field-induced magnetic behavior in quasi-1d ising-like ......synemag 2012 october 17-19 th, 2012,...

22
SYNEMAG 2012 October 17-19 th , 2012, Grenoble Field-induced magnetic behavior in quasi-1D Ising-like antiferromagnet BaCo 2 V 2 O 8 : a detailed single crystal neutron diffraction study a detailed single crystal neutron diffraction study Béatrice GRENIER UJF & CEA, INAC/SPSMS/MDN Grenoble, France [email protected]

Upload: others

Post on 15-Feb-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • SYNEMAG 2012October 17-19th, 2012, Grenoble

    Field-induced magnetic behavior in quasi-1D Ising-like antiferromagnet BaCo2V2O8:

    a detailed single crystal neutron diffraction studya detailed single crystal neutron diffraction study

    Béatrice GRENIER

    UJF & CEA, INAC/SPSMS/MDNGrenoble, France

    [email protected]

  • Outline

    • Introduction on Ising-like quasi-1D systems

    • The BaCo2V2O8 compound- crystallographic structure- previous results

    • Single-crystal neutron diffraction results *- experimental- experimental- magnetic structure in the Néel phase- Néel-LSDW phase transition and (H, T ) phase diagram- magnetic structure in the LSDW phase

    • Conclusion

    * E. Canévet, B. Grenier, M. Klanjšek, C. Berthier, M. Horvatić, V. Simonet, and P. Lejay,

    arXiv: 1210.3253 (2012); submitted to Phys. Rev. B

  • Introduction on Ising-like quasi-1D systemsHamiltonian of a S = ½ 1D XXZ AF chain system in a magnetic field:

    Spin-spin correlation functions ofthe

    Staggered transverse correlation:

    4

    3FM (gap)

    HsatTomonaga-Luttinger liquid (TLL):

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    Incommensurate longitudinal correlation:

    with

    Staggered transverse correlation:

    h= H/J

    1

    2

    3

    01 20-1 3-2

    FM (gap)

    AF (gap)

    TLL(no gap)

    Heisenberg chainIsing chain

    XY chain

    Hc

    1

  • Introduction on Ising-like quasi-1D systems

    XXZ chain with weak 3D interaction

    • Heisenberg chain (∆ = 1): η < 1 as soon as H ≠ 0 → transverse fluctuations dominate

    • Ising-like chain (∆ > 1):

    ��H Ztransverse staggered

    (XY Néel)

    η > 1 at low H above Hc → longitudinal fluctuations dominate

    H > H *: η < 1 → transverse staggered (XY Néel)

    ��H Z

    Hc > H ≥ 0: gapped Néel

    ��H Z

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 2

    • Ising-like chain (∆ > 1):

    H * > H > Hc :longitudinal spin density wave(LSDW)

    ��H Z

    η > 1 at low H above Hc → longitudinal fluctuations dominate

  • Introduction on Ising-like quasi-1D systems

    h= H/J

    4

    2

    3 FM (gap) TLL(no gap)

    Hsat

    Hc

    BaCo2V2O8Néeltransverse staggered

    LSDW

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 3

    Hc H * Hsat

    h

    1

    01 20-1 3-2

    AF (gap)

    3.9 T 22.7 T~15 T

    [1]

    [1] Okunishi and Suzuki, PRB 76, 224411 (2007)

  • The BaCo2V2O8 compound: crystallographic structure

    I 41/acd space group with a = 12.444 Å and c = 8.415 Å at T = 300 KR. Wichmann and Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem. 532, 153 (1986)

    4 screw chains ||c -axis per unit cell � 16 Co2+ with spin 3/2 (effective spin S = ½)

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 4

  • The BaCo2V2O8 compound: previous results

    • H -T diagram from specific heat

    • ”Discovery” of BaCo2V2O8: Crystal growth + Magnetic measurementsHe et al., Chem. Mater. 17, 2924 (2005)

    Kimura et al., J. Phys.: Conf. Series 51, 99–102 (2006)

    • Theoretical predictions applied to BaCo2V2O8Okunishi and Suzuki, PRB 76, 224411 (2007)

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 5

    • H -T diagram from specific heat Kimura et al., PRL 100, 057202 (2008)

    • First observation of IC satellites up to H = 5 Tby single-crystal neutron diffraction Kimura et al., PRL 101, 207201 (2008)

    • Determination of the magnetic structure at H = 0by powder neutron diffraction Kawasaki et al., PRB 83, 064421 (2011)

