura destinados al

aprovechamiento, manejo y control de recursos hídricos, los cuales han sido

construidos con base en diseños ingenieriles basados en registros históricos y sobre

los cuales existe una gran dependencia de comunidades humanas, todo cambio en los

regimenes de caudales, bien sea aumentos o reducciones, por fuera de los valores de

diseño representa un perjuicio y un aumento en el riesgo de operación. Por lo tanto, la

conservación de las coberturas naturales a través de la implementación de esquemas

PES garantiza el mantenimiento de dichos regimenes de caudal actual, lo cual es

soportado en la presente investigación.

En este contexto, los esquemas PES podrían muy seguramente mantener la

seguridad estructural de las obras de infraestructura hidráulica del acueducto de

Bogotá situadas en el Parque Nacional Natural de Chingaza, las cuales no enfrentarían

el peligro potencial del aumento en flujos pico sobre las especificaciones de diseño

como consecuencia de la continuación de los procesos de deforestación dentro del

parque. Sin embargo, el impacto económico de la falla estructural de las obras de

infraestructura hidráulica debido al incremento de flujos pico no se ha estimado aun.

Page 8: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Cuando se incorporo al modelo FIESTA un componente para simular el llenado

represas y ver el impacto de la remoción de paramo sobre las represas del Guavio y

Golillas, los resultados indicaron que la implementación de esquemas PES para

prevenir la perdida de paramo en el Parque Nacional Natural de Chingaza podría

potencialmente mantener hasta un 0.9% de la generación hidroeléctrica de la represa

del Guavio al año 2050 (representando potencialmente hasta cerca de 3.2 USD

millones año-1). De manera similar, la implementación de esquemas PES para la

conservación de áreas de paramo podría potencialmente mantener hasta un 3.8% la

contribución hídrica para la represa de Golillas al año 2050 (hasta cerca de 6.2 USD

millones año-1). Adicionalmente, la ampliación del área protegida de paramo en la

cuenca que nutre las represas del Guavio y Golillas ayudaría a mantener recursos

hídricos en estaciones secas que de otra manera se perderían si la perdida de paramo

continua a la misma tasa actual.

Los resultados de la protección del paramo son estimulantes toda vez que los

esfuerzos de conservación podrían potencialmente representar impactos económicos

positivos. Sin embargo, dichos resultados deben ahora ser validados y comparados

con información suministrada por organizaciones relevantes involucradas en el

suministro de agua potable, la generación de energía hidroeléctrica y la conservación

del medio ambiente, y entendidos en el marco del contexto económico del suministro

de dichos servicios en la región.

Finalmente, la conservación de bosques de niebla y paramo debe abordarse de

una manera mas integral, considerando no solamente los beneficios potenciales

asociados al aumento o reducción de volúmenes hídricos pero además teniendo en

cuenta otros servicios ambientales tales como el control de la erosión y la

sedimentación, especialmente en las pendientes mas inclinadas de los Andes

orientales, y la mitigación de inundaciones, los cuales son esenciales para la eficiente,

económica y segura operación de las represas en la región.

Leonardo Saenz Cruz y Mark Mulligan

Octubre, 2007

Page 9: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

A DETAILED SCIENTIFIC ANALYSIS OF THE IMPACT OF LAND USE

CHANGE ON WATER RESOURCE PROVISION TO BOGOTA D.C. AND

IMPLICATIONS FOR THE DEVELOPMENT OF PES SCHEMES

Policy brief

by

Luis Leonardo Sáenz Cruz and Dr. Mark Mulligan

Department of Geography, King’s College London

2007

This study used the FIESTA (http://www.ambiotek.com/fiesta) model and

implemented two other model components : a runoff model with a paramo component

and a reservoir dam filling component, in order to help understand the impacts of land

cover change and conservation through PES schemes in areas surrounding Bogotá

city, Colombia’s capital. Main results indicate that inputs of water from fog (which

occur more efficiently to forest than to other land uses) are seasonally important for

the maintenance of river flows for the dams located in the driest areas of the region

(Sisga, Tomine, Chivor and Copa dams and Tota lake). However, continued forest

loss is likely to increase river flows in the whole region leading to increases in the

availability of water quantity for drinking water provision and hydroelectric

production in spite of the potential decline in fog interception. This is because forests

evaporate more water than other land uses and the increased availability of surface

water on deforestation (because of reduced evaporation) is greater in most cases than

the losses of surface water because of reduced fog interception.

On the other hand, conversion of Paramo to other land uses tends to lead to a

significant decrease in local water storage. Since this water is stored during wet

periods and released slowly during dry periods, a loss of this storage could lead to

Page 10: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

seasonal water shortages. PES implementation in paramo areas could thus potentially

help maintain water resources to dams for hydroelectric power generation and

drinking water provision.

Keywords: FIESTA, Cloud Forest, Paramo, Chingaza Park, Bogotá, PES

Dissertation Supervisor: Dr. Mark Mulligan

Reader in Geography

Department of Geography, King’s College London

The work was carried out to provide an improved scientific basis to progress in the

understanding of the role of Payments for Environmental Services (PES) schemes in

the maintenance of water resources for drinking water and hydroelectric power

generation provided by cloud forest (TMCFs) and paramo ecosystems to the Bogotá

city, Colombia’s capital.

Fog inputs and cloud forest hydrology in the Bogotá region

and implications to dams

Fog inputs are relatively small in the high Bogotá sabana (areas between 2500 to

2800masl), from about 70 to 80mm year-1 and are even lower in paramo areas (areas

above 3000masl), between 40 to 60 mm year-1. However, fog inputs are doubled

(about 150mm year-1) in areas below, between 2300 and 700masl towards both, the

Magdalena basin to the west and the much wetter fringes of the Orinoquia basin to the

east, where highly exposed areas of cloud forest cover show fog inputs of up to 300

mm year-1.

Nonetheless, fog inputs are seasonally important in dry areas to the north of the

Bogotá region (areas coinciding with the Chicamocha catchment and surrounding

Tota lake and Copa, Sisga, Tomine and Chivor dams), where they can be as high as

40% of the water balance and represent as much as 10% of river discharges for the

Page 11: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

months of December, January and February. Though, these proportions are generally

below 8% of the water balance in the high Bogotá sabana, paramos and the much

wetter lowlands towards the orinoquia catchment, where fog contributions to river

flows are also very low (below 4%).

Deforestation impacts on fog inputs and implications to

dams

Deforestation over the period 1977 – 2000 led to potential losses of fog interception

of up to 150mm year -1, especially in the western fringes of the region towards the

Magdalena catchment (below 2300masl), where deforestation was greatest, leading to

a decline in river flows of up to about 0.1m3 s-1 (accumulated runoff volume of 3.15

Mm3 year-1) for the main rivers.

However, much less decline in fog inputs (from 10 to 20mm year-1) was

observed in the high Bogotá sabana and paramo areas (above 2500). Low

deforestation in these areas, where there was already little forest to convert to pasture

or crops could explain the low changes in fog interception. Further more, the lower

stature and overall reduced interception capacity of paramo vegetation compared to

that of cloud forest also explains the minor impact of paramo removal on fog inputs.

On the other hand, evapo-transpiration losses dropped throughout from 50 to

250mm year-1 due to deforestation. Therefore, water balances increased in deforested

areas with a consequent addition of up to 4m3 s-1 of runoff to river flows for the

largest rivers (Guavio and Chivor) in spite of the potential reductions in fog

contributions to river flows.

Overall: Fog inputs are of major importance in dry areas to the north of the Bogotá region

and in the western fringes towards the Magdalena basin, where Tota lake and Copa, Sisga,

Tomine, Chivor and Prado dams receive important seasonal fog inputs.

Page 12: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

At the dam location, Guavio and Chivor faced the greatest increments in river

flows (up to 2.54m3 s-1) with potential positive effects on water quantity for

hydroelectric power generation but also negative effects upon dam operation safety

and maintenance (sedimentation). However, the drop in fog contribution to river

flows seasonally could potentially have affected the regulation of base flows to Copa,

Tomine, Sisga and Chivor dams in the dry seasons.

Paramo loss and implications to dams

In order to gain any understanding of the impact of paramo removal in specific areas

of the region a runoff – subsurface flow model with a component to simulate paramo

water retention and release was coupled to the FIESTA model. The models were

parameterized for the Guavio catchment in the Cundinamarca county, because it

accounts for an important proportion of paramo areas of the Chingaza National Park

and because two of the most important dams in the region, Guavio and Golillas are

located in this catchment.

A year simulation of surface – subsurface runoff as a response to rainfall in the

Guavio catchment indicates that under the very low evapo-transpiration conditions

observed in paramo areas, the paramo vegetation which covers the soil with a fairly

thick biomass layer (2.8kg m-2 of biomass), plays a significant role as initial water

storage with regular and very low vertical and horizontal water release (0.2mm h-1)

before water infiltrates to the soil profile (vertical infiltration to the soil and horizontal

subsurface flow).

Overall: Fog inputs are already minor in most of the flat areas of the high Bogotá sabana

since most of the cloud forest resources have already been converted to other land uses, but

not so in the steep slopes surrounding Chingaza and Sumapaz parks and in the western and

eastern fringes of the region below 2500masl. Deforestation has already potentially increased

flows for most of the dams in the region. Further deforestation threatens the seasonal

regulation of base flows to dams especially in the driest areas of the Bogotá, Ubate – Suarez

and Chicamocha catchments, where fog inputs are an important proportion of seasonal

water balances.

Page 13: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Results from the one year hydrological simulation in the Guavio catchment

indicate that paramo loss over the period 1977 – 2000 led to a slight reduction in river

flows at the Guavio and Golillas dams of about 0.17 and 0.03m3 s-1 (0.24% and 0.35%

of river flows for Guavio and Chuzque rivers respectively in 1977), which represent

an annual volume loss of 5.6 and 1 Mm3 for both dams respectively to the year 2000.

. Much research is needed to better understand the impact of paramo vegetation

removal on the runoff phenomenon in paramo-dominated catchments over longer

timescales.

In spite of the potential benefits of maintaining water quantity, the conservation

of paramo is likely to be important for erosion and sedimentation mitigation for all but

the most extreme rainfall events, especially in the steep slopes of the eastern Andes,

which together with flood mitigation services are essential to the efficient, economic

and safe operation of dams in the region.

Implications to PES

Deforestation has led and will lead to increased river flows for the main dams in the

region due to reduced evapo-transpiration, and this has and will consequently increase

potentially water resources for drinking water and hydroelectric power generation in

the region. Though not so in dry areas to the north and south west surrounding Tota

lake and Sisga, Copa, Chivor and Prado dams, where a reduction in fog interception

affects river flows seasonally. Also in paramo catchments of Chingaza lake, Golillas

and regadera dams, where the reduction in evapo-transpiration is less or even could

Overall: Climatic and topographical conditions and high water balances with regard to the

high Bogotá sabana make paramo areas essential to sustained water supplies to Bogotá City.

The importance of paramo conservation is with respect to maintaining water quality and

regulation. Much research is needed to better understand the generation of the runoff

phenomenon in undisturbed and intervened paramo catchments.

Page 14: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

increment when paramo is converted to pasture and crops with greater evapo-

transpiration compared to that of paramo vegetation.

In a highly engineered system on which many people depend change is bad,

whether it be an increase or a decarease in flows. Therefore, conservation of the

existing land cover through the implementation of PES schemes guarantees the

maintenance of current river flows regimes and is generally supported here.

In this context, PES schemes could safely maintain the structural safety of

hydraulic structures of the Bogotá aqueduct in the Chingaza Park, which will not face

the potential danger of increased peak flows above design specifications as a

consequence of further deforestation within the park. The economic impact of

infrastructural failure due to increased peak flows has yet to be estimated.

When a dam filling component was included to study the economic impact of

this reduction on Guavio and Golillas dams, results showed that the implementation

of PES schemes preventing the loss of paramo in the Chingaza park could potentially

maintain up to 0.9% of hydropower generation of the Guavio dam to the year 2050

(up to about 3.2 USD million year-1). Similarly PES implementation could potentially

conserve up to 3.8% of water inputs to Golillas dam from paramo conservation to the

year 2050 (up to about 6.2 USD million year-1). Further enhancements of the paramo

protected area in the catchment would help maintain seasonal water resources that

would otherwise be lost if paramo loss takes place at the same rates of today.

Results from paramo conservation are encouraging since conservation efforts

through PES schemes could potentially represent positive economic impacts.

However, they the study outcomes must now be validated and compared with

information from respective relevant drinking water, hydroelectric and environmental

organizations and understood within the economic context of the provision of these

services in the region.

Page 15: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Finally, conservation of cloud forest and paramo resources should be tackled in

a more integrated way, considering not only benefits from potential water quantity

increases or reductions but taking into account other environmental services such as

erosion and sedimentation mitigation especially in the steep slopes of the eastern

Andes, and flood mitigation services which are essential to the efficient, economic

and safe operation of dams in the region.

Leonardo Sáenz Cruz and Mark Mulligan

October, 2007

Page 16: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Acknowledgements

I would like to thank my supervisor, Dr Mark Mulligan for all his help, generosity,

ideas, guidance and encouragement for the development of this thesis, as well as for

providing with essential information for the analysis of this study.

This work would not have been possible without the financial support of Alban

programme, King’s College London, CIAT and TNC, their support is greatly

acknowledged.

Particularly I would like to thank Dr. Satish Kundaiker for all his generosity.

Finally, I would like to thank and dedicate this thesis to Alfredo and Miryam, my

parents.

Page 17: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table of contents

Policy brief ................................................................................. 1

Contribución por intercepción de neblina e hidrología de

bosques de niebla en el área de influencia de Bogota D.C

“Bogotá región” e implicaciones para sus principales represas .. 3

Impactos de deforestación en la contribución por intercepción de

neblina e implicaciones sobre las principales represas ............... 4

Perdida de paramo e implicaciones para las represas en la región

.................................................................................................... 5

Implicaciones para la implementación de esquemas PES .......... 7

Policy brief ................................................................................. 9

Fog inputs and cloud forest hydrology in the Bogotá region and

implications to dams ................................................................. 10

Deforestation impacts on fog inputs and implications to dams 11

Paramo loss and implications to dams ...................................... 12

Implications to PES .................................................................. 13

Acknowledgements................................................................... 16

List of figures ............................................................................ 21

List of Tables ............................................................................ 25

Chapter 1: Introduction ............................................................. 26

Chapter 2: Objective ................................................................. 29

Chapter 3: Literature review and Background .......................... 30

3.1 Cloud forest and modelling fog interception processes ............................... 30

3.2 Paramo ......................................................................................................... 30

Page 18: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

3.2.1 Structural characteristics of paramo to water storage .............................. 30

3.3 Hydroelectric potential and Dam filling modelling ..................................... 32

Chapter 4: Methodology ........................................................... 34

4.1 Description of the study area ....................................................................... 34

4.2 Multi-temporal Land cover change analysis and creation of land cover

scenarios ................................................................................................................... 35

4.2.1 Data acquisition, image classification and change detection analysis ..... 36

4.3 Application of the FIESTA model .................................................................... 41

4.3.1 Land cover change scenarios ................................................................... 42

4.3.2 Land cover projections from the year 2000 to the year 2050 .................. 43

4.3.3 Validation of flow data results from FIESTA .......................................... 45

4.4 Development of a paramo storage component for a runoff – subsurface flow

model 49

4.4.1 Development of the paramo storage component ..................................... 52

4.4.1.1 No saturated paramo ................................................................................ 53

4.4.1.2 Saturated paramo ..................................................................................... 54

4.4.1.3 Drying process ........................................................................................... 55

4.4.1.4 Component parameterization ................................................................... 55

The model was parameterized with land cover change data for the Guavio

catchment and according to the following values. ................................................... 55

4.4.1.5 Model verification, sensitivity analysis and validation ............................ 55

4.5 Development of a dam component for the understanding of water resources to

dams ......................................................................................................................... 59

4.5.1 Parameters to Dam filling modelling ....................................................... 61

4.5.2 Reservoir topography ............................................................................... 62

4.5.3 Reservoir water balance ........................................................................... 64

4.5.4 Potential hydropower production ............................................................. 66

4.5.5 Potential drinking water production ......................................................... 67

4.5.6 Model verification, sensitivity analysis and validation ............................ 67

Model verification was carried out against a common sense of the processes

modelled (increase in water stored and water heads mainly). ................................. 67

Chapter 5: Results ..................................................................... 70

5.1. FIESTA model results .................................................................................. 70

Page 19: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

5.1.1 Fog inputs baseline2000 scenario ............................................................ 70

5.1.1.1 Fog inputs as a proportion of rainfall and water balance ......................... 72

5.1.1.2 Runoff from fog as a component of river discharge ................................ 74

5.1.1.3 Fog contributions and National parks ...................................................... 74

5.1.1.4 Monthly contributions from fog to dams in the region ............................ 75

5.1.2 General impacts of land cover change. Comparison between

baseline1977 and baseline2000 scenario ................................................................. 76

5.1.3 Conservation impacts: PES scenario to 2050 .......................................... 78

5.1.4 Conservation impacts: NOPES scenario .................................................. 80

5.1.5 Conservation impacts: Naturalcoversremoved (NONC) ......................... 80

5.2. Results from the Runoff – subsurface model with a paramo component .... 82

5.2.1 Guavio dam .............................................................................................. 83

5.2.2 Golillas dam ............................................................................................. 84

5.4 Results from the application of a dam filling model .................................... 86

5.4.1 General results for the Bogotá region using FIESTA river flows ........... 86

5.4.2 General results for the Guavio Catchment ............................................... 91

Chapter 6: Conclusions and recommendations ......................... 97

References .............................................................................. 100

Appendix 1: Datasets for FIESTA model parameterization ... 106

• Cloud cover .................................................................................................... 107

• Potential Solar Radiation ............................................................................... 109

• Temperature and daily temperature range ..................................................... 110

• Precipitation ................................................................................................... 111

• Humidity ........................................................................................................ 113

• Mean sea level pressure ................................................................................. 114

• Wind speed..................................................................................................... 114

• Topographical exposure to wind .................................................................... 115

Appendix 2: River flow stations in the Bogotá region ........... 116

Appendix 3: Tables of characteristics of soils for the study area.

