fiber-optic communication via the nonlinear fourier … · fiber-optic communication systems tx...

99
Fiber-Optic Communication via the Nonlinear Fourier Transform Frank R. Kschischang Department of Electrical & Computer Engineering University of Toronto [email protected] IC Research Day SwissTech Convention Center, EPFL 30 June 2016

Upload: ngokhuong

Post on 04-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Fiber-Optic Communicationvia the

Nonlinear Fourier Transform

Frank R. KschischangDepartment of Electrical & Computer Engineering

University of [email protected]

IC Research Day

SwissTech Convention Center, EPFL30 June 2016

Page 2: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Thank You To:

Mansoor Yousefi (University of Toronto, Technical Universityof Munich, Telecom ParisTech)

Gerhard Kramer (Technical University of Munich)

Siddarth Hari (University of Toronto)

Alan P.-T. Lau (Hong Kong Polytechnical University)

Rene-Jean Essiambre (Nokia Bell Labs)

The organizers:

Michael Gastpar

Rudiger Urbanke

2

Page 3: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Part I:

Fiber-Optic Communication

3

Page 4: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Illustrating the principle of total internal reflection.

4

Page 5: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Source: Nicolas Rapp, Fortune Magazine, July 23, 20125

Page 6: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Source: www.telegeography.com 6

Page 7: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

euNetworks Optical Fiber Network Map

Source: www.eunetworks.de

7

Page 8: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Fiber-Optic Communication Systems

TX

HybridAmplifier

Forwardpump

span 1 span 2 span N

SSMF HybridAmplifier

Forwardpump

Backwardpump

ROADM SSMF HybridAmplifier

Forwardpump

Backwardpump

ROADM SSMF HybridAmplifier

Backwardpump

RX

Physics: Enabling Technologies

1 Low-loss (∼ 0.2 dB/km) opticalfiber, huge bandwidth (∼54 THzbandwidth)

2 Optical amplifiers

3 Laser transmitters andMach-Zehnder modulators

ROADM

TX

RX

TX

RX

λ 1

λ 2

8

Page 9: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

1 © Nokia 2016 < COPYRIGHT © 2016 Nokia. ALL RIGHTS RESERVED. >

Historical Capacity Evolution

Space-division multiplexing has already exceeded the nonlinear Shannon limit

1980 1985 1990 1995 2000 2005 2010 2015 2020Year

Syst

em c

apac

ity (T

b/s)

1 Gbit/s

10 Gbit/s

100 Gbit/s

10 Tbit/s

100 Tbit/s

1 Pbit/s

1 Tbit/s

TDM ResearchWDM ResearchSDM Research

TDM: Time-division multiplexingWDM: Wavelength-division multiplexingSDM: Space-division multiplexing

Nonlinear Shannon capacity limit

estimate(180 Tb/s)

Courtesy of

R.-J. Essiambre

(Nokia Bell Labs)

[IEEE Photonics J.,

Apr. 2013]

9

Page 10: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

2 © Nokia 2016

Nonlinear Shannon Limit Estimate (Single Polarization)

Experimentally demonstrated fiber capacity have leveled off to ~60% of maximum spectral efficiency since 2012

Shann

on A

WG

N

*SNR is the signal average power average divided by the AWGN power per symbol

Nonlinear Shannon limit of spectral efficiency

< COPYRIGHT © 2016 Nokia. ALL RIGHTS RESERVED. >

0 5 10 15 20 25 30 35 400

1

2

3

4

5

6

7

8

9

10

Signal-to-noise ratio, SNR* (dB)

Sp

ect

ral ef

icie

ncy

(b

its/

s/H

z)

500 km of standard single-mode fiber (SSMF)

Record laboratory experiment

s

Courtesy of

R.-J. Essiambre

(Nokia Bell Labs)

[J. Lightwave Techn.,

Feb. 2010]

10

Page 11: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates (or even more)

Non-Linearity

The fiber-optic channel is non-linear in the input power!

11

Page 12: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates (or even more)

Non-Linearity

The fiber-optic channel is non-linear in the input power!