  • Results: Experimental

    •••• Crystal synthesis @ Institut Néel

    •••• Specific heat measurements @ CEA

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    •••• Specific heat measurements @ CEA

    •••• Magnetic structure in zero field(Néel phase) on D15 & D23 @ ILL

    •••• Magnetic structure in the LSDW phase & incommensurability vs field on D23 @ ILLH || easy axis (chain c -axis)6 T / 12 T + dilutionVertical collimation 20'

    6

    D23

  • Results: Magnetic structure in the Néel phase

    Propagation vector:

    =�

    (1,0,0)AFk

    = +�� �

    AF AFQ H k

    =�

    where ( , , )with 2

    H h k lh k l n 1000

    2000

    30002 -3 0

    Ne

    utr

    on

    co

    un

    ts /

    10

    se

    c.

    Increasing T

    Decreasing T

    BaCo2V

    2O

    8

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 7

    + + =with 2h k l n

    Critical exponent β = 0.32 ⇒ 3D Ising universality class

    0 1 2 3 4 5 6 70

    1000

    Ne

    utr

    on

    co

    un

    ts /

    10

    se

    c.

    T (K)

  • Results: Magnetic structure in the Néel phase

    Nuclear structure:Same structure below TN as above

    Magnetic structure:

    313 reflections collected (113 independent)up to sinθ /λ = 0.55

    Refinement with Fullprof

    → one of the four magnetic structures

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 8

    → one of the four magnetic structurespredicted by group theory with two magnetic domains of populations 49.5(4)% and 50.5(4)%

  • Results: Magnetic structure in the Néel phaseMagnetic domain #1

    1

    23

    45

    67

    88'

    5'

    6'

    7'

    1'2'

    3'

    4'

    a

    c

    Screw axis 41

    4

    a

    c

    1

    2

    3

    5

    67

    88'

    5'6'

    7'

    1'2'

    3'

    4'

    Magnetic domain #2

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    a

    c b

    1 2

    34 5 6

    78

    8'

    5'6'

    7' 1'2'

    3' 4'

    bScrew axis 41

    a

    c b

    1 2

    34 5 6

    78

    8'

    5'6'

    7' 1'2'

    3' 4'

    b

    9

    mx = my = 0mz = 2.267(3)µB /Co2+

  • 3000

    4000

    5000

    H = 0.0 T H = 1.0 T

    H = 2.0 T H = 3.0 T

    Ne

    utr

    on

    co

    nts

    / 2

    0 s

    ec.

    (-2, -3, QL)

    T = 50 mK

    Results: Néel-LSDW phase transition

    Hc

    0 3.94 4.12 9.25H (T )

    0 ≤ H ≤ 3.92 T:

    Néel phase

    =�

    (1,0,0)AFk

    -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

    0

    1000

    2000

    3000

    H = 3.4 T

    QL (r.l.u.)

    Ne

    utr

    on

    co

    nts

    / 2

    0 s

    ec.

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    = (1,0,0)AFk

    10

  • Results: Néel-LSDW phase transition

    HcH (T )

    0 3.94 4.12 9.25

    (-2, -3, QL)

    T = 50 mK

    1000

    H = 3.98 TH = 4.00 T

    Ne

    utr

    on

    co

    nts

    / 3

    0 s

    ec.

    2000

    1000

    2000

    3.94 ≤ H ≤ 4.12 T:

    Coexistence betweenNéel & LSDW phases

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    -0.2 -0.1 0.0 0.1 0.2

    1000

    0

    1000

    0

    QL (r.l.u.)

    Ne

    utr

    on

    co

    nts

    / 3

    0 s

    ec.

    1000

    0

    1000

    0

    Néel & LSDW phases

    0.03 < δ < 0.07

    =�

    (1,0,0)AFk

    δ=�

    (1,0, )LSDWk

    10

    = ±�� �

    LSDW LSDWQ H k

  • 2000

    3000

    H = 4.1 T H = 5.0 T

    H = 6.0 T H = 7.0 T

    Ne

    utr

    on

    co

    nts

    / 1

    min

    .Results: Néel-LSDW phase transition

    HcH (T )

    0 3.94 4.12 9.25

    (-2, -3, QL)

    T = 50 mK

    4.14 ≤ H ≤ 9.25 T:

    LSDW phase

    -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

    0

    1000

    H = 8.0 T

    QL (r.l.u.)