From. IGAC (2000) Estudio general de suelos y zonificación de

tierras del Departamento de Cundinamarca. Bogotá: IGAC... 121

Page 20: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de
Page 21: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

List of figures

Figure 1. Epiphyte FI, drip and storage dynamics. Source: Mulligan et al (2006a). ............... 31 

Figure 2. Diagram of the components of a conventional hydropower plant with

reservoir. .................................................................................................................................. 32 

Figure 3. Geographical location of the Bogotá region, boundary area, main dams in

the region and National National Parks of Chingaza, Sumapaz and Iguaque. Source:

Google Earth (2007) ................................................................................................................ 35 

Figure 4. Mosaics of Landsat images covering the Bogotá region. a. baseline2000

scenario. b. baseline1977 scenario. Numbers are a reference to image description on

the table. ................................................................................................................................... 36 

Figure 5. Steps to estimate cloud forest and paramo resources in the Bogotá region

and create the baseline1977 and basline2000 scenarios. ......................................................... 38 

Figure 6. Multi-temporal land cover classification for the Bogotá region. a.

baseline1977. b. baseline2000 scenario. .................................................................................. 39 

Figure 7. a. Area (ha) of cloud forest and paramo loss between the baseline1977 and

baseline2000 scenarios in the Bogotá region. b and c. Extent (ha) and percentage (%)

of area converted from Cloud forest and paramo to crops-grassland, and bare soil. ............... 40 

Figure 8. Land cover change scenarios indicating percentages of tree cover (scenario

1977 and scenario 2000) for the Bogotá region. ...................................................................... 43 

Figure 9. Roads and rivers datasets used to project scenarios of land use change in the

Bogotá region. Source: Gobernacion de Cundinamarca (2006b) and Google Earth

2007.......................................................................................................................................... 44 

Figure 10. PES and NOPES scenarios, differences regarding the baseline2000

scenario and detail of natural cover loss in the Chingaza National Park. ................................ 45 

Figure 11. Map with the location of flow stations for validation purposes in the

Bogotá region. .......................................................................................................................... 46 

Figure 12. Graphs for FIESTA performance with the use of WorldClim and TRMM

datasets. .................................................................................................................................... 47 

Figure 13. Distribution of areas according to the performance of FIESTA model with

the use of WorldClim and TRMM datasets. ............................................................................ 49 

Figure 14. Location of the Guavio catchment in the Bogota region and association

with Chingaza National Park. .................................................................................................. 50 

Page 22: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 15. Datasets used for application of a runoff model in the Guavio Catchment.

a. soils map (soils study of Cundinamarca) and sample points of soil depth, porosity

and texture. b. Porosity map derived by the model. c. Soil depth derived. d. Wetness

index of similarity. ................................................................................................................... 51 

Figure 16. Components of the hydrological cycle in a paramo catchment. Storage and

release water curve for mosses (Mulligan et al 2006a). Drawing by author. ......................... 52 

Figure 17. Verification of paramo component. a. Modelled discharges (m3 s-1) with

and without a Paramo component. b. difference between runoff estimates (mm ha-1).

c. Rainfall dataset used in the simulation (mm). Data reported to the Chusneque flow

station, Guavio catchment. ....................................................................................................... 57 

Figure 18. Change in runoff (m3 s-1) with the change in paramo extent (Chusneque

flow station, Guavio catchment). ............................................................................................. 58 

Figure 19. Correlation between observed and modelled river discharges (m3 s-1) in the

Guavio catchment. ................................................................................................................... 58 

Figure 20. Main dams in the Bogotá region. .......................................................................... 61 

Figure 21. Procedure and datasets used for reservoir topography characterization.

Case: Guavio dam. a. DEM, reservoir boundary and buffer area. b. Slope of the

terrain surrounding the dam. c. aspect. d. Reservoir topography below the water

surface. ..................................................................................................................................... 63 

Figure 22. Characteristic of a model reservoir assumed for the dams model. ......................... 64 

Figure 23. a. Modelled reservoir capacity (Mm3) and water head (m) for the Guavio

dam. b. Monthly progression of potential hydroelectric power simulated by the model

(MW)........................................................................................................................................ 68 

Figure 24. Fog inputs (mm) in the Bogotá region, baseline scenario2000. ............................. 71 

Figure 25. a. Fog inputs by altitudinal bands (mm) and b. altitudinal bands in the

Bogotá region (masl)................................................................................................................ 72 

Figure 26. a. Fog inputs as proportion annual rainfall (mm) and b. Fog inputs as

proportion annual water budget (mm). c. Annual water budget (mm). ................................... 73 

Figure 27. Runoff from fog as part of river discharge. a. Runoff from fog (m3 s-1). b.

River discharge (m3 s-1). Detail for the Guavio river that feeds the Guavio Dam. ................. 74 

Figure 28. Fog contributions and national parks in the Bogotá region. a. % of water

balance. b. Fog contributions (mm). ....................................................................................... 75 

Figure 29. Monthly progression of fog as a proportion of runoff in the Bogotá region. ......... 76 

Page 23: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 30. Differences in a. Fog interception (mm), b. Evapo-transpiration (mm) and

c. Water balance (mm) between the baseline1977 and baseline2000 scenarios. ..................... 78 

Figure 31. a. Detail of increase in runoff (m3 s-1) for the Guavio dam, baseline2000

scenario. b. Reduction in fog contribution to runoff (m3 s-1). .................................................. 78 

Figure 32. Differences in a. fog interception, b. evapo-transpiration and c. water

balance between the PES and baseline2000 scenarios. ........................................................... 79 

Figure 33. a. Detail of runoff (m3 s-1) for the Guavio dam baseline2000 scenario. b.

Reduction in fog contribution to runoff (m3 s-1). ..................................................................... 80 

Figure 34. Differences in a. fog interception (mm), b. evapo-transpiration (mm) and

c. water balance (mm) between the NOPES and baseline2000 scenarios. .............................. 81 

Figure 35. a. NONC scenario . Detail of runoff (m3 s-1) for the Guavio dam. b.

Reduction in fog contribution to runoff (m3 s-1). ..................................................................... 82 

Figure 36. Guavio catchment. Land covers, main dams and the location of flow

stations are represented. ........................................................................................................... 82 

Figure 37. a. Annual change in river discharge (m3 s-1) to the Guavio dam for Baseline

and PES Scenarios. b. Seasonal changes in river discharge (m3 s-1). c. Seasonal

differences (m3 s-1). .................................................................................................................. 84 

Figure 38. a. Annual change in river discharge (m3 s-1) to the Golillas dam for

Baseline and PES Scenarios. b. Seasonal changes in river discharge (m3 s-1). c.

Seasonal differences (m3 s-1). ................................................................................................... 85 

Figure 39. a. Change in the regional water stored in dams in the Bogotá region. b.

Seasonal contribution from every dam in the region. .............................................................. 87 

Figure 40. Change in the economic value of drinking water resources (Million USD).

a. Regional. B. Contribution per dam. .................................................................................... 89 

Figure 41. Change in the potential hydroelectric energy produced in the Bogotá

region (GWh year-1). a. Economic change (MUSD). B. Contribution per dam (GWh

year-1). ...................................................................................................................................... 90 

Figure 42. Change in the economic value of hydroelectric energy production

(MUSD). a. Loses from paramo loss. b. Gains from deforestation. ........................................ 92 

Figure 43. Change in the economic value of drinking water provision (MUSD). a.

Loses from paramo loss. b. Gains from deforestation. ............................................................ 94 

Figure 44. Digital Elevation Model for the Bogotá region. ................................................... 106 

Figure 45. Cloud cover frequency for the seasons (DJF, MAM, JJA, SON) in the

Bogotá region. ........................................................................................................................ 107 

Page 24: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 46. Cloud cover frequency for the daily cycle (Early morning, morning,

afternoon, evening) in the Bogotá region. ............................................................................. 108 

Figure 47. Progression of monthly solar radiation (Wm2) for the Bogotá region. ............... 109 

Figure 48. Progression of Monthly temperature (°C) for the Bogotá region. ........................ 110 

Figure 49. Monthly progression of precipitation (mm) for the Bogota region according

to WorldClim. ........................................................................................................................ 111 

Figure 50. TRMM precipitation dataset (mm) for the Bogotá region. .................................. 112 

Figure 51. Monthly progression of relative humidity (%) in the Bogotá region. ................. 113 

Figure 52. Progression of monthly wind speed (m s-1) for the Bogotá region....................... 114 

Figure 53. Topographical exposure to winds in the Bogotá region for E, N, W, S, NE,

SE, SW, NW cardinal directions............................................................................................ 115 

Figure 54. Observed and modelled river discharges below 5m3 s-1 with the use of

WorldClim and TRMM datasets. ........................................................................................... 120 

Page 25: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

List of Tables

Table 1. Landsat imagery used for a land cover change analysis of the Bogotá region.

Source ESDI (2007). ................................................................................................................ 37 

Table 2. Validation results for the FIESTA model with the use of WorldClim and

TRMM rainfall datasets. The comparison of model performance for discharges

greater or lesser than 5m3 s-1 is also reported. ......................................................................... 48 

Table 3. Observed and modelled discharges in the Guavio Catchment. ................................. 58 

Table 4. Characteristics of the main dams in the Bogotá region. Sources. Database of

tropical dams (Mulligan et al 2006b) ....................................................................................... 60 

Table 5. Change in water storage (Mm3) for the Bogotá region according to different

scenarios of land use change (Negative values indicate loses in water volume). .................... 86 

Table 6. Change in drinking water provision (Mm3) and Economic value Million

USD.......................................................................................................................................... 88 

Table 7. Change in annual hydroelectric energy production, GWh year-1 and

economic value. ....................................................................................................................... 90 

Table 8. Hydroeletric energy production and economic impact of land use change and

conservation in the Guavio catchment (Guavio dam). ............................................................. 93 

Table 9. Drinking water production and economic impact of land use change and

conservation in the Guavio catchment (Golillas dam). ............................................................ 95 

Page 26: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chapter 1: Introduction

Cloud forest and paramo ecosystems of the Colombian eastern Andes are the main

source of high quality water for drinking water and hydroelectric power purposes

supplying Bogotá D.C, Colombia’s capital (Mulligan and Burke 2005a; Sáenz and

Mulligan 2007). This water provision fulfils demands of about 30% of Colombia’s

population concentrated in Bogotá’s influence area (about 15 million people) and

generates a similar proportion of the country’s GDP, which makes Bogotá D.C the

eighth most important economy in Latin America (DANE 1999; Ramirez 2002;

DANE 2007).

However, marked population increase and economic growth concentrated in this

region over the last three decades have led to significant deforestation and

transformation of cloud forest and paramo with associated detriment to water quantity

and quality (Etter and Wyngaarden 2000; Etter and Villa 2000; Cavelier and Etter

1995; Mulligan and Burke 2005a; Sáenz and Mulligan 2007) (Lombana 2000; Lora

2006). Furthermore, the establishment of Chingaza national park, for instance, proved

to be difficult to police and has not prevented the establishment of illegal farming

(Lora 2007).

Since about 30% of Colombia’s hydroelectric power generation is produced in

Bogotá D.C surrounding areas together with about 512 million m3 s-1 year-1 (16.3 m3

s-1) of high quality water for human, industrial and commercial consumptions (CAF

1998; EMGESA 1999; EEB 2000; MA 2001), a further degradation of hydrological

services becomes a major constraint to sustained economic development of the region.

Hydrological studies of the dependence of downstream communities to water

resources from mountainous areas, especially of montane cloud forest and paramo

cover, are limited in Colombia. Nor the resulting economic impact to dams due to

cloud forest and paramo loss has been studied in Colombia.

Page 27: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

At global scales Mulligan and Burke (2005a) presented the most comprehensive

study of this nature for tropical mountainous areas with cloud forest cover. Moreover,

Mulligan and Burke (2005b) reported the development and application of the FIESTA

model in Costa Rica (the most sophisticated hydrological model for montane

ecosystems hydrology) in order to understand the role of fog interception by cloud

forest vegetation to water balances at national scale and help support PES schemes

implementation processes.

In countries such as Costa Rica, payments for environmental services PES

schemes have been established successfully to provide funds for better management

of water key areas by taxation of water users downstream (Castro et al 2000; Johnson

et al 2001; Perrot-Maître and Davis 2001). The establishment of these schemes in

Colombia is hindered by a poor understanding of both the hydrology of the water

catchment areas (cloud forests, paramo and agricultural land) and the resulting

economic impact of degraded water quantity and quality.

This thesis aims to improve our understanding of the hydrological contributions

of cloud forest and paramo ecosystems to water resources of the Bogotá region by

using the FIESTA model (Mulligan and Burke 2005b) and other model components

implemented in the study. In particular, the thesis seeks to examine impacts of cloud

forest and paramo loss to water resources for drinking water and hydroelectric power

generation purposes in Bogotá D.C and assess the suitability of implementing

Payments for Environmental Services (PES) schemes and an enhanced watershed

protection to protect water key areas. These questions are of paramount importance

for the sustained economic development of the region with environmental

conservation values

The thesis is organized in six chapters. Chapter 2 states the general objective of

the study. Chapter 3 gathers meaningful insight for the process modelled in cloud

forest and paramo ecosystems of the Bogotá region. Chapter 4 describes the methods

for the research. Chapter 5 presents the main thesis results and Chapter 6 presents the

main conclusions and recommendations.

Page 28: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de
Page 29: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chapter 2: Objective

Estimation of the magnitude of degradation of water resources, mainly water quantity,

to Bogotá region as a results of land cover change in cloud forest and páramo areas

and evaluation of the potential of implementing Payments for Environmental Services

(PES) schemes to provide solutions.

Page 30: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chapter 3: Literature review and Background

3.1 Cloud forest and modelling fog interception processes

Cloud forests are a hydrologically important type of forest because they do intercept

fog water and tend to occur in some of the wettest mountainous areas in the tropics

where high rainfall inputs and reduced evapo-transpiration allow high water balances

(Grubb 1977; Mulligan and Burke 2005a). Cloud forest can be very important

seasonally upstream of dry lowland areas with fog contributions of up to 30% in some

areas of southern México (Mulligan and Burke 2005b), though these contributions are

only a low percentage of river discharges in the lowlands of wet tropical areas (1 to

2%) (Bruijnzeel et al 2006).

3.2 Paramo

Paramo is an equatorial tree-less high wetland ecosystem endemic of the northern

Andes. Paramo vegetation is taller and more complex than low land grasslands and is

comprised by bryophytes (mainly mosses), endemic stem rosettes (frailejones) genus

Espeletia of up to 10m height, riparian shrub patches and short growing grasses. This

vegetation structure together with accumulation of high aboveground biomass and

low decomposition favours high water retention (Hofstede et al 1995; Buytaert et al

2005; Ospina 2003).

Volcanic soils dominate in paramo regions. These soils show low depth, low

apparent density, high porosity, high hydraulic conductivity and high water retention

at field capacity. Their water retention is also high below wilting point (-1500 kPa)

(about 0.4 ml cm-3) indicating that the paramo soils potentially hold a significant

proportion of inactive water that is not released to the surface part of the hydrological

cycle (Buytaert 2004; Buytaert et al 2005).

3.2.1 Structural characteristics of paramo to water storage

Very few studies have looked at the structure of paramo vegetation but none have

looked at the hydrology of paramo vegetation as a system. However, some studies

Page 31: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

have brought meaningful insight to understand paramo vegetation water storage

dynamics.

Hofstede (1995), studying the impacts of grassing and burning to biomass loss

in four paramo areas of Colombia, reports an average of above ground biomass in

undisturbed paramo of about 2800 g m-2.

Mulligan et al (2006a) informs the water interception and storage dynamics of

moss and their implications for fog interaction processes in cloud forest catchments.

Under laboratory conditions the study informs a saturated storage capacity of moss of

about 5.91 times the dry weight and a rate of water release of 0.013 ml g dry biomass-

1 hr-1 when mosses reach 75% of saturation (Figure 1).

0

0.5

1

1.5

2

2.5

3

3.5

9 19 29 9 19 29 39 49 59 69

Hours

Epip

hyte

wat

er s

tora

ge m

l/g d

ry b

iom

ass

Epiphyte water storageExperiment 3Experiment 4

rapid uptakeno fog-drip

no evaporation

slowerwater uptake

fog drip occurringno evaporation

rapid water lossrapid fog drip and evaporation

slower water lossevaporation only

wetting experimentdrying experiment

schematic

Figure 1. Epiphyte FI, drip and storage dynamics. Source: Mulligan et al (2006a).

No attempts have been reported to water storage modelling in paramo areas.

Moreover the water regulation capacity of paramo has been attributed to soil, climate

and topographical conditions of paramo areas themselves given negligible impact to

paramo vegetation (Lombana 2000; Buytaert et al 2005; Buytaert 2004).

Page 32: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

3.3 Hydroelectric potential and Dam filling modelling

Hydroelectric power generation depends upon water flows inputs and the potential

energy of water (Kerola 2006). The conventional hydroelectric system is comprised

by a main river catchment area, a reservoir and a power plant (Novak et al 2001).

Figure 2 shows a diagram of the components of a conventional hydroelectric

power system with reservoir.

Figure 2. Diagram of the components of a conventional hydropower plant with reservoir.

The potential hydroelectric power in the system is proportional to water

discharge, water head (difference in water height between the water surface in the

reservoir and the turbines) and the efficiencies of the turbines and generators (Novak

et al 2001; Kerola 2006).

Depending upon topographical characteristics and dam purposes there is usually

an inactive water capacity in the reservoir called the death volume as well as a

reservoir capacity destined for flood control only. The reservoir capacity actually used

Source: ESA (2007)

Page 33: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

for hydropower generation is called operational capacity (EEB 2000; Novak et al

2001; INGETEC 2004).

Page 34: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chapter 4: Methodology

4.1 Description of the study area

The definition of the extension of the study area was based upon the concept of

Bogotá region (Alcaldía de Bogotá 2004). This is a project, which considers Bogotá

D.C interconnected geographically and economically to the whole high Bogotá

Sabana (between 2300 and 2900m) and associated municipalities towards the

Magdalena valley and towards the eastern planes.

In addition, this study assumes a hydrological approach for the delineation of

the area, which was based firstly, upon definitions of catchment areas that feed the

most important dams providing hydropower energy or drinking water to the Bogotá

city and secondly by establishing a minimum hydrological altitude limit (about 700m)

in order to consider all the extent of cloud forest resources in the region.

The so defined Bogotá region covers an area of 4000160ha (40001.6km2) and is

located between geographical coordinates 3°14’ and 5°52’ N Latitude and 72°38’ 75°

W Longitude and extents in the Cundinamarca, Boyaca, Tolima, Meta and Huila

counties. Three National Natural Parks, Chingaza, Sumapaz and Iguaque, are located

in the region, which are threatened by population and economic growth.

Figure 3 presents the localization of the study area in central Colombia

indicating the main dams and National protected areas (PNNC 2007).

Page 35: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 3. Geographical location of the Bogotá region, boundary area, main dams in the region

and National National Parks of Chingaza, Sumapaz and Iguaque. Source: Google Earth (2007)

4.2 Multi-temporal Land cover change analysis and creation of land cover

scenarios

This study attempts to improve the estimate of Cloud forest and paramo resources in

the Bogotá region to the year 2000 and estimate the potential rate of cloud forest and

paramo loss with regard to an initial scenario for the year 1977. Finally initial and

final land cover scenarios were produced for hydrological modelling purposes.

Page 36: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

The multi-temporal land cover change analysis was performed with the use of

Landsat MSS, TM and ETM+ datasets acquired from the Global Land Cover Facility

(ESDI 2007) for a combination of years from between 1977 and 2000.

4.2.1 Data acquisition, image classification and change detection analysis

Five different Landsat scenes were needed for the production of each scenario due to

the large extent of the study area. Furthermore, high cloud cover contamination

limited the selection of images to produce scenarios that represented single years for

initial and final periods (though more than 50% of the area was covered with imagery

for the years 1977 and 2000). For convention purposes from here and after the land

cover scenarios will be referred as baseline1977 and baseline2000 in accordance with

the greater proportion of area covered with images that corresponded to these years.

Figure 4 and Table 1 present the imagery used for the production of the

baseline1977 and baseline2000 scenarios, which include a MSS image for the year

1977.

Figure 4. Mosaics of Landsat images covering the Bogotá region. a. baseline2000 scenario. b.

baseline1977 scenario. Numbers are a reference to image description on the table.

Km0 75 0 75

Km

NN

1 2

3 4

5

1 2

3 4

5a b

Page 37: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 1. Landsat imagery used for a land cover change analysis of the Bogotá region. Source ESDI (2007). Scenario Scene Date Satellite Type of

imagery Spatial resolution (m)

Processing Level

baseline 1977

1 1987-12-17

Landsat 5

TM 28.5 Ortho-GeoCover

baseline 1977

2 1992-09-02

Landsat 5

TM 28.5 Ortho-GeoCover

baseline 1977

3 1977-01-07

Landsat 3

MSS 79 L1G

baseline 1977

4 1986-01-13

Landsat 5

TM 28.5 L1G

baseline 1977

5 1988-01-12

Landsat 5

TM 28.5 Ortho-GeoCover

baseline 2000

1 2000-02-04

Landsat 7

ETM+ 28.5 Ortho-GeoCover

baseline 2000

2 2000-12-13

Landsat 7

ETM+ 28.5 Ortho-GeoCover

baseline 2000

3 1995-02-14

Landsat 5

TM 28.5 Ortho-GeoCover

baseline 2000

4 2000-12-13

Landsat

7

ETM+ 28.5 Ortho-

GeoCover

baseline 2000

5 2001-01-05

Landsat 7

ETM+ 28.5 Ortho-

GeoCover

Image classification considered seven classes: forest, paramo, crop-grasslands,

bare soil, clouds, shadows and water and was performed with an unsupervised

classification approach due to absence of ground truth data for training signatures

(Anderson et al 1976; Tole 2002; Yang and Lo 2002; Hung and Wu 2005; Envi 2003;

SIC 2007).

Figure 5 shows a diagram, which summarises the steps undertaken to produce

the land cover scenarios.

Page 38: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 5. Steps to estimate cloud forest and paramo resources in the Bogotá region and create the

baseline1977 and basline2000 scenarios.

Landsat MSS, TM, ETM+ datasets. Ten images MSS (1977), TM

(1986, 1987, 1988, 1992, 1995) and ETM+ (2000, 2001)

Image Registration and Projection

Image subset to Bogotá region boundary

Enhancement and creation of false colour composite images to

highlight vigorous vegetation Principal

Components Analysis for the

MSS bands Creation of NDVI maps

Unsupervised classification. Use of ISODATA with 40

classes to reduce misclassification of paramo

Cluster Labelling

Re-classification, reduction of anomalous pixels, masking of clouds and water and reclassification of shadow areas

according to visual inspection of signatures

Use of other various datasets to assign signature clusters to

classes, such as Land cover map Cundinarmarca

(Gobernacion de Cundinamarca 2006a),

Pancromatic ETM+ images.

Change detection

Integration of Landsat scenarios

with MODIS VCF 2001.

Production of final scenarios improved from

cloud contamination

Results Forest and paramo

extent and loss

Attempt of accuracy assessment

STRM 90m Mapping of cloud

forest and paramos

Page 39: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

The multi-temporal land cover classification for basliene1977 and baseline2000

scenarios of the Bogotá region is presented in Figure 6.

Results from the change detection analysis are also reported indicating the

extent and rate of cloud forest and paramo loss.

Figure 6. Multi-temporal land cover classification for the Bogotá region. a. baseline1977. b.

baseline2000 scenario.

Figure 6 and Figure 7 show a significant decrease in cloud forest resources from

about 1761282ha (44% of the study area) to about 1216177ha (Figure 7a) in the

region, which indicates a 30% cloud forest decrease at a potential deforestation rate of

about 23000ha year-1 (1.3% of forest resources) between baseline1977 and

baseline2000 scenarios.

Similarly the paramo cover dropped from about 371088ha (9% of Bogotá

region) to 328364ha (Figure 7a), indicating a 12% decrease at a paramo loss rate of

about 1860ha year-1 (0.5% of paramo resources). Though, less significant than the

reduction in cloud forest, these figures show the pressures over this important

ecosystem.

N

ParamoForest Crops Bare soil

Land Cover Classes ParamoForest Crops Bare soil

Land Cover Classes Baseline1977

Baseline2000

Page 40: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Cloud contaminated areas amounted to about 124000ha (3.1% of the study area)

and water bodies represented about 0.5% of the Bogotá region (about 18000ha).

Figure 7. a. Area (ha) of cloud forest and paramo loss between the baseline1977 and

baseline2000 scenarios in the Bogotá region. b and c. Extent (ha) and percentage (%) of area

converted from Cloud forest and paramo to crops-grassland, and bare soil.

1761282

1216177

371088 328364

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

baseline1977 baseline2000

Land cover change scenarios

Are

a (h

a)

Cloud Forest extent Paramo Extent

-30%

-11%

a

0 6049

529578

422791204 0

372544265

0

100000

200000

300000

400000

500000

600000

Cloud forest Paramo Crops-grassland Bare soil

Land covers converted from forest and paramo

Are

a (h

a)

Cloud forest to other land covers Paramo to other land covers

b

0 1

92

73 0

87

10

0

10

20

30

40

50

60

70

80

90

100

Cloud forest Paramo Crops-grassland Bare soil

Land covers converted from forest and paramo

Are

a (h

a)

Cloud forest to other land covers Paramo to other land covers

c

Page 41: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

For the hydrological analysis the scenarios presented above were improved with

the MODIS VCF dataset year 2001 in high cloud contaminated areas. To use MODIS

the assumption considered was that since the cloud cover area was below 5% of the

regional area, the correction applied did not affect the integrity of the land covers for

the hydrology analysis but instead ensured to restore forested areas that were likely

forested in the baseline1977 scenario.

A threshold of 10% for the existence fractional forest cover was assumed

(Mulligan and Burke 2005a; Sáenz and Mulligan 2007). Areas of fractional values

below 10% above 3200m were reclassified as paramo. Below 3200m these areas were

assigned a crops-grass classification. Initial and final scenarios produced are

presented in the section 4.3.1.

4.3 Application of the FIESTA model

The FIESTA delivery model is the most sophisticated process-based spatially

distributed hydrological model to provide national scale estimates of fog interception

and understand its likely impact on terrestrial water resources. FIESTA model was

parameterized for the Bogotá region considering the following input datasets, which

were spatially adjusted to 92m spatial resolution in this study by using a nearest

neighbour method.

• 90m Digital Elevation Model (DEM) of the Bogotá region (Appendix 1).

• Cloud cover (Appendix 1).

• Potential Solar Radiation (Wm2) (Appendix 1).

• Temperature (°C) and daily temperature (°C) (Appendix 1).

• Precipitation (Appendix 1).

• Humidity (%)(Appendix 1).

• Mean sea level pressure (mb) (Appendix 1).

• wind speed (m s-1) (Appendix 1).

• Topographical exposure to wind. cardinal directions (E, N, W, S, NE, SE, SW,

NW).

Page 42: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Other datasets for FIESTA implementation developed in the project are described

subsequently.

4.3.1 Land cover change scenarios

Land cover data is essential to simulate fog interception by the vegetation. The

land cover scenarios described in the section 4.2 were used as inputs for the FIESTA

model.

The scenarios were adjusted to FIESTA requirements as follows. Firstly, three

land cover classes were considered: Cloud forest, paramo and crops-grasslands.

Secondly, cloud forested pixels were assigned a value of 100% of tree cover in

basline1977 and baseline2000 scenarios, since FIESTA takes into account the forest

proportion of pixels with a percentage of forest above 10%. Thirdly, below this

threshold pixels were considered tree-less (crops-grasslands) and were assigned a

value of 0 (0 cloud forest).

Since paramo ecosystems are more complex vegetation cover than grasslands or

crops (Hofstede et al 1995; Ospina 2003; Buytaert et al 2005) a different

classification was assigned. Paramo is taller vegetation than grasslands (Hofstede et al

1995) and accounts for relatively high types of vegetation such as endemic stem

rosettes (frailejon) genus Espeletia of up to 10m height and riparian shrub patches.

Neither field studies report the proportion of these covers in the paramo nor the

remote sensing analysis allowed the classification of specific types of vegetation due

to spatial resolution constraints (28.5m). Therefore for the purpose of the hydrological

analysis this study assumes that paramo presents vegetation types, which behave as

fog interceptors and that the proportion of these species is about 20% of the paramo

pixels (personal knowledge of the area).

Figure 8 shows the baseline1977 and baseline2000 scenarios produced.

Page 43: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 8. Land cover change scenarios indicating percentages of tree cover (scenario 1977 and

scenario 2000) for the Bogotá region.

4.3.2 Land cover projections from the year 2000 to the year 2050

Land use change projections were used to study the impacts of conservation through

PES schemes implementation to the year 2050. Three projection scenarios were

considered: PES, NOPES and Naturalcoversremoved (NONC).

The scenarios were created with a PCRASTER script, which implemented the

windoaverage instruction in order to project a pattern of deforestation by considering

roads and rivers pixels as seeds of a deforestation pattern as well as tree-less and

paramo-less pixels from the baseline2000. The script was parameterized and validated

against the rates of deforestation and paramo loss highlighted in section 4.2.1.

Figure 9 presents the roads and river datasets used in the projections of land

cover scenarios to the year 2050.

baseline 1977 baseline 2000

N

Page 44: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 9. Roads and rivers datasets used to project scenarios of land use change in the Bogotá

region. Source: Gobernacion de Cundinamarca (2006b) and Google Earth 2007.

• PES scenario

The PES scenario allows deforestation and paramo loss in areas outside protected

areas but not inside protected areas where PES conservation activities take place

(Figure 10a).

• NOPES scenario

Deforestation and paramo loss take place inside protected areas since no PES

conservation measures are enforced to the year 2050 (Figure 10b).

• Naturalforestremoved (NONC).

Extreme scenario in which all forest and paramo areas are lost in the Bogota region.

N

Page 45: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 10 shows the projection scenarios produced and the differences

regarding the baseline2000 scenario in percentage. For comparison purposes of

deforestation and paramo loss effects cloud forest and paramo were assigned the same

value of 100% here.

Figure 10. PES and NOPES scenarios, differences regarding the baseline2000 scenario and detail

of natural cover loss in the Chingaza National Park.

4.3.3 Validation of flow data results from FIESTA

FIESTA annual runoff results produced with the use of WorldClim and TRMM

datasets were validated against data of river discharge for 129 flow stations in the

Bogotá region from Corporación Autónoma Regional de Cundinamarca - CAR and

the Instituto de Hydrologia y Meteorologia IDEAM (CAR 2005; IDEAM 2007). Lack

of accurate coordinates indicating the location of some of the stations in the rivers

introduced uncertainty to the validation since the stations had to be relocated to

represent the actual river flows. Figure 11 and Appendix 2 present the location and

description of the flow stations used for validation.

79,000 0 79,00039,500 Kilometers

N

11,000 0 11,0005,500 Kilometers

Page 46: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 11. Map with the location of flow stations for validation purposes in the Bogotá region.

The performance of the model was studied with measures of relative and

absolute error such as the Coefficient of efficiency E1, the modified Index of

Agreement d1 and the Mean Absolute Error MAE since they provide a more efficient

evaluation of the goodness of fit of hydrological models (Legates and McCabe 1999;

Mulligan and Burke 2005b; Sáenz 2007a).

The validation showed a reasonable good fit of FIESTA results, with

particularly better agreement when using the WorldClim dataset (d1 = 0.8 and E1 =

0.64 ) (Figure 10 and Table 2). Though, the model overestimates the average regional

flow with both datasets (worlClim = -2.32, TRMM = -1.33) (Figure 12 and Table 2).

Page 47: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 12. Graphs for FIESTA performance with the use of WorldClim and TRMM datasets.

When looking at the discharges below 5m3 s-1 the model performance dropped

slightly though still indicating a high agreement regarding ground truth data (d1 = 0.75

and E1 = 0.51). Still higher agreement for WorldClim is noted (Table 2 and Appendix

2).

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

River discharge, CAR - IDEAM stations (m3 s-1)

FIES

TA -

Wor

ldC

lim ru

noff

(m3 s

-1)

0

20

40

60

80

100

120

0 20 40 60 80 100 120

River discharge, CAR - IDEAM stations (m3 s-1)

FIES

TA -

TRM

M ru

noff

(m3 s

-1)

d1 = 0.8 E1 = 0.64 R2 = 0.87 MAE = 0.36 Bias = -2.32

d1 = 0.71 E1 = 0.43 R2 = 0.76 MAE = 0.57 Bias = -1.33

Page 48: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 2. Validation results for the FIESTA model with the use of WorldClim and TRMM rainfall

datasets. The comparison of model performance for discharges greater or lesser than 5m3 s-1 is

also reported.

Model validation results

Accumulated Water Balance from TRMM

Accumulated Water Balance from WorldClim

Statistics

Q Total (m3 s-1)

Q>5 (m3 s-1)

Q<=5 (m3 s-1)

Q Total (m3 s-1)

Q>5 (m3 s-1)

Q<=5 (m3 s-1)

Observed mean (m3 s-1) 7.21 23.24 1.23 7.21 23.24 1.23 Observed sd (m3 s-1) 17.50 28.16 1.18 17.50 28.16 1.18 Modelled mean (m3 s-1) 8.54 29.60 1.82 9.53 30.48 2.22 Modelled sd (m3 s-1) 17.67 27.38 1.95 19.20 30.02 2.20

Bias (m3 s-1) -1.33 -6.36 -0.60 -2.32 -7.25 -0.99 Mean Absolute Error (MAE) (m3 s-1) 0.57 0.47 0.01 0.36 8.32 0.52 Root Mean Squared Error (m3 s-1) 2.71 3.24 0.10 1.54 11.71 0.75

R2 0.76 0.65 0.57 0.87 0.82 0.59 Modified Index of Agreement (d1) 0.71 0.76 0.69 0.80 0.82 0.75 Modified coefficient of efficiency (E1) 0.43 0.52 0.42 0.64 0.64 0.51

In general the model overestimates large flows to the low western fringes of the

region towards the Magdalena basin (altitudinal gradients between 700 to 2300m) for

WorldClim and TRMM respectively (Figure 13). In contrast, similar discharges in

magnitude at similar elevations are underestimated to the south east of the region

draining from Sumapaz and Chingaza paramos towards the Amazon and Orinoquia

basins.

Low density of rain stations in these areas providing data to the WorldClim as

well as low rainfall inputs reported by TRMM at elevations above about 3000m could

explain the underestimations (Figure 13). Finally, there is a slight better agreement

throughout the high Bogotá sabana for both datasets.

Page 49: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 13. Distribution of areas according to the performance of FIESTA model with the use of

WorldClim and TRMM datasets.

Providing the better agreement achieved with the use of WorldClim subsequent

results are described from the use of this dataset only.

4.4 Development of a paramo storage component for a runoff – subsurface flow

model

In order to produce a closer estimate of water resources in sensitive areas of the

Bogotá region, the results from FIESTA, particularly monthly fog runoff (mm) and

actual evaporation (mm) were coupled with the runoff – subsurface flow model

reported by Sáenz (2007b).

The model was parameterized with soils data of the Guavio catchment located

to the north east of Bogotá city, which covers areas of Chingaza National Park and

accounts for Golillas and Guavio dams the most important for Drinking water

provision and hydroelectric power generation in the Bogotá region (Figure 14).

Orinoquia

Magdalena

Amazon

Bogotá Sabana

Page 50: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 14. Location of the Guavio catchment in the Bogota region and association with Chingaza

National Park.

GuavioGolillas

Guavio catchment

Chingaza Park

Bogotá City

Page 51: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Data of soil depth, texture (sand, clay and silt) and porosity of 315 locations in

the catchment were digitized from the Cundinarmarca soils study scale: 1:100000

(IGAC 2000) and were used together with a SRTM 90m DEM for model

parameterization. A 3h rainfall timeseries dataset covering the whole catchment was

incorporated from the TRMM (Mulligan 2007b).

Figure 15 and Appendix 3 present the main datasets used for parameterization

of the runoff model for the Guavio catchment.

Figure 15. Datasets used for application of a runoff model in the Guavio Catchment. a. soils map

(soils study of Cundinamarca) and sample points of soil depth, porosity and texture. b. Porosity

map derived by the model. c. Soil depth derived. d. Wetness index of similarity.

0 4,250 8,500 12,750 17,0002,125Kilometers

N

0 4,250 8,500 12,750 17,0002,125Kilometers

N

a b

c d

Page 52: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

4.4.1 Development of the paramo storage component

Paramo vegetation types such as mosses and the accumulation of high aboveground

biomass favours high water retention with very low release rates (Hofstede et al 1995;

Ospina 2003; Buytaert et al 2005; Mulligan et al 2006a).

This study attempts to develop a component for the runoff – subsurface flow

model to help understand the effects of paramo vegetation, mainly mosses, on the

water resources to the Guavio catchment.

The model assumes that paramo areas behave as initial water storage of

incoming rain, and runoff water from upstream cells, before the water infiltrates to the

soil (Figure 16).

Figure 16. Components of the hydrological cycle in a paramo catchment. Storage and release

water curve for mosses (Mulligan et al 2006a). Drawing by author.

0

0.5

1

1.5

2

2.5

3

3.5

9 19 29 9 19 29 39 49 59 69

Hours

Epip

hyte

wat

er s

tora

ge m

l/g d

ry b

iom

ass

Epiphyte water storageExperiment 3Experiment 4

rapid uptakeno fog-drip

no evaporation

slowerwater uptake

fog drip occurringno evaporation

rapid water lossrapid fog drip and evaporation

slower water lossevaporation only

wetting experimentdrying experiment

schematic

Page 53: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

4.4.1.1 No saturated paramo

Water from rainfall, R [mm] and upstream runoff, Q [mm] is stored at a constant rate

until paramo reaches its maximum water storage capacity (saturation). The maximum

water storage capacity of paramo for a given cell can be calculated as follows:

CAPCAdW sp

mp

**=θ

(1)

where θmp is the maximum water storage capacity of paramo [mm], dWp is the

dry weight of paramo biomass [kg m-2], CA is the cell area (m2) and Ps is the

maximum amount of water storage [kg] per amount of dry mass [kg].

No water release from paramo to the soil takes place until paramo reaches 75%

of θmp. Once this threshold is reached water starts to be realised in a vertical

dimension to the soil at a constant rate of paramo release Pr (Figure 1 and Figure 16).

At each timestep under no saturated conditions and below 75% of saturation the

paramo storage can be calculated as:

QRsis ++= θθ (2)

where θs [mm] is paramo storage and θsi [mm] is the initial paramo storage per

timestep.

Above 75% of maximum storage capacity the paramo storage can be calculated

as:

rsis PQR −++= θθ (3)

Page 54: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

4.4.1.2 Saturated paramo

Modelling water interchange dynamics in the boundary layer between soil and

paramo under paramo saturated condition is more complex due to evaporation and

significantly different paramo release rates and high hydraulic conductivities (100 to

200 mm h-1), thus the following assumptions were made.

- Evaporation in mosses takes place in the drying process after the vegetation

reaches saturation and the water inputs cease (Mulligan et al 2006a) (Figure

1). Since FIESTA model already calculates evapo-transpiration by the

vegetation and these results are incorporated to the runoff – subsurface model,

evaporation losses are not calculated in the paramo component.

- When paramo reaches saturation the vertical contribution of water to the soil

continues at the same Pr rate. However, since water movement is governed by

energy gradients the paramo component assumes that under saturation

conditions water starts to move horizontally in the paramo layer from

upstream cells to downstream cells at the same Pr rate describing a two

dimensional flow (analogy to horizontal flow in saturated soils reported by

Howe (2000) and Sáenz (2007b).

At each timestep the paramo horizontal water flow Phw that enters a cell from

upstream cells can be calculated as:

( )rhw PlddupstremP ,= (4)

Therefore paramo storage θs at each timestep can be rewritten as:

( )mshwrsis PPQR θθθ ,2min +−++= (5)

- When water inputs are greater than the maximum paramo storage capacity

(θmp) (paramo saturated conditions) the model assumes that the water excess

becomes overland flow.

Page 55: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

At each timestep the Water excess We [mm] to soil infiltration can be calculated as:

( ) mshwrsie PPQRW θθ −−−++=

(6)

4.4.1.3 Drying process

Water release from paramo, after water inputs from rainfall, runoff and horizontal

flow have ceased, continues at the constant rate Pr until paramo storage falls below

45% of θmp. After this threshold value paramo losses water according to evapo-

transpiration mechanisms.

4.4.1.4 Component parameterization

The model was parameterized with land cover change data for the Guavio catchment

and according to the following values.

dWp: dry weight of paramo biomass is 2.83 kg m-2 (Hofstede et al 1995) (section

3.2.1). This study assumes that 100% of paramo biomass corresponds to mosses.

CA : is 8574 m2

Ps : 5.9 kg of water per kg of dry mass (section 3.2.1).

Pr : 0.013 ml g dry biomass hr-1 (about 0.2mm 3hr-1)

4.4.1.5 Model verification, sensitivity analysis and validation

Model verification was carried out following a common sense of the phenomena

modelled. Since verification of model processes were verified for the runoff model in

the area (Sáenz 2007b), this study concentrates on verification of the paramo

component only.

The verification was achieved comparing model discharges by coupling the

paramo component with paramo areas from the baseline2000 scenario, with regard to

model results without considering land cover effects. Comparisons were made at the

Page 56: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chusneque flow station of the Guavio catchment (Figure 36). The differences were

assumed to be the impact of paramo on the estimates.

Figure 17 shows slightly higher river discharges with the use of the paramo

component (about 0.8% on annual average). This output is consequent with the

assumption made indicating that subsurface horizontal flow within the paramo layer

and overland flow from paramo occur once paramo reaches saturation. Since the rate

of paramo water release is very low (0.2mm 3h-1) the availability of water to infiltrate

to the soil is reduced and therefore water excess of the paramo is likely to become

overland flow under paramo saturation.

In addition, paramo runoff is about 0.04mm on average throughout the year

(Figure 17b), which is about the sum of vertical and horizontal paramo fluxes at

saturation. Moreover, paramo runoff to rainfall ratio is still very small (0.03) when

compared to the total runoff to rainfall ratio for the catchment (0.86). Finally, paramo

contribution to runoff can be as high as 2mm at the highest rainfall intensities, which

could take place at saturated conditions when overland flow becomes the dominant

process (Figure 17b).

However, energy gradients and diffusion processes in the boundary layer

between soil and paramo might increase the rate at which paramo releases water to the

soil. In addition, much higher hydraulic conductivities (from 100 to 200 mm h-1) for

the soils of the Guavio catchment than the rate of paramo release could increase the

fluxes between the two media. These aspects represent high uncertainty in the

application of the model.

Page 57: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 17. Verification of paramo component. a. Modelled discharges (m3 s-1) with and without a

Paramo component. b. difference between runoff estimates (mm ha-1). c. Rainfall dataset used in

the simulation (mm). Data reported to the Chusneque flow station, Guavio catchment.

The sensitivity of the model was tested against paramo extent, which is likely to

determine the overall impact of paramo on river discharges in the catchment. The

results confirm this assumption where runoff increases directly with the extent of

paramo (Figure 18).

c

a

b

Page 58: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 18. Change in runoff (m3 s-1) with the change in paramo extent (Chusneque flow station,

Guavio catchment).

Model validation showed good agreement with data of river discharge for the stations

La Vega, Chusneque, Ubala and el Campamento of the Guavio and Golillas dams

(Figure 18 and Table 3).

Figure 19. Correlation between observed and modelled river discharges (m3 s-1) in the Guavio

catchment.

Table 3. Observed and modelled discharges in the Guavio Catchment.

The overall conclusion outlining verification and validation of the paramo

component is that much research is needed to understand water interchange

Station Observed discharge (m3 s-1) Modelled discharge (m3 s-1) Chusneque 27.90 31.80Ubala 54.81 63.40La Vega 71.17 71.00Dedal 9.60 9.30

31.6

31.6

31.7

31.7

31.8

31.8

31.9

31.9

32.0

0 5000 10000 15000 20000

Area of paramo (ha)

Run

off (

m3 s

-1)

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

Observed discharge (m3 s-1)

Mod

elle

d di

scha

rge

(m3

s-1)

d1 =0 9

Page 59: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

mechanisms in the boundary layer between soil and paramo at paramo saturated

conditions, especially considering the low paramo water release intensities. Therefore,

results from the use of this model must be verified with field and laboratory data,

though they are an important contribution to gaining any understanding of the role of

paramo and the impacts of its removal on paramo catchments.

4.5 Development of a dam component for the understanding of water resources

to dams

This study reports the implementation of a physical model in PCRASTER that

simulates the potential annual and seasonal water storage in the main dams of the

Bogotá region and the potential seasonal and annual hydroelectric power generation

and drinking water production.

The model was used to help understand the impacts of land cover change and

PES Schemes conservation to water resources management in the Bogotá region. The

model does not consider operational costs; it takes the market values per kWh of

energy generated and m3 of water produced to estimate a potential change in expected

revenues.

Table 4 and Figure 20 present the characteristics and location of the main dams

in the Bogotá region.

Page 60: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 4. Characteristics of the main dams in the Bogotá region. Sources. Database of tropical

dams (Mulligan et al 2006b)

Dam Hhight (masl)

Hlow (masl)

hr (m)

hext (m)

volume (1000m3) area m2 Q m3 s-1

Guavio 1727 1582 145 955 933693 12289891

62 Reporte

d

Golillas 3050 2930 120 100 223000 3441438

7 Reporte

d

Chingaza Lagoon 3219 3092 127 100 26231 780423

5 Reporte

d

Chivor 1345 1146 199 800 700985 7639889

62 Reporte

dPrado 366 170 196 0 530395 25865442 115

Tomine 2581 2549 32 0 705500 22007528

4 Reporte

dSisga 2660 2641 19 0 96500 5174740 3Neusa 2967 2956 11 0 99900 8934441 2

regadera 2969 2957 12 0 4100 333246

1 Reporte

dCopa 2657 2644 13 0 72000 5524391 3Tota 3014 2980 34 0 1920000 56347235 4

Page 61: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 20. Main dams in the Bogotá region.

4.5.1 Parameters to Dam filling modelling

Availability of water inputs (river discharge), maximum storage capacity in the

reservoir and maximum operational discharge control the operational capacities and

operation purposes for dam management (Kerola 2006).

To model the dam reservoir system for operational capacities it is necessary to know.

- Reservoir topography: Reservoir DEM, which gives sensitivity the changes in

water head.

- Water inputs: river discharge, Qr [m3 s-1].

- Maximum storage capacity in the reservoir: Vmax [m3].

Page 62: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

- Minimum operational storage capacity in the reservoir: Vmin [m3]. Reservoir

storage which is neither death volume Vdeadth [m3] nor that intended for flood

control processes Vfcontrol [m3].

- Maximum and average operational discharge: Dam discharge Qdam [m3 s-1].

4.5.2 Reservoir topography

Reservoir topographical characteristics determine maximum storage capacity Vmax

[m3], minimum operational storage capacities Vmin_o [m3] as well as potential water

head energies for hydroelectric power generation.

This information is not easily available from open sources and time constraints

did not allow the provision of this information on time for this study from dam

managing bodies. Use of Lidar datasets were not available and time restrictions did

not allow interpretation of aerial photography. These were limitations to the

application of the model.

Nonetheless, this study considered the following assumptions to give an idea of

topographical characteristics of the reservoir.

- Dam topography below water surface responds to the topographical

characteristic of the boundary areas of the reservoir above water surface.

- The maximum reservoir depth below the water surface at the dam place was

assumed to be equal to the dam wall height. The maximum reservoir altitude

was the water surface altitude according to the SRTM 90m DEM.

In order to implement these assumptions a 500m buffer around the reservoir

edges and a SRTM 90m DEM were used to consider the topography of the boundary

areas of the reservoir water surface. The 500m buffer was chosen as an average

distance where the surrounding topographical variables (slope, aspect) did not change

drastically and thus conserving theoretically similar water accumulation properties.

Reservoir altitudes in the inner surfaces (topography below water) were thus

interpolated using a minimum curvature spline (tension) technique.

Page 63: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 21 presents the datasets used for the reproduction of reservoirs

topography in the main dams of the Bogotá region.

Figure 21. Procedure and datasets used for reservoir topography characterization. Case: Guavio

dam. a. DEM, reservoir boundary and buffer area. b. Slope of the terrain surrounding the dam.

c. aspect. d. Reservoir topography below the water surface.

Guavio

dam

Guavio

dam

Guavio

dam

a b

c d

Page 64: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

The reservoir topography and thus the calculated volume of the dam were

validated against data of maximum storage capacity in the reservoir Vmax [m3] for

every dam reported by the tropical dams database (Mulligan et al 2006b). In cases

where the reservoir volume was underestimated or overestimated the maximum

altitude for the water surface in the DEM (altitude Hmax (masl)) for the dam was

adjusted from the interpolated surface. Figure 22 presents the characteristics taken

into consideration for topography and dam modelling.

Figure 22. Characteristic of a model reservoir assumed for the dams model.

4.5.3 Reservoir water balance

The input volume to the reservoir each timestep was calculated as:

timestepTimeQV rinput _*= (7)

where Vinput [m3] is volume that enters to the reservoir and Qr [m3 s-1] is river

discharge and Time_timestep [s] is the period of time the timestep represents.

The output volume from the reservoir each time step was calculated as:

timestepTimeQV damoutput _*= (8)

where Voutput [m3] is the volume output from the reservoir and Qdam [m3 s-1] is the dam

discharge.

At each timestep the reservoir storage is calculated as:

Page 65: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

( )max1 ,min VVVVV outpuinputii −+= − (9)

where Vi is reservoir storage at the timestep i [m3], and Vmax is maximum reservoir

storage [m3].

When Vi exceeds Vmax this water is supposed to be returned to the river downstream

(spillway) and is not taken into account for further calculations.

4.5.3.1 water balance parameterization

• Maximum storage

The maximum storage capacity Vmax [m3] for every dam was taken from the database

of tropical dams (Table 4).

• Dam discharge and Minimum operational storage capacity

The literature informs a minimum operational storage capacity Vmin [m3] of 20% of

maximum storage for the Guavio dam only (EEB 2000) (Table 4). Also a minimum

aggregated national operational storage capacity of 20% for hydroelectric power

generation under extreme events such as the niño is also pointed out (UPME 2003).

Dam discharges are taken from the literature for six dams in the study area

(Table 4). For the remaining dams (smaller dams) the dam discharge is assumed to be

the annual average runoff in order to model the average water storage and drinking

water production.

The model assumes that dam discharges Qdam [m3 s-1] occur only above the

minimum operational storage capacity Vmin [m3] (20% of the maximum reservoir

capacity Vmax [m3]).

Water losses of the reservoir below the minimum operational storage capacity

are supposed to occur due to evaporation of water surfaces.

Page 66: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Since the model runs with data for one year provided by FIESTA and the

runoff-subsurface model the dams have not water storage at the beginning of the

simulation. In order to represent higher volumes that are likely to occur in an average

season and allow initial discharges from the dams (above minimum capacity) the

model assumes an initial storage Vi [m3] in the reservoirs of 30%.

4.5.4 Potential hydropower production

The potential power produced by the water stored in the reservoir at each timestep can

be calculated as:

gtextrdami hhQgp ηη **)(** += (10)

where Pi [kW] is the potential nominal hydroelectric power of the dam, Qdam [m3 s-1]

is the dam discharge (turbines flow), hr and hext [m] are the water head in the reservoir

and the external water head from the base of the dam to the power plant. ηt and ηg are

the efficiency of the turbine and generator respectively (Fay 1994; Novak et al 2001;

Kerola 2006). g [m s-1] represents the gravitational constant (9.81 m s-1).

At each time step the water head in the reservoir hr is calculated as:

)1()1(

)(

−−

−+=

ir

outputinputirri A

VVhh (10)

where hri [m] is the water head at the timestep i, hri-1 [m] is the water head at the

timestep i-1 Vinput and Voutput [m3] are the input and output volumes of the dam, and

Ar(i+1) is the area of the reservoir at the water surface level.

4.5.4.1 Hydropower parameterization

Dam discharges below the minimum operational reservoir capacity and thus the

hydroelectric power generation is 0. Water heads are never higher than the water head

at the maximum operational storage capacity.

Page 67: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

No information was available referring to the characteristics of the turbines and

generators of the power plants in the Bogotá region. Values were assigned from

typical values reported in the literature (Fay 1994; Kerola 2006).

ηt : values between 0.75 and 0.9. 0.9 was assigned.

ηg : values between 0.92 and 0.97. 0.95 was assigned.

The price per kWh to the public was $292 (Colombian pesos) according to SSPD

(2007).

4.5.5 Potential drinking water production

Drinking water production was calculated taken into consideration the dam discharge

Qdam [m3 s-1] for the dams providing drinking water in the Bogotá region.

The price of m3 of drinking water to the public was $1862 (Colombian pesos)

according to EAAB (2007).

4.5.6 Model verification, sensitivity analysis and validation

Model verification was carried out against a common sense of the processes modelled

(increase in water stored and water heads mainly).

Unfortunately no validation of results produced by the model was feasible due

to availability of data constraints for the dams under study.

Verification of modelled seasonal reservoir storage capacities for the Guavio

dam is presented in Figure 23a.

The model reproduces the seasonality of the filling process of the reservoir

according to the river flows data from FIESTA with average water storage of

480Mm3 throughout the year (Figure 23a). Figure 23 also shows the change in

nominal water head (reservoir head + external head) in the reservoir, which is

proportional to the increase in storage volume and exhibits sensibility at the seasonal

changes.

Page 68: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 23. a. Modelled reservoir capacity (Mm3) and water head (m) for the Guavio dam. b.

Monthly progression of potential hydroelectric power simulated by the model (MW).

The potential hydroelectric power (MW) changes in accordance with the change

in water head in the reservoir (Figure 23b). The model reports an average potential

hydroelectric power of about 480MW and a potential energy generation 3143GWh

year-1, considering 75% potential operation throughout the year. These figures are

within the margin of designed installed capacities for the dam according to the

tropical database of dams (1150MW and 5600 GWh year-1 respectively) (Mulligan et

al 2006b). However no data of actual operation capacities was available for

verification.

300

350

400

450

500

550

600

650

700

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Months

MW

b

0

100

200

300

400

500

600

700

800

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Time, Months

Res

ervo

ir ca

pcity

, Mm

3

940

960

980

1000

1020

1040

1060

1080

1100

Wat

er h

ead,

hr (

m)

Modelled reservoir capacity Water head reservoir, hr

a

Page 69: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

This is a clear limitation to the validation of power, energy and economic results

produced by the model. Also the assumptions made for consideration of reservoir

topography introduce significant uncertainty to the estimation of these variables.

Therefore, the results presented subsequently do not intend to represent the

reality of hydroelectric power generation or drinking water provision in the region,

but instead they aim for improving our understanding of the overall impacts of land

cover change in the areas surrounding its main dams.

Page 70: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chapter 5: Results

5.1. FIESTA model results

This section outlines the main results of the FIESTA model and their relevance for the

largest dams in the region highlighting fog interception contributions to water

balances and impacts of land cover change and conservation measurements from PES

implementation.

5.1.1 Fog inputs baseline2000 scenario

Overall fog inputs magnitudes are clearly dependent upon exposure to incoming

winds and are inversely correlated to altitudinal bands in the Bogotá region (Figure 24

and Figure 25). The greatest fog inputs occur in the lowlands (below about 2300m)

from 100 to 150mm year-1, with highly exposed areas showing between 200

and 300 mm year-1 (Figure 24, Figure 25a and Figure 25b). On the other hand, fog

inputs just average about 70mm year-1 in the high Bogotá Sabana (2300 to 2800m)

and at higher altitudes coinciding with paramo areas (above 3200m) these are as low

as 40mm year-1 (Figure 24, Figure 25a and Figure 25b).

Highest fog inputs are observed in dams located below 2000m, particularly

areas surrounding Guavio, Prado and Chivor (100 to 140mm year-1). The rest of the

dams including Golillas and Chingaza Lagoon, receive less than 70mm year-1.

Page 71: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 24. Fog inputs (mm) in the Bogotá region, baseline scenario2000.

N

0 40 80 120 16020Kilometers

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

Page 72: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 25. a. Fog inputs by altitudinal bands (mm) and b. altitudinal bands in the Bogotá region

(masl).

5.1.1.1 Fog inputs as a proportion of rainfall and water balance

Fog inputs represent from about 6% to 9% of rainfall and water balance in the high

Bogotá sabana (2300 to 2800masl), though they only amount from 1% to 2% of the

much wetter low lands, in the eastern ridges of the Bogotá region, and of high areas

above 3000m (Figure 26). However, they represent from 10% to 15% of the drier low

lands towards the Magdalena basin (Figure 26).

Fog inputs are an important proportion of water budget in areas surrounding

Chivor, Tomine, Sisga, Copa, Tota Lake and Prado (from 8% to 15%) (Figure 26),

though not so for Golillas and Chingaza Lagoon located in paramo areas of the

Chingaza Park (Figure 26).

N

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

a b

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

Page 73: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 26. a. Fog inputs as proportion annual rainfall (mm) and b. Fog inputs as proportion

annual water budget (mm). c. Annual water budget (mm).

N

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota Tota

a b

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

Page 74: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

However, Figure 26c shows much higher water budgets in paramo areas (areas above

3200masl) of up to 1000mm year-1 compared to those of the high Bogotá sabana

(about 500mm year-1) confirming the importance of these ecosystems for the

provision of water resources to Bogotá city.

5.1.1.2 Runoff from fog as a component of river discharge

Runoff from fog in most of the cases is a proportion below 4% of river discharge to

the main dams in the region. Fog represents about 4% of the average runoff for

Guavio, Chivor and Prado dams (2 to 3 m3 s-1) (Figure 27). However, fog runoff is

more significant in the drier areas of the high valleys feeding Tota, Copa, Tomine,

Neusa, Sisga and Regadera dams where it amounts from 5% to 10% of river

discharges.

Figure 27. Runoff from fog as part of river discharge. a. Runoff from fog (m3 s-1). b. River

discharge (m3 s-1). Detail for the Guavio river that feeds the Guavio Dam.

5.1.1.3 Fog contributions and National parks

Fog inputs represent a relatively low proportion of water budgets in national parks

corresponding to 3.6%, 3.2% and 4.5% (68mm year-1, 72 mm year-1 and 54mm year-1)

for Sumapaz, Chingaza and Iguaque respectively. However, Golillas and Guavio dam

and Chingaza Lagoon benefit from fog inputs provided by Chingaza (Figure 28).

illas

Guavio

illas

Guavioa b

Page 75: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 28. Fog contributions and national parks in the Bogotá region. a. % of water balance. b.

Fog contributions (mm).

5.1.1.4 Monthly contributions from fog to dams in the region

Seasonally fog is a high proportion of runoff in the months of December, January and

February in the high valleys surrounding Tota and Copa (Towards the Chicamocha

Region). January is the month of greatest fog contributions amounting from 15% to

40% of water balance (Figure 29). To the middle of the year, months of July and

August, the contribution becomes higher to the west of Bogotá region (low areas of

Sumapaz municipality) (from 10 to about 30%) (Figure 29).

Therefore, fog inputs are seasonally important for the maintenance of regular

flows in the dry areas surrounding Tota Lake and Copa dam as well as for Chivor,

Sisga, Tomine and Guavio, but especially in January (Figure 29).

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

Sumapaz Park

ChingazaPark

Iguaque Park

Sumapaz Park

ChingazaPark

Iguaque Park

Page 76: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 29. Monthly progression of fog as a proportion of runoff in the Bogotá region.

5.1.2 General impacts of land cover change. Comparison between baseline1977

and baseline2000 scenario

Comparing the baseline1977 and baseline2000 scenarios, there has been already a

reduction in fog interception from 10 to about 20mm year-1 for the main dams in the

region. The greatest drop (down to 150mm year-1) has taken place towards the

Magdalena catchment where most of the deforestation took place over the period

(Figure 30a).

In addition, evapo-trasnpiration has decreased throughout the region in

deforested areas from 50 to about 250mm year-1, and as much as 1200mm year-1 (bare

and urban soil) (Figure 30b). Consequently, water budgets have increased throughout

from 200 to 400mm year-1 in spite of the losses from reduced fog interception (Figure

30c).

Flows have increased up to 4m3 s-1 for some of the largest rivers in the region.

Particularly, for Guavio flows have increased about 2.5m3 s-1 (Figure 31a), whereas

fog contribution to runoff declined about 0.1 m3 s-1 (3.15 Mm3) (Figure 31b).

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

N

J F M

M J J A

S O N D

A

Page 77: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Totaa

b

Page 78: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 30. Differences in a. Fog interception (mm), b. Evapo-transpiration (mm) and c. Water

balance (mm) between the baseline1977 and baseline2000 scenarios.

Figure 31. a. Detail of increase in runoff (m3 s-1) for the Guavio dam, baseline2000 scenario. b.

Reduction in fog contribution to runoff (m3 s-1).

5.1.3 Conservation impacts: PES scenario to 2050

Considering the PES scenario with regard to the baseline2000 scenario, further

deforestation outside protected areas leads to increases in water budgets due to

reduced evapo-transpiration (Figure 32). No change takes place within the protected

Guavio Guavioa b

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

c

Page 79: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

areas (Figure 32). However, total flows are increased up to 2.8 m3 s-1 for the whole

region in spite of a decline in fog contribution to flows of about 0.05 m3 s-1 (Figure

33a and Figure 33b).

Figure 32. Differences in a. fog interception, b. evapo-transpiration and c. water balance

between the PES and baseline2000 scenarios.

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

a b

c

Tota Tota

Page 80: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 33. a. Detail of runoff (m3 s-1) for the Guavio dam baseline2000 scenario. b. Reduction in

fog contribution to runoff (m3 s-1).

5.1.4 Conservation impacts: NOPES scenario

Similar trends as those observed in the PES scenario occur here but this time within

the protected areas as well. Fog inputs decrease down to 40mm year-1 in low land

areas of Chingaza park, though much less in paramo areas (between 0 to 10mm year-

1) (Figure 34a). Further gains in water budget from removing paramo are also very

low (0 to 20 mm year-1) (Figure 34c)

5.1.5 Conservation impacts: Naturalcoversremoved (NONC)

When cloud forest and paramo are removed an additional increase in river flows of

about 3m3 s-1 is observed throughout the whole region (Figure 35). In contrast, a

great decline in fog contribution to river flows is observed as well (0.1 to 0.15m3 s-1,

4.7Mm3 for the Guavio dam).

Guavio Guavioa b

Page 81: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 34. Differences in a. fog interception (mm), b. evapo-transpiration (mm) and c. water

balance (mm) between the NOPES and baseline2000 scenarios.

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

a b

Sisga

Tomine

Neusa

Regadera

PradoChingaza lagoon

Golillas

Guavio

Chivor

Copa

Tota

c

Page 82: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 35. a. NONC scenario. Detail of runoff (m3 s-1) for the Guavio dam. b. Reduction in fog

contribution to runoff (m3 s-1).

5.2. Results from the Runoff – subsurface model with a paramo component

The paramo component integrated to the runoff – subsurface flow model was

implemented with land cover data of the Guavio catchment to gaining any

understanding of the impacts of paramo loss and conservation from PES schemes to

Golillas and Guavio dams. Figure 36 indicates the land covers, main dams and flow

stations in the area.

Figure 36. Guavio catchment. Land covers, main dams and the location of flow stations are

represented.

Guavio

Guavio

a b

Page 83: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

5.2.1 Guavio dam

Overall replacement of paramo to crops-grasslands reduces slightly water inputs to

the Guavio dam. Comparison of annual flows for baseline1977 and baseline2000

scenarios indicates that the water flows to the dam have potentially dropped about

0.14m3 s-1 on average (0.24%) (Figure 37a).

Water flows reductions are greatest for NOPES and NONC scenarios with

regard to baseline2000 amounting to 1.2% of river flows (0.32 and 0.85m3 s-1

respectively) (Figure 37a and Figure 37b). Less reduction is observed in the PES

scenario (Figure 37a).

55

60

65

70

75

80

85

Ene Feb Mar Apr May June July Aug Sep Oct Nov Dec

Time, Months

Dis

char

ge, m

3 s-1

baseline2000 baseline1977 Pes NoPes NONC

b

71.0570.89

70.7970.66

70.04

69.4069.6069.8070.0070.2070.4070.6070.8071.0071.20

base

line19

77

base

line20

00PES

NOPES

NoNaturalco

vers

Landcover scenarios

Disc

harg

e, m

3 s-1

a

+0.24% 0.0 -0.13% -0.22%

-1.20% +0.17m3s-1

0.0 +0.10m3s-1 -0.32m3s-1

-0.85m3s-1

Page 84: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 37. a. Annual change in river discharge (m3 s-1) to the Guavio dam for Baseline and PES

Scenarios. b. Seasonal changes in river discharge (m3 s-1). c. Seasonal differences (m3 s-1).

In addition, the impact of paramo removal and conservation could be better

understood in Figure 37c and Figure 37b (positive part represents higher budgets in

the baseline2000 scenario), in which the greatest reductions in the NONC scenario for

the wet season (months, June and July) coincide with higher flows considering the

baseline1977, in which paramo resources are greatest (Figure 37c). Furthermore,

higher and more regular flows noted in the baseline1977 scenario in the driest months

(first five months) (Figure 37b and Figure 37c, orange line) could indicate a potential

regulation effect of paramo on river flows.

5.2.2 Golillas dam

Similar trends are observed for the Golillas dam, though the relative impacts of

paramo removal are almost double compared to those for Guavio (0.9, 2 and 2.3% for

PES, NOPES and NONC scenarios respectively). This could be attributed to the fact

that the dam is located right within paramo areas of Chingaza park and thus it is more

sensitive to impacts from paramo loss (Figure 38a and Figure 36).

-2-1.5

-1-0.5

00.5

1

1.52

2.53

Ene Feb Mar Apr May June July Aug Sep Oct Nov Dec

Time, Months

Diff

eren

ce d

isch

arge

, m3 s

-1

baseline1977 Pes NoPes NONCc

Page 85: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 38. a. Annual change in river discharge (m3 s-1) to the Golillas dam for Baseline and PES

Scenarios. b. Seasonal changes in river discharge (m3 s-1). c. Seasonal differences (m3 s-1).

9.299.25

9.18

9.079.04

8.908.959.009.059.109.159.209.259.309.35

base

line19

77

base

line20

00PES

NOPES

NoNaturalco

vers

Landcover scenarios

Disc

harg

e, m

3 s-1

+0.35% 0.0 -0.86% -1.96%

-2.29% +0.03m3s-1

0.0 +0.08m3s-1 -0.18m3s-1

-0.21m3s-1

c

8.5

8.7

8.9

9.1

9.3

9.5

9.7

Ene Feb M ar Apr M ay June July Aug Sep Oct Nov Dec

Time, Months

Dis

char

ge, m

3 s-1

baseline2000 baseline1977 Pes NoPes NONC

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Ene Feb M ar Apr M ay June July Aug Sep Oct Nov Dec

Time, months

Diff

eren

ce d

isch

arge

, m3 s

-1

baseline1977 Pes NoPes NONC

b

a

Page 86: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

5.4 Results from the application of a dam filling model

5.4.1 General results for the Bogotá region using FIESTA river flows

5.4.1.1 Aggregated volume, Bogotá region

The model informs an increase in the water stored for all the dams in the region for

PES, NOPES and NONC scenarios, regarding the baseline2000 scenario (2465Mm3).

Increases are about 21.2, 22.5 and 25.4 Mm3 for the three scenarios respectively (the

highest being just above 1% of that of baseline2000). The model reports a potential

change already occurred from baseline1977 to baseline2000 of about 16Mm3 (Table 5

and Figure 40).

Table 5. Change in water storage (Mm3) for the Bogotá region according to different scenarios of

land use change (Negative values indicate loses in water volume).

Storage Volume (m3)

Dam Baseline 2000

Baseline 1977 PES NOPES NONC

Diff (%)baseline2000-NONC

Tota 598.98 599.05 598.95 598.95 598.92 0.00

Chingaza_lagoon 10.74 10.75 10.74 10.74 10.74 0.04

Chivor 511.62 500.58 517.45 517.45 517.48 -1.15

Copa 60.52 63.48 60.52 60.52 60.58 0.11

Golillas 79.75 79.07 79.75 79.82 79.85 -0.13

Guavio 462.38 454.24 468.04 468.92 470.96 -1.85

Neusa 51.36 49.99 51.40 51.40 51.42 -0.11

Prado 249.91 250.04 250.98 250.96 250.95 -0.42

Regadera 4.54 4.50 4.54 4.54 4.54 -0.02

Sisga 48.35 47.05 48.71 48.75 48.75 -0.83

Tomine 238.97 239.45 239.74 239.74 239.82 -0.36

Total Bogotá capacity 2465.28 2449.29 2486.49 2487.77 2490.65

Difference baseline -15.99 +21.22 +22.49 +25.37

There is less to be gained from deforestation for dams in drier areas where fog

inputs are greater, especially for Tota, Copa and Prado, where fog inputs are a

significant proportion of water budgets seasonally (Figure 29). In addition, areas with

important proportions of paramo cover (low evapo-transpiration) such as Chingaza

Lagoon, Golillas and Regadera also show smaller increases (Figure 34c).

Page 87: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 39. a. Change in the regional water stored in dams in the Bogotá region. b. Seasonal

contribution from every dam in the region.

5.4.1.2 Drinking water provision

In terms of the aggregated drinking water provision to the region (Tomine, Sisga,

Neusa, Golillas, Chingaza Lake and Copa dams together), the model reports increases

of 1.9, 3.3 and 4.7Mm3 for the PES, NOPES and NONC scenarios with regard to

baseline2000 (Table 6). These increases represent from 1.8 to 4.2 million USD

(Figure 40).

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec

Months

Mm

3

tota

chingaza_lake

chivor

copa

golillas

guavio

neusa

prado

regadera

sisga

tomine

Bogota_Capacity

b

a -20.0-15.0-10.0-5.00.05.0

10.015.020.025.030.0

baseline1977 PES NOPES NONC

Scenario

Diff

eren

ce in

wat

er s

tore

d, M

m3

Page 88: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 6. Change in drinking water provision (Mm3) and Economic value Million USD.

Dam drinking water provision Mm3

Dam Baseline 2000

Baseline 1977 PES NOPES NONC

Tota 74.6 77.5 74.8 74.8 75.0

Chingaza Lagoon 75.8 75.2 75.8 75.9 76.6

Copa 62.0 63.2 62.0 62.0 62.0

Golillas 81.1 78.9 81.1 82.0 82.6

Neusa 42.6 39.5 42.7 42.7 42.8

Regadera 28.1 27.5 28.1 28.1 28.1

Sisga 53.0 51.3 53.5 53.6 53.5

Tomine 55.8 56.5 57.0 57.0 57.1

Total 473.0 469.7 475.0 476.0 477.7

Difference Mm3 -3.3 +1.9 +3.0 +4.7

Economic value of change in water provision Million USD

Dam Baseline 2000

Baseline 1977 PES NOPES NONC

Tota 67.2 69.7 67.3 67.3 67.5

Chingaza Lagoon 68.2 67.7 68.2 68.3 69.0

Copa 55.8 56.9 55.8 55.8 55.8

Golillas 73.0 71.0 73.0 73.8 74.4

Neusa 38.4 35.6 38.4 38.4 38.5

Regadera 25.2 24.7 25.2 25.2 25.2

Sisga 47.7 46.2 48.1 48.2 48.2

Tomine 50.2 50.9 51.3 51.3 51.4

Total economic value MUSD 425.7 422.7 427.5 428.4 429.9

Difference -3.0 +1.8 +2.7 +4.2

Page 89: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 40. Change in the economic value of drinking water resources (Million USD). a. Regional.

B. Contribution per dam.

5.4.1.3 Hydroelectric power generation

The aggregated hydroelectric energy production (GWh year-1) from the Guavio,

Chivor and Prado dams increases in the PES, NOPES and NONC scenarios in about

27, 29 and 35 GWh year-1, which represent an augment from 2.9 to 3.8 Million

USD (Table 7 and Figure 1). This increase was potentially greatest over the period

between baseline1977 and baseline2000 (84GWh year-1) (Table 7).

0

2

4

6

8

10

12

14

Jan

Feb

Mar

Apr

May

June

July

Aug

Sep Oct

Nov

Dec

Months

Econ

omic

val

ue, M

USD

totachingaza_lakecopagolillasneusaregaderasisgatominetotal_capacity

a

b

-20.0

-15.0

-10.0

-5.0

0.0

5.0

10.0

15.0

20.0

25.0

30.0

baseline1977 PES NOPES NONC

Scenario

Econ

omic

impa

ct, M

USD

Page 90: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 7. Change in annual hydroelectric energy production, GWh year-1 and economic value.

Hydroelectric energy production GWh year-1

Dam Baseline 2000

Baseline 1977 PES NOPES NONC

Chivor 2475 2420 2477 2477 2477 Guavio 3294 3265 3317 3319 3325 Prado 101 102 103 103 103 Total_region 5871 5787 5897 5900 5906 Difference -84 +27 +29 +35 Economic value of the energy production (GWh year-1) Million USD pesos)

Dam Baseline 2000

Baseline 1977 PES NOPES NONC

Chivor 269.8 263.8 270.0 270.0 270.0

Guavio 359.1 355.9 361.5 361.8 362.4

Prado 11.0 11.1 11.3 11.3 11.3

Total_region 639.9 630.8 642.8 643.1 643.7

Difference 9.2 -2.9 -3.1 -3.8

Figure 41. Change in the potential hydroelectric energy produced in the Bogotá region (GWh

year-1). a. Economic change (MUSD). B. Contribution per dam (GWh year-1).

b

0

100

200

300

400

500

600

Jan

Feb

Mar Apr MayJu

ne July

Aug Sep OctNov Dec

Months

Ener

gy p

rodu

ctio

n, G

Wh

year

-1

chivor guavio prado total_capacity

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

6.0

baseline1977 PES NOPES NONC

Scenario

Econ

omic

impa

ct, M

USD

a

Page 91: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

5.4.2 General results for the Guavio Catchment

Implications of paramo removal on hydroelectric power generation and drinking

water production for Guavio and Golillas dams were studied by using river flows

simulated with a runoff model with paramo component.

To difference of the effect of deforestation, which increases potential water

resources in the Bogotá region (though not likely water quality), losing paramo could

bring negative consequences for the provision of these services from Guavio

catchment.

5.4.2.1 Hydroelectric energy production

A decrease in hydroelectric energy production as a result of paramo removal is

observed. Energy production drops about 25, 54 and 64GWh year-1 for PES, NOPES

and NONC scenarios respectively (Table 8). A potential decrease in energy

production of about 10GWh year-1 is also reported from baseline1977 to baseline2000

(Table 8).

This reductions appear to be higher than potential gains from deforestation,

which are about 23, 25 and 31 GWh year-1 for PES NOPES and NONC scenarios

respectively (according to FIESTA river flows without a paramo component, though

these figures cannot be compared directly because of the different rainfall datasets

used).

Therefore, the potential economic loss of removing paramo would amount to

about 2.7, 5.9 and 7 million USD year-1, for PES, NOPES and NONC respectively

(Table 8 and Figure 42). This loss is greater than the gains in water river flows from

deforestation (2.5, 2.7 and 3.4 million USD respectively) (Table 8 and Figure 42).

Page 92: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Thus, results point out a potential positive economic impact of up to 3.2 million

USD from conserving paramo in Chingaza by implementing PES schemes to the year

2050. In addition, a further enhance in paramo protection in the catchment could

represent as much as 2.7 million USD to the year 2050.

Figure 42. Change in the economic value of hydroelectric energy production (MUSD). a. Loses

from paramo loss. b. Gains from deforestation.

River flows Runoff - paramo component

-8.0

-6.0

-4.0

-2.0

0.0

2.0

4.0

baseline1977 PES NOPES NONC

Scenario

Econ

omic

impa

ct, M

USD

FIESTA river flows with no paramo component

-4

-3

-2

-1

0

1

2

3

4

baseline1977 PES NOPES NONC

Scenario

Econ

omic

impa

ct, M

USD

a

b

Page 93: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 8. Hydroeletric energy production and economic impact of land use change and

conservation in the Guavio catchment (Guavio dam).

5.4.2.2 Drinking water provision.

The change in drinking water provision was studied for the Golillas dam, where

reductions in potential annual water provision of about 4.7, 11 and 10Mm3 for PES,

NOPES and NONC scenarios respectively are highlighted (Table 9). Current paramo

loss had already led to a potential 1.5 Mm3 annual reduction in water provision from

the dam (Table 9). These figures have to be validated against data from the water

company.

Hydroelectric energy production GWh year-1, Guavio dam

dam Baseline 2000

Baseline 1977 PES NOPES NONC

Runoff model 3289 3299 3264 3235 3225

Total Guavio catchment 3289 3299 3264 3235 3225

Difference +10 -25 -54 -64

FIESTA 3294 3265 3317 3319 3325

Total Guavio catchment 3294 3265 3317 3319 3325

Difference -29 +23 +25 +31

Economic value of the energy production Million USD. Guavio dam

dam Baseline 2000

Baseline 1977 PES NOPES NONC

Runoff model Economic value Million USD 358.5 356.0 355.8 352.6 351.5

Total Guavio Catchment 358.5 356.0 355.8 352.6 351.5

Difference +2.5 -2.7 -5.9 -7.0

FIESTA Economic value Million USD 359.0 355.9 361.6 361.8 362.4

Total Guavio catchment 359.0 355.9 361.6 361.8 362.4

Difference -3.2 +2.5 +2.7 +3.4

Page 94: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Coupling river flows from FIESTA the model predicts slight increases in the

availability of potential drinking water resources of just above 1.2% for the NONC

scenario (0, 0.8 and 1.5Mm3 between PES, NOPES and NONC scenarios), indicating

that there is much less to be gained in water flows from paramo vegetation removal.

The economic value of losing paramo for this dam could represent between 4.2 and

10.4 million USD year -1 to the year 2050 for PES and NOPES scenarios respectively

(Table 9 and Figure 43), indicating a potential economic benefit of conserving paramo

of up to 6.2 million USD year-1 by implementing PES schemes and a further 4.2

million year-1 as a result of extending the paramo protected area (Table 9 and Figure

43).

Figure 43. Change in the economic value of drinking water provision (MUSD). a. Loses from

paramo loss. b. Gains from deforestation.

River flows Runoff - paramo component

-12.0

-10.0

-8.0

-6.0

-4.0

-2.0

0.0

2.0

baseline1977 PES NOPES NONC

Scenario

Econ

omic

impa

ct, M

USD

FIESTA river flows with no paramo component

-2.5-2

-1.5-1

-0.50

0.51

1.52

baseline1977 PES NOPES NONC

Scenario

Econ

omic

impa

ct, M

USD

a

b

Page 95: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Table 9. Drinking water production and economic impact of land use change and conservation

in the Guavio catchment (Golillas dam).

Drinking water provision Mm3, Golillas

dam Baseline 2000

Baseline 1977 PES NOPES NONC

Runoff model 177.0 178.5 172.3 165.5 167.0

Total Guavio catchment 177.0 178.5 172.3 165.5 167.0

Difference +1.5 -4.7 -11.6 -10.0

FIESTA 81.1 78.9 81.1 82.0 82.6

Total Guavio catchment 81.1 78.9 81.1 82.0 82.6

Difference -2.2 +0.0 +0.8 +1.5

Economic value of drinking water provision Million USD. Golillas dam

Dam Baseline 2000

Baseline 1977 PES NOPES NONC

Runoff model Economic value Million USD 159.3 160.7 155.1 148.9 150.3

Total Guavio catchment 159.3 160.7 155.1 148.9 150.3

Difference +1.4 -4.2 -10.4 -9.0

Runoff model Economic value Million USD FIESTA 73.0 71.0 73.0 73.8 74.4

Total Guavio catchment 73.0 71.0 73.0 73.8 74.4

Difference -2.0 0.0 +0.8 +1.4

Page 96: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de
Page 97: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Chapter 6: Conclusions and recommendations

FIESTA model was used to understand water resources to the Bogotá region and the

impacts of land cover change and conservation through PES schemes implementation.

The model was coupled with other model components such as a runoff model with a

paramo component and a dam filling model to help understand impacts of

deforestation on the provision of drinking water and hydroelectric energy generation

for the whole region in general and the implications of paramo removal, in particular,

for a smaller catchment of the region (Guavio catchment).

Study outcomes indicate that fog inputs are seasonally important in magnitude

especially for dry areas to the north of the Bogotá region where they can be as high as

40% of water balances and represent up to 10% of river discharges seasonally, though

these contributions are generally a low proportion in the lowlands (below 4%).

Deforestation has led to potential losses in river flows of up to 0.1m3 s-1

(3.15Mm3) in the whole region due to declines in fog interception with regard to an

early scenario to the year 1977. Projected deforestation scenarios to the year 2050

reduce fog contribution to rivers in similar amounts. However, river flows are

generally increased up to 3 m3 s-1 throughout the whole region due to reduced evapo-

transpiration even when the losses from reduced net fog interception are considered.

The general increase in river flows due to deforestation for all land cover

change and conservation scenarios considered (baseline2000, PES NOPES and

NONC) leads to an enhance in water resources for drinking water provision and an

increase in the hydroelectric energy produced by the whole region (up to 4.7Mm3

amounting to 4.2 Million USD and up to 35GWh year-1 amounting to 3.8 Million

USD respectively). However, there is much less to be gained from deforestation in

dry areas surrounding Tota Lake and Copa and Prado dam and paramo areas

surrounding Chingaza Lagoon, Golillas and Regadera.

Page 98: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

In contrast, the effects of paramo removal could represent a reduction in water

resources to dams in paramo areas such as Chingaza and therefore on the economic

productivity of drinking water and hydroelectric generation. The model indicates a

potential drop in river flows down to 1.2% and 2.2% for Guavio and Guaitiquia rivers

feeding Guavio and Golillas dams respectively.

Results for Guavio catchment point out that PES schemes implementation to

the 2050 could help save about 3.2 million USD year-1 of economic hydroelectric

productivity from paramo conservation in the Chingaza National Park and that

another 2.7 million USD could be added to this figure if conservation measures are

extended to unprotected paramo resources surrounding the Park.

Similar results are observed for the case of drinking water production, for

which a PES schemes establishment could help maintain water inputs representing 6.2

million USD year-1 and in which a further enhancement of the protected area could

represent another 4.2 million USD.

Results from paramo conservation are encouraging since conservation efforts

could potentially represent positive economic impacts and are a useful exercise to

help understand the potential benefits of conserving paramo. However, they must be

validated now as well as model assumptions and compared with information from

respective relevant drinking water, hydroelectric and environmental organizations and

understood within the economic context of the provision of these services in the

region.

Nonetheless conservation of cloud forest and paramo resources should be

tackle in a more integral way, considering not only benefits from potential water

quantity increases or reductions but taking into account other environmental services

such as erosion and sedimentation mitigation as well as water regulation.

Much research is needed to better understand the hydrological properties of

vegetation covers such as paramo as well as to better represent hydrological

mechanism especially of the paramo – soil interaction at natural conditions.

Page 99: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Availability of more representative rainfall information, especially for the high

mountainous areas exhibiting low density of rainfall stations, remains also as an

important challenge to more representative water resources assessments in the region.

The main limitations to this work were the scarce availability of information

of operational capacities (annual and seasonal) for the main dams in the region, which

restricted the validation of results from the use of a dam filling model.

Page 100: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

References

Alcaldía de Bogotá (2004) Programa de Gobierno. [Online] Available at:

http://www.aldeasostenible.net/documentos/ProgramaAlcaldiaBogota.pdf.

[Accessed 10 August 2007].

Anderson, J. R. Hardy, E. E, Roach, J. T., and Witmer, R. E. (1976) A Land Use and

Land Cover Classification System for Use with Remote Sensor Data. U.S.

Washington: Geological Survey, Geological Survey Professional Paper 964.

Bruijnzeel, L. A., Burkard, R., Carvajal, A., Frumau, A. Köhler, L. Mulligan, M.,

Schellekens, J., Schmid, S. and Tobón, C. (2006) Final Technical Report

DFID-FRP Project no. R7991. Hydrological impacts of converting tropical

montane cloud forest to pasture, with initial reference to northern Costa Rica.

[Online] Available at:

http://www.frp.uk.com/dissemination_documents/R7991_-_FTR_narrative_-

_06-02-06.pdf. [Accessed 27 February 2007].

Buytaert, W., Célleri, R. De Bièvre, B and Cisneros, F. (2005) Hidrología del páramo

andino: propiedades, importancia y vulnerabilidad. [Online] Available at:

www.paramo.be/pubs/ES/Hidroparamo2.pdf. [Accessed 10 August 2007].

Buytaert, W. (2004). The properties of the soils of the south Ecuadorian páramo and

the impact of land use changes on their hydrology. Thesis (PhD). Katholieke

Universiteit Leuven.

CAF (1998) El fenómeno El Niño 1997- 1998, memoria, retos y soluciones. Volumen

III, Colombia. Coporación Andina de Fomento – CAF. [Online] Available at:

http://www.unisdr.org/eng/library/Literature/8764.pdf. [Accessed 10 August

2007].

CAR (2005) Caudales medios mensuales. Bogotá: Catalogo de estaciones

hydrometeorologicas-CAR.

Castro, R., Tattenbach, F., Gamez, L., Olson, N. (2000) The Costarican experience

with market instruments to mitigate climate change and conserve biodiversity.

Environmental Monitoring and Assessment. 61, 75 – 92.

Cavelier, J. and Etter, A. (1995) Deforestation of montane forest in Colombia as a

result of illegal cultivation of opium (Papaver somniferum). In: S. P. Churchill,

Page 101: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

H, Valslev, E. Forero, and J. L. Luteyn, (eds.) Biodiversity and conservation of

Neotropical Montane forest. New York: The New York Botanical Garden,

Bronx, 1995, 541–549.

DANE (1999) Departamento Administrativo Nacional de Estadística - Colombia.

[Online] Available at:

http://www.dane.gov.co/index.php?option=com_frontpage&Itemid=1. [Accessed 10

August 2007].

DANE (2007) Departamento Administrativo Nacional de Estadística - Colombia.

[Online] Available at:

http://www.dane.gov.co/index.php?option=com_frontpage&Itemid=1. [Accessed 10

August 2007].

EAAB (2006) Plan Maestro de acueducto y alcantarillado de Bogotá. Bogotá:

Empresa de Acueducto y Alcantarillado de Bogotá. EAAB.

EAAB (2007) Tarifas acueducto año 2007. [Online] Available at:

http://www.acueducto.com.co/wps/html/resources/tarifas/TarifasBOGOTA.xls.

[Accessed 10 August 2007].

Emgesa (2006) Principales magnitudes operacionales. Bogotá: Emgesa, Memoria

anual 2006.

ESA (2007) Hydroelectric power. Earth Science Australia. [Online] Available at:

http://images.google.co.uk/imgres?imgurl=http://earthsci.org/mineral/energy/hydro/h

ydroplant-

animate.gif&imgrefurl=http://earthsci.org/mineral/energy/hydro/hydro.html&h=338&

w=451&sz=467&hl=en&start=7&tbnid=6qDtJhE4OokvNM:&tbnh=95&tbnw=127&

prev=/images%3Fq%3Dhydroelectric%2Bplants%26gbv%3D2%26svnum%3D10%2

6hl%3Den. [Accessed 10 August 2007].

Etter, A. and Villa, A. (2000) Andean Forests and Farming Systems in part of the

Eastern Cordillera (Colombia). Mountain Research and Development. 20, 236–

245.

Etter, A. and Wyngaarden, W. V. (2000) Patterns of Landscape Transformation in

Colombia, with Emphasis in the Andean Region. AMBIO: Journal of the

Human Environment. 29, 432–439.

EEB (2000) Historia de la empresa de energía de Bogotá III (1959 - 2000). [Online]

Available at: www.eeb.com.co/nuestraempresa/eebhoy/Tomo%20III.pdf.

[Accessed 10 August 2007].

Page 102: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

EMGESA (1999) Emisión de bonos ordinarios emgesa s.a. e.s.p. Bogotá: EMGESA

1999, 9. [Online] Available at:

www.emgesa.com.co/emgesanewsite/econtent/Library/Images/bonos_1999_cali

ficacion.pdf. [Accessed 10 August 2007].

ESDI (2007) Earth Science data interface. Global Land Cover facility. [Online]

Available at: http://glcfapp.umiacs.umd.edu:8080/esdi/index.jsp. [Accessed 10

August 2007].

ENVI (2003) ENVI Version 4.0. The Environment for Visualizing Images. Research

Systems, Inc. 4990 Pearl East Circle. USA.

Fay, J. A. (1994) Introduction to fluid mechanics. Cambridge: MIT press.

Flows (2006) Review: Quantification of cloud forest conversion to pasture on water

quantity. [Online] Available at: www.flowsonline.net/data/Flows18.pdf.

[Accessed 10 August 2007].

Google Earth (2007) Google Earth Beta. [Online] Available at:

http://earth.google.com/. [Accessed 10 August 2007].

Hofstede, R., Mondragon, M. and Rocha, C. (1995) Biomass of Grazed, Burned, and

Undisturbed Paramo Grasslands, Colombia. I. Aboveground Vegetation. Arctic

and Alpine Research, 27, 1, 1-12.

Hung, M. C. and Wu, Y. H. (2005) Mapping and visualizing the Great Salt Lake

landscape dynamics using multi-temporal satellite images, 1972–1996.

International Journal of Remote Sensing. 26, 1815-1834.

IDEAM (2007) Caudales medio mensuales. Sistema de información ambiental.

Bogotá: Instituto de Hidrológica, Meteorología y Estudios Ambientales.

IGAC (2000) Estudio general de suelos y zonificación de tierras del Departamento de

Cundinamarca. Bogotá: IGAC.

INGETEC (2004) Hydropower projects. [Online] Available at:

http://www.ingetec.com.co/experiencia-ingles/textos-proyectos-ingles/proyecto-

hidroelectricos-ingles/guavio-ingles.htm. [Accessed 10 August 2007].

Johnson, N., White, A. and Perrot-Maitre, D. (2001) Developing markets for water

services from forests, issues and lessons for innovators. World Resources

Institute. [Online] Available at:

http://www.conservationfinance.org/Documents/CF_related_papers/water_inno

vation.pdf. [Accessed 27 February 2007].

Page 103: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Kerola, M. (2006) Calibration of an Optimisation Model for Short-term Hydropower

Production Planning. Thesis (MSc) Helsinki University of Technology.

Kwarteng, A. Y. and Chavez, P. S. (1998) Change detection study of Kuwait City and

environs using multi-temporal Landsat Thematic Mapper data. International

Journal of Remote Sensing. 19, 1651 – 1662.

Gobernacion de Cundinamarca (2006) Mapa de Coberturas vegetales del

Departamento de Cundinamarca. [Online] Available at:

www.planeacion.cundinamarca.gov.co/BancoMedios/Documentos%20PDF/ma

pa%20cobertura%20vegetal.pdf. [Accessed 10 August 2007].

Gobernacion de Cundinamarca (2006b) Mapa de carreteras del Departamento de

Cundinamarca.

Howe, A. (2000) Ground Penetrating Radar for the parameterisation of subsurface

hydrological properties. Thesis (PhD). University of London.

Legates, D. R., McCabe G. J. (1999) Evaluation the use “goodness-of-fit” measures in

hydrologic and hydroclimatic model validation. Water Resources Research. 35,

233 – 241.

Lombana, C. (2000) Modelación y Generación de Estrategias de Intervención de

Cuencas Paramunas. Caso de estudio Cuencas Abastecedoras de Agua Potable,

Páramo de Chingaza. Thesis (BS). Universidad de los Andes, Bogotá –

Colombia.

Lora, C. (2006) Director of National Natural Park of Chingaza. Personal

communication.

MA (2001) Gaceta Oficial Ambiental. Bogotá: Ministerio del Medio Ambiente –

Republica de Colombia, Gaceta Oficial Ambiental, 207, 0 - 24. [Online]

Available at:

www.minambiente.gov.co/admin/contenido/documentos/g207.pdf. [Accessed 10

August 2007].

Mas, J. F. (1999) Monitoring land-cover changes: a comparison of change detection

techniques. International Journal of Remote Sensing. 20, 139-152.

Mulligan, M., Burke, S. M. (2005a) DFID FRP Project ZF0216 Global cloud forests

and environmental change in a hydrological context. [Online] Available at:

Final Report. http://www.ambiotek.com/cloudforests/. [Accessed 10 April

2007].

Page 104: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Mulligan, M., and Burke, S. (2005b) FIESTA Fog Interception for the Enhancement

of Streamflow in Tropical Areas. Technical Report for AMBIOTEK

contribution to DfID FRP R7991. [Online] Available at:

http://www.ambiotek.com/Fiesta. [Accessed 10 April 2007].

Mulligan, M and Sáenz, L. (2005) Effect of wind on fog interception by forest cloud

montane vegetation. In preparation to be submitted to the Advances in

Enviornmental modeling journal.

Mulligan, M. (2006) SRTM 3, Processed SRTM 90m Digital Elevation Data (DEM)

Version 3.0. [Online] Available at: http://www.ambiotek.com/topoview.

[Accessed 10 April 2007].

Mulligan, M. Torres, E. Jarvis, A., Gonzalez, J. and Sáenz, L. L. (2006a) Field and

laboratory measurement of rates and processes of cloud interception by

epiphytes, leaves and standard collectors. In: Bruijnzeel, L.A., Juvik, J.,

Scatena, F.N., Hamilton, L.S. & Bubb, P. (eds.) Forests in the mist: Science for

Conserving and Managing Tropical Montane Cloud Forests. University of

Hawaii Honolulu, 2006 (in press).

Mulligan, M., Sáenz L. L., Zurita L., Smith, V. (2006b) Database of tropical dams. In

progress.

Mulligan, M. (2007) Amazon-eye: an environmental information system for the

Amazon Basin. Version 1.0. [Online] Available at:

http://www.ambiotek.com/amazon. [Accessed 10 April 2007].

Mulligan, M. (2007b) Three-hourly rainfall timeseries from TRMM 3B42. [Online]

Available at:

http://www.kcl.ac.uk/schools/sspp/geography/research/emm/geodata/rainfalltim

eseries.html. [Accessed 10 April 2007].

Novak, P., Moffat, A.I.B. and Narayanan, R. (2001) Hydraulic structures. 3th ed.

Oxford. Taylor & Francis

Perrot-Maître D. and Davis, P. (2001) Case Studies of Markets and Innovative

Financial Mechanisms for Water Services from Forests. Forest Trends. [Online]

Available at: http://www.earthscape.org/p1/ES16895/ [Accessed 27 February

2007].

PNNC (2007) Parqus Nacionales de Colombia. Mapa interactivo. [Online] Available

at:

Page 105: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

http://www.parquesnacionales.gov.co/pnn/portel/libreria/php/decide.php?patron

=01.01. [Accessed 10 August 2007].

Ramirez, N. (2002) Valuing flexibility in infrastructure developments: the Bogotá

water supply expansion plan. Thesis (MSc). Massachusetts Institute of

Technology.

Ospina, M. (2003) El Paramo de Sumapaz, un ecosistema estrategico para Bogotá.

Bogotá: Sogeocol. [Online] Available at:

www.sogeocol.com.co/documentos/Paramos.pdf. [Accessed 10 August 2007].

Sáenz, L. and Mulligan, M. (2007) Cloud forest extent and change since the creation

of the Chingaza National Park of Colombia. In preparation: to be summated to

the Advances in Environmental Modelling Journal.

Sáenz (2007a) Modelling the generation of runoff into major dams in South America.

In preparation: To be submitted to the Journal Advances in Environmental

Modelling.

Sáenz (2007b) Implementation of a distributed runoff – Subsurface flow model base

upon catchment’s topographical characteristics and a kinematic wave approach.

In preparation: To be submitted to the Journal Advances in Environmental

Modelling.

Page 106: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Appendix 1: Datasets for FIESTA model parameterization

• 90m Digital Elevation Model (DEM) of the Bogotá region (Appendix 1).

Figure 44. Digital Elevation Model for the Bogotá region.

The DEM 90m model for Bogotá region was derived from the SRTM 90m DEM

topoview interface (Mulligan 2006). About 75% of the Bogotá region is located in the

high Bogotá sabana (between 2300 and 2900m)

Page 107: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Cloud cover

The cloud cover datasets used represent annual and seasonal frequencies (DJF, MAM,

JJA, SON) as well as different daily periods (Early morning [0300 - 0600], morning

[0700 - 0800], afternoon [1500 - 1700] and evening [1800 - 2000] for the year 2001.

The datasets were processed from MODIS 500m datasets by Mulligan and Burke

(2005b).

Figure 45. Cloud cover frequency for the seasons (DJF, MAM, JJA, SON) in the Bogotá region.

N

Page 108: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 46. Cloud cover frequency for the daily cycle (Early morning, morning, afternoon,

evening) in the Bogotá region.

Early morning Morning

Afternoon Evening

N

Page 109: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Potential Solar Radiation

1 km Solar radiation (Wm2) is used by FIESTA to simulate evapo-transpiration.

Dataset provided by Mulligan and Burke (2005b).

Figure 47. Progression of monthly solar radiation (Wm2) for the Bogotá region.

January February March April

May June July August

September October November December 0 75 Km

N

Page 110: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Temperature and daily temperature range

1 km Temperature (°C) and daily temperature (°C) from New et al (2000) and

Mulligan and Burke (2005b) datasets are used to calculate the lifting condensation

level for fog interception and evapo-transpiration (mm).

Figure 48. Progression of Monthly temperature (°C) for the Bogotá region.

January February March April

May June July August

September October November December

0 75 Km

N

Page 111: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Precipitation

Precipitation is the main input for FIESTA to simulate the water cycle. Two monthly

1km rainfall datasets (WordClim and the TRMM) (Hijmans et al 2005; TRMM 2006)

were compared used and compared. Precipitation in highly exposed areas is supposed

to be under estimated since WorldClim rainfall stations are not corrected by gauge

types, gauge wetting and wind driven (Mulligan and Burke 2005b)

Figure 49. Monthly progression of precipitation (mm) for the Bogota region according to

WorldClim.

January February March April

May June July August

September October November December

0 75 Km

N

Page 112: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Figure 50. TRMM precipitation dataset (mm) for the Bogotá region.

January February March April

May June July August

September October November December

0 75 Km

N

Page 113: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Humidity

A 1km Humidity (%) dataset is used to calculate the lifting condensation level of the

humid air for fog production (dataset provided by Mulligan and Burke 2005b).

Figure 51. Monthly progression of relative humidity (%) in the Bogotá region.

January February March April

May June July August

September October November December 0 75Km

N

Page 114: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Mean sea level pressure

Mean sea level pressure (mb)

dataset provided by Mulligan and Burke (2005b).

• Wind speed

FIESTA considers wind speed (m s-1) for fog interception modelling.

0.5 degree New et al (2000) dataset processed to 1km by Mulligan and Burke (2005b)

was used here.

Figure 52. Progression of monthly wind speed (m s-1) for the Bogotá region.

January February March April

May June July August

September October November December

0 75 Km

N

Page 115: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

• Topographical exposure to wind

Topographical exposure datasets from eight cardinal directions (E, N, W, S, NE, SE,

SW, NW) were used here (source Mulligan and Burke 2005b).

Figure 53. Topographical exposure to winds in the Bogotá region for E, N, W, S, NE, SE, SW,

NW cardinal directions.

E N W

S NE SE

SW NW 0 75 Km

N

Page 116: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Appendix 2: River flow stations in the Bogotá region

Final list of flow stations in the whole Bogotá catchment

Number Código Nombre

estación Tipo Corriente Instalada Suspendida River

1 2119701

El Profundo LIMNIGRAFICA Sumapaz 1959 Sumapaz

2 2119703 La Playa

LIMNIGRAFICA

Sumapaz

1958

Sumapaz 3 2119709 Dos Mil LM Sumapaz 1969 Sumapaz 4 2306705 Guaduero LG River Negro 1974 Negro 5 2306707 Villeta LM Villeta 1951 Villeta 6 2306709 El Paraiso LM River Negro 1939 Negro 7 2401715 La Boyera LM River Ubate 1960 Ubate 8 3502702 Oro Podrido LM River Negro 1994 Negro 9 3502713 Pte Quevedo LM River Clarin 1985 Clarin

10 3502715 Las Animas LM River Chochal 1985 Chochal 11 3502719 Guacapate LG River Negro 1980 Negro 12 3502720 El Palmar LG River Blanco 1980 Blanco

13 3502721 CASETEJA-DELICIA LM River Negro 1980 Negro

14 3506701 La Gloria LG River Negro 1963 Negro 15 3506702 Ubala LM Guavio 1962 1987 Guavio 16 3506703 Ubala LG River Chivor 1962 Chivor

17 3506704 CHUSNEQUE LM Guavio 1963 1992 Guavio

18 3506709 La Boca LG River Batatas 1971 River Batatas

19 3506710 La Vega LM Guavio 1972 1983 Guavio 20 3506712 Sta Barbara LG Murca 1990 1992 Murca 21 3506713 Mundo Nuevo LG River Rucio 1979 Rucio 22 3506714 Mambita LG River Guavio 1972 1983 Guavio

23 2119705 RINCON SANTO LM

River Sumapaz 1966 1972 Sumapaz

24 2119706 Pte Paquilo LM River Sumapaz 1966 1974 Sumapaz

25 2119718 BOCATOMA PIRINEOS LM

Quebrada Aguas Claras 1998

Quebrada Aguas Claras

26 2119719 COSTA RICA LM Quebrada Salvios 1998 Salvios

27 2119722 JALISCO BAJO LM La Laja 1992 La Laja

28 2119723 Pasca LM El Bosque 1998 El Bosque

29 2119724 Pasca 1 LM River Corrales 1998 Corrales

30 2119726 PTE AGUADITA LM

River Barroblanco 1998

River Barroblanco

31 2119727 PTE ARBELAEZ LM River Cuja 1998 Cuja

32 2119729 PTE CARO LM River Juan Viejo 1998

Juan Viejo

33 2119728 Pte Caracol LM Q. Grande 1998 Q. Grande

34 2119730 Pte Cabrera LM Quebrada Panela 1998

Q. Panela

35 2119732 Pte Los Rios LM River Guavio 1998 Guavio

36 2119733 Pte Negro LM River Negro 1998 Negro

37 2119734 Pte Rojo LM River Cuja 1998 Cuja

Page 117: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

38 2119735 Pte San Vicente LM River Batan 1998 Batan

39 2119736 JUANXXIII LM Q. Filadelfia 1999 Filadelfia

40 2120714 Pte. Cndinamarca LM River Bogota 1956 Bogota

41 2120719 SAUCIO LM River Bogota 1940 Bogota

42 2120728 Acequia_Molino LM R. Neusa 1946 Neusa

43 2120732 PTE Carretera LM Neusa 16834 Neusa

44 2120733 Acequiaquinta LM Acequiquinta 1946

Acequiaquinta - neusa

45 2120734 Pte Vargas LG Bogota 1946 Bogota

46 2120735 Pte Virginia LG River Frio 1946 Frio

47 2120739 Embalse Neusa LM Neusa 16834 Neusa

48 2120742 La Balsa LM River Bogota 1939 Bogota

49 2120744 Embalse Sisga LM Sisga 1952 Sisga

50 La Vega-Aves_Guasc LG River Aves 1956 Aves

51 2120752 Pte Galindo-Bojaca-Boja LM River Bojaca 1956 Bojaca

52 2120755 San Jorge LM River Soacha 1960 Soacha

53 2120756 El Recreo LM River Bojaca 1960 Bojaca

54 2120757 AceuiaSanPatricio LM Sanpatricio 1960

SanPatrico

55 2120758 La Muralla LM Subachoque 1960 Subachoque

56 2120766 La Pradera LM Subachoque 1962 Subachoque

57 2120767 Pte Florencia LM River Bogota 1961 Bogota

58 2120783 Canaleta_Parshall LM Neusa 1964 Neusa

59 2120785 Molino LM Neusa 1964 Neusa

60 2120786 El recuerdo LM Patricio 1964 Patricio

61 2120787 STA ISABEL LM River Frio 1964 Frio

62 2120787 Pte_Adobes LM River Teusaca 1964 Teusaca

63 2120790 El Rincon AF Bogota 1984 Bogota

64 2120791 Teusaca LG River Bogota 1976 Bogota

65 2120792 Tocancipa LG River Bogota 1950 Bogota

66 2120793 El Espino LG River Bogota 1967 Bogota

67 2120795 Altamira LG Q. Mancilla 1968 Mancilla

68 2120797 Aguas Clras AF Q. Honda 1968 Q. Honda

69 2120798 San Isidro LM River Siecha 1958 Siecha

70 2120800 Pte Manrique LM River Subachoque 1949

Subachoque

71 2120815 Villapinzon LM River Bogotá 1972 Bogota

72 2120816 Sta Rosa LM River Bogotá 1972 Bogota

73 2120827 Pte Baraya LM River Bogotá 1972 Bogota

74 2120843 San Patricio LM S.Patricio 1960 1978 S.Patricio

75 2120845 El Bosque LM Subachoque 1975 R.Bogota

76 2120864 El Valor LM Neusa 1954 1972 Neusa

77 2120868 Sta. Martha LM San Francisco 1980

San Francisco

78 2120870 La Iberia LM San Francisco

San Francisco

79 2120875 Pte. Checua LM Checua 1986 Checua

80 2120878 El Vergel LM River Teusaca 1985 Teusaca

Page 118: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

81 2120880 San Javier LM River Apulo 1988 Apulo

82 2120885 Pena Negra LM River Bajamon 1988

River Bajamon

83 2120886 Java LM River Calandaima 1988

River calandaima

84 2120888 Pte Bocas LM River Calandaima 1987

River calandaima

85 2120892 Manzanares LM River Curi 1988 River Curi

86 2120893 Pto. Brasil LM Q. Mona 1988 Q. Mona

87 2120895 La Pola LM River Lindo 1987 Lindo

88 2120897 La Cascada-Modelia-Viota LM Q. Modelia 1987 Modelia

89 2120900 Pte. Saenz-Q.SanJuana-Viota Q.San Juana 1987 Q.San Juana

90 2120913 El Hato LM River Hato 1992 Hato

91 2120913 La Esperanza-Apulo-LaMesa LM River Apulo 1985 Apulo

92 2120917 Pte.Choconta LM Q.Tejar 1982 Tejar

93 2120925 Pte Calamar LM River Frio 1984 Frio

94 2120930 Cartagena LM Apulo 1992 Apulo

95 2120934 El Chirca-Apulo-Zipac LM Apulo 1995 Apulo

96 2120935 El Manzano-Sausa-Cog LM River Sausa 1996 Sausa

97 2120938 Antes_Acu_Mesitas LM Q.Sta Martha 1996

Q.Sta Martha

98 2120939 Ave-Colombia LM River Sausa 1996 Sausa

99 2120963 VillaBlanca LM River Muna 1997 Muna

100 2120966 Pozo Hondo-Frio_Zipa LM River Frio 1997 Frio

101 2306711 Pte. Naranjal-Villeta LM River Villeta 1998 Villeta

102 2306713 Salitre Blanco LM Cune 1999 Cune

103 2306717 Cabrera-Suchin LM Q. Suchin 1999

Q. Suchin

104 2401704 La Balsa-Suarez LM River Suarez 1934

River Suarez

105 2401710 Corralejas LM Q.Molino 1992 Q.Molino

106 2401714 Tapias LM Lenguazaque 1992 Lenguazaque

107 2401716 El Pino LM River Suta 1992 River Suta

108 2401723 BOQUERON EL LM R. LENGUAZAQUE 1992

R. LENGUAZAQUE

109 2401729 PTE COLORADO LM R. Ubate 1964 Ubate

110 2401730 PTE GUZMAN LM R. SIMIJACA 1964 R. SIMIJACA

111 2401733 PTE la balsa LM River Lenguazaque 1964

River Lenguazaque

112 2401738 Pte.Peralonso LM R. Susa 1964 R. Susa

113 2401745 PTE PINILLA LM R. CHIQUINQUIRA 1964

R. CHIQUINQUIRA

114 2401755 La Mallla LM River Carupa 1967 Carupa

115 2401792 La Florida LM River Sutamarchan 1997

River Sutamarchan

116 2401793 FUQUENE LM Q.Honda 1997 Q.Honda

117 2401794 MONASTERIO LM R. CANDELARIA 1997

R. CANDELARIA

118 3509715 PEREZ LM Q. Aguablanca 1989 1997 Q. Aguablanc

Page 119: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

a

119 3509724 LA PLAYA LM River Tobal 1997 1997 River Tobal

120 3509728 Hato-Laguna-Aquit Laguna Hato 01-Sep-89 01-May-97 Laguna Hato

121 3509727 CRIADERO CAR Q. lagoTota 01-Sep-89 01-May-97

Q. lagoTota

122 2120769 LAG LOS TUNJOS LM CHISACA 1963

Laguna Los Tunjos

123 2120747 HERRADERO LG MUGROSO 1951 Chisaca

124 2120746 La Toma LM Chisaca 1951 Chisaca

125 2120706 REGADERA LM Tunjuelo 1928

La Regadera

126 2120717

REGADERA REBOSADER LM Tunjuelo 1939

La Regadera

127 2120722 Represa Muña LM Muña 1944 1964 Muña

128 2120726 Represa San Rafael LM Muña 1929 Teusaca

129 3503701 Boqueron LM La Playa ######## Laguna Chingaza

130 3503704 San Jose LM Guatiquia ######## Laguna Chingaza

131 3503708 DEDAL EL CAMPAMENT LM Chuza 1968 Golillas

132 3503708 Golillas2 LM Chuza 1968 Golillas 133 3507707 El Salitre LM Somondoco 1974 Chivor 134 3507716 Sitio presa LM Bata 1961 Chivor 135 3507716 Chivor3 LM 1961 Chivor

136 3509718 Lago de Tota LM Canal de aduccion Lago de Tota

137 2403744 Paipa LM Lago Sochagota

Lago Sochagota

138 2403742 La Playa LM Embalse La Playa 1972

Copa - La Playa

139 2403702 La Copa LM Tuta 1990 Copa - La Playa

140 Gachaneca LM River Gachaneca 1990

Gachaneca

141 2401717 Isla del Santuario LM Lag. De Fuquene

Laguna de Fuquene

142 2401781 Chinzaque LM Fuquene

Laguna de Fuquene

143 2401781 Chalet Sur LM Fuquene

Laguna de Fuquene

144 2401726 Peñas de Palacio LM Laguna Cucunuba Ramada

145 Hato Laguna Hato Laguna Hato

146 2401030 EL HATILLO LM Lag. Suesca 1960

Laguna de Suesca

147 2120782 Tomine LM Tomine 1962 Tomine

148 2116702 Boqueron LIMNIGRAFICA

Prado ########

Prado

2116708 MORA LA LIMNIGRAFICA NEGRO ######## Prado

Page 120: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Validation of river discharge below 5m3 s-1

WC<5

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

Modelled discharge, m3 s-1

Obs

erve

d di

scha

rge,

m3 s-1

TRMM<5

0

1

2

3

4

5

6

0 2 4 6 8

Modelled discharge, m3 s-1

Obs

erve

d di

scha

rge,

m3 s

-1

Figure 54. Observed and modelled river discharges below 5m3 s-1 with the use of WorldClim and

TRMM datasets.

Page 121: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de

Appendix 3: Tables of characteristics of soils for the study

area. From. IGAC (2000) Estudio general de suelos y

zonificación de tierras del Departamento de Cundinamarca.

Bogotá: IGAC.

Page 122: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de
Page 123: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de
Page 124: FIESTA Bogota final report report.pdf · La contribución por neblina es relativamente baja en la Sabana de Bogotá (áreas entre 2500 y 2800msnm), ... (sedimentación y aumento de