11

Page 13: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Fiber-Optic Communication Systems: Challenges

Reliability

Pe < 10−15

Speed

100 Gb/s per-channel data rates (or even more)

Non-Linearity

The fiber-optic channel is non-linear in the input power!

11

Page 14: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

The Kerr Effect

Kerr electro-optic effect (DC Kerreffect)

An effect discovered by John Kerr in1875

It produces a change of refractive indexin the direction parallel to theexternally applied electric field

The change of index is proportional tothe square of the magnitude of theexternal field

12

Page 15: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

The Kerr Effect in Optical Fibers

Optical Kerr Effect (or AC Kerr effect)

No externally applied electric field is necessary

The signal light itself produces the electric field that changesthe index of refraction of the material (fused silica)

The change in index in turn changes the signal field

The change in index of refraction is proportional to the squareof the field magnitude

P

f

WDMchannel

channelof interest

opticalfiber

changes indexof refraction

generatesdistortion

A signal in a certain frequency band can distort the signal in adifferent frequency band without spectral overlap

13

Page 16: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Nonlinear Effects in Fibers

intra-channel

signal↔noise

NLphase noise

SPM-inducedNL phase noise

parametricamplification

modulationinstability

signal↔signal

self-phasemodulation

isolated pulseSPM

IXPM IFWM

inter-channel

signal↔noise

NL phase noise

XPM-inducedNL phase noise

signal↔signal

WDM nonlinearities

XPM FWM

Key

NL = nonlinear; SPM = self-phase modulation; (I)XPM = (intra-channel)cross-phase modulation; (I)FWM = (intra-channel) four-wave mixing; WDM =wavelength-division multiplexing

Courtesy of R. J. Essiambre

14

Page 17: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

System Model

coherent fiber-optic communication systemstandard-single-mode fiberideal distributed Raman amplification

TX

HybridAmplifier

Forwardpump

span 1 span 2 span N

SSMF HybridAmplifier

Forwardpump

Backwardpump

ROADM SSMF HybridAmplifier

Forwardpump

Backwardpump

ROADM SSMF HybridAmplifier

Backwardpump

RX

But, could also consider

systems with inline dispersion-compensating fiberlumped amplification

TX AMP · · · AMP RX

Q(t, 0) Q(t,L)

SSMF︸ ︷︷ ︸N spans

15

Page 18: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Generalized Nonlinear Schrodinger Equation

Q(t, z) is the complex baseband representation of the signal(the full field, representing co-propagating DWDM signals)

Transmitter sends Q(t, 0)

Receiver gets Q(t,L), where L is the total system length

Evolution of Q(t, z)

The generalized non-linear Schrodinger (GNLS) equation expressesthe evolution of Q(t, z):

∂Q(t, z)

∂z+

jβ2

2

∂2Q(t, z)

∂t2︸ ︷︷ ︸dispersion

− jγ|Q(t, z)|2Q(t, z)︸ ︷︷ ︸

nonlinearity

= n(t, z)︸ ︷︷ ︸noise

No loss term (since ideal distributed Raman amplification isassumed).

16

Page 19: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

System Parameters

n(t, z) is a circularly symmetric complex Gaussian noise processwith autocorrelation

E[n(t, z)n?(t ′, z ′)

]= αhνsKT δ(t − t ′, z − z ′),

where h is Planck’s constant, νs is the optical frequency, and KT isthe phonon occupancy factor.

Second-order dispersion β2 -21.668 ps2/kmLoss α 4.605× 10−5 m−1

Nonlinear coefficient γ 1.27 W−1km−1

Center carrier frequency νs 193.41 THzPhonon occupancy factor KT 1.13

17

Page 20: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Solving the GNLS Equation

Throughout propagation over an optical fiber, stochastic effects(noise), linear effects (dispersion) and nonlinear effects (Kerrnonlinearity) interact.

nonlinearitynoise

dispersion

Even in the absence of noise, solving the GNLS equation requiresnumerical techniques.

18

Page 21: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Split-Step Fourier Method

h

divide fiber length into short segments

consider each segment as the concatenation of (separable)nonlinear and linear transforms

for distributed amplification, an additive noise is added afterthe linear step.

Q(t, z0) −→ Q(t, z0 + h) step size h

19

Page 22: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Nonlinear Step

In the absence of linear effects, the GNLS equation has the form

∂Q(t, z)

∂z= jγ|Q(t, z)|2Q(t, z),

with solution

Q(t, z0 + h) = Q(t, z0) exp(jγ|Q(t, z0)|2h).

Nonlinear Step . . .

. . . is best taken in the time domain.

20

Page 23: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Linear Step

Now use the previous solution as input to the linear step, i.e., let

Q(t, z0) = Q(t, z0) exp(jγ|Q(t, z0)|2h)

be the input to the linear step. The linear form of the GNLSequation is

∂Q(t, z)

∂z= − jβ2

2

∂2Q(t, z)

∂t2.

Defining

Q(t, z) =1

∫ ∞

−∞Q(ω, z) exp(jωt)dω, i.e., Q(t, z)

F←→ Q(ω, z),

it can be shown that

Q(ω, z0 + h) = Q(ω, z0) exp

(jβ2

2ω2h

).

Linear Step . . .

. . . is best taken in the frequency domain.

21

Page 24: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Split-Step Propagator

Putting this together, we have

Q(t, z0 + h) =

F−1

F

Q(t, z0) exp(jγ|Q(t, z0)|2h)︸ ︷︷ ︸nonlinear step

exp

(jβ2

2ω2h

)

︸ ︷︷ ︸linear step

where F is the Fourier transform operator.In practice:

1 extensive use is made of the FFT

2 step size can be adapted

3 linear and nonlinear steps can be “offset” by a half-step

See: Sinkin, Holzlohner, Zweck, Menyuk, J. Lightwave Tech., 2003.

22

Page 25: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 0 km

23

Page 26: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 200 km

23

Page 27: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 500 km

23

Page 28: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 1000 km

23

Page 29: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Current Approaches

1 Digital Backpropagation

q(t,L1) = KNLS(q(t, 0)) q(t,L2) = K−1NLS(q(t,L1))

q(t, 0) q(t,L)

2 Wavelength-division multiplexing (WDM)

inputoutputnoise

︸ ︷︷ ︸COI

︸ ︷︷ ︸out of band f

W guard band

24

Page 30: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Digital Backpropagation

Digital backpropagation = split-step Fourier method, using anegative step-size h, performed at the receiver

Full compensation (involving multiple WDM channels)generally impossible, even in absence of noise (due towavelength routing)

Noise is neglected (cf. zero-forcing equalizer)

Single-channel backpropagation typically performed, afterextraction of desired channel using a filter

25

Page 31: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Current Achievable Rates

pulse shapes

<(x)

=(x)constellation

−2

0

2

4

time

Amplitude

26

Page 32: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Capacity Estimation

See: R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B.Goebel, “Capacity limits of optical fiber networks,” J. Lightw.Technol., vol. 28, pp. 662–701, Sept./Oct. 2010.

System Model

TX CHANNEL LPF(

12Ts

)DSP

Q(t, 0) Q(t,L) t = kTs

27

Page 33: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Achievable Rates from Memoryless CapacityEstimate

10 15 20 25 30 35 400

1

2

3

4

5

6

7

8

9

10

SNR (dB)

Spectral Efficiency (bits/s/Hz)

L=2000 km, Eq. only L=2000 km, BPL=1000 km, Eq. onlyL=1000 km, BPL=500 km, Eq. onlyL=500 km, BPShannon Limit (AWGN)

B. P. Smith and F. R. Kschischang, J. Lightwave Techn.,

vol. 30, pp. 2047–2053, 2012.

(BP adds0.55 to 0.75bits/s/Hzrelative toEQ)

28

Page 34: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Schematic Achievable Rate Curve

0 10 20 30 40 50 600

5

10

15

log(1+

SNR)

Nonlinearitykicks in

SNR [dB]

Rat

e[bits/s/Hz]

noise-limited · · · nonlinearity-limited

29

Page 35: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Optical Fiber Capacity Bounds

lower bounds

Transmit power

C[b

it/s

ymb

ol]

upper bound powerbound

Upper bound:

1 G. Kramer, M. I. Yousefi, and F. R. Kschischang, “Upper Bound onthe Capacity of a Cascade of Nonlinear and Noisy Channels,” Proc.IEEE Info. Theory Workshop, Jerusalem, Israel, Apr. 2015.

2 M. I. Yousefi, G. Kramer, and F. R. Kschischang, “Upper Bound onthe Capacity of the Nonlinear Schrodinger Channel,” Proc. 14thCanadian Workshop on Info. Theory, St. John’s, NL, Jul. 2015.

30

Page 36: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Summary

Pulse propagation in optical fibers is well-modeled by thestochastic nonlinear Schrodinger equation:

∂Q(t, z)

∂z+

jβ2

2

∂2Q(t, z)

∂t2︸ ︷︷ ︸dispersion

− jγ|Q(t, z)|2Q(t, z)︸ ︷︷ ︸

nonlinearity

= n(t, z)︸ ︷︷ ︸noise

z is distance along the fiber; TX at z = 0,RX at z = Lt is retarded time, i.e., t = τ − β1z whereτ is ordinary time and β1 is a constant

Q(t, z) is the complex envelope of thepropagating signal

β2 is the chromatic dispersion coefficient

γ is the nonlinearity parameter

V (t, z) is space-time white Gaussian noise

nonlinearitynoise

dispersion

31

Page 37: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Part II:

Nonlinear Fourier Transform

−4 −2 0 2 4−5

0

5

0

1

spectrum of L

<λ=λ

∣ ∣ ∣NFT(q)(λ)∣ ∣ ∣

ba′

ba

32

Page 38: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Central Question:

Does fiber nonlinearity really place an upper limit on achievablespectral efficiency?

To try to answer this question, we have to understand thenonlinearity more deeply.

Spoiler:

We will not give a satisfactory answer in this talk.

33

Page 39: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Evolution Equations

An evolution equation (in 1+1 dimensions) is a partialdifferential equation for an unknown function q(t, z) of the form

∂q

∂z= K (q),

where K (q) is an expression involving only q and its derivativeswith respect to t.

Heat: K (q) = c2qtt

NLSE: K (q) = −j(qtt(t, z) + 2|q(t, z)|2q(t, z)

)

KdV: K (q) = qttt(t, z) + q(t, z)qt(t, z)

(Here subscripts denote partial derivatives, thus qtt = ∂2

∂t2 q(t, z).)

34

Page 40: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Normalized NLS Equation

Changing variables (to so-called “soliton units”):

q =Q√P, z ′ =

z

L , t ′ =t

T0,

with T0 =√|β2|L

2 and P = 2γL (and then dropping the “primes”)

we get the:

Normalized NLS equation

jqz(t, z) = qtt + 2|q(t, z)|2q(t, z) + v(t, z).

35

Page 41: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Isospectral Flow

A Key Idea

We seek an invariant under evolution (in the absence of noise),e.g., let L be a linear differential operator (depending on q(t, z)).It may be possible to find an L whose (eigenvalue) spectrumremains constant, even as q evolves (in z) according to someevolution equation.

0 · · · z · · · L

q(t, 0) · · · q(t, z) · · · q(t,L)

L(q(t, 0)) · · · L(q(t, z)) · · · L(q(t,L))

Constant Spectrum

36

Page 42: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Example: Isospectral Families of Matrices

Let L(z) be a family of diagonalizable square matrices whoseentries are functions of z . Clearly, the eigenvalues of thesematrices in general depend on z .For some families (isospectral families), it might be the case thatwhile the entries of the matrix change with z , the eigenvaluesremain constant.Each member of an isospectral family is similar to a constantdiagonal matrix Λ, i.e.,

L(z) = G (z)ΛG−1(z)

for some similarity transformation