    Ne

    utr

    on

    co

    nts

    / 1

    min

    .

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    0.07 ≤ δ ≤ 0.31δ=

    �(1,0, )LSDWk

    10

  • Results: Néel-LSDW phase transition

    HcH (T )

    0 3.94 4.12 9.25

    1600

    1800

    2000

    H = 8.75 T H = 9.00 T H = 9.25 T

    Ne

    utr

    on

    co

    nts

    / 5

    min

    .

    4.14 ≤ H ≤ 9.25 T:

    LSDW phase

    (-2, -3, QL)

    T = 50 mK

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    0.1 0.2 0.3 0.4 0.5

    1000

    1200

    1400

    1600

    QL (r.l.u.)

    Ne

    utr

    on

    co

    nts

    / 5

    min

    .

    0.07 ≤ δ ≤ 0.31

    10

    δ=�

    (1,0, )LSDWk

  • Results: Néel-LSDW phase transition

    HcH (T )

    0 3.94 4.12 9.25

    (-2, -3, QL)

    T = 50 mK

    1600

    1800

    2000

    H = 8.75 T H = 9.00 T H = 9.25 T

    Ne

    utr

    on

    co

    nts

    / 5

    min

    .

    H ≥ 9.5 T:

    I = 0

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    0.1 0.2 0.3 0.4 0.5

    1000

    1200

    1400

    1600

    QL (r.l.u.)

    Ne

    utr

    on

    co

    nts

    / 5

    min

    .

    from NMR [1]: new phase

    [1] M. Klanjšek et al.,

    arXiv: 1202.6376 (2012)

    10

  • Results: Néel-LSDW phase transition

    Mz from Ref. [1] • Theory applies: Mz = 1/2 gµBS [2]

    • Field hysteresis ~ 0.2 T

    1st order transition

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 11

    [1] Kimura et al., PRL 100, 057202 (2008)[2] Haldane, PRL 45, 1358 (1980)[3] Kimura et al., J. Phys.: Conf. Ser. 51, 9910 (2006)

    Mz from Ref. [1]

    scaled to our dataMz = 1/2 gµBS [2]

    g = 7.2

    (to be compared to g = 6.2 [3])

  • Results: H -T phase diagram

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 12

    [1]

    [1] Okunishi and Suzuki, PRB 76, 224411 (2007)

  • Results: Magnetic structure in the LSDW phase

    H = 4.2 T coming down from 6 T

    Nuclear structure:Same as in zero magnetic field

    Magnetic structure:129 reflections collected (49 independent)

    Continuity with that found in zero field

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    Continuity with that found in zero field

    13

    Two magnetic domains of populations 38.3(9)% and 61.7(9)%

    small misalignment of the fieldHa = 0.11 T, Hb = 0.04 T

  • Results: Magnetic structure in the LSDW phase

    Magnetic domain #1

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier 14

    Amplitude of the sine wave modulation = 1.398(6)µB /Co2+

  • Conclusion & perspectives

    CONCLUSION

    • Magnetic structures:- At H = 0: confirmation of the structure determined on powder

    opportunity for a visualization of the magnetic domains- At H = 4.2 T: refined for the first time → continuity with zero field

    first direct evidence of the LSDW phase in BaCo2V2O8

    • Critical exponent β : BaCo2V2O8 belongs to the 3D Ising universality class

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    Critical exponent : BaCo2V2O8 belongs to the 3D Ising universality class

    • δδδδ (H ) in perfect agreement with theory assuming g = 7.2

    • H –T phase diagram in perfect agreement with theory up to ~9 T then not any more→ new phase seen by NMR [M. Klanjšek et al., arXiv: 1202.6376 (2012)]: ferromagnetic SDW

    PERSPECTIVES

    • Neutron diffraction: study of this new phase• Inelastic neutron scattering: study of the spin dynamics

    15

  • Collaborations:

    E. Canévet (ILL & UJF-Grenoble)

    M. Klanjšek (Jozef Stefan Institute, Ljubljana, Slovenia)

    C. Berthier and M. Horvatić (LNCMI-Grenoble)

    V. Simonet and P. Lejay (Institut Néel, Grenoble)

    Workshop on Synchrotron and Neutron Applications of High Magnetic Fields, Grenoble, October 17-19th, 2012 – Béatrice Grenier

    V. Simonet and P. Lejay (Institut Néel, Grenoble)

    Thank you

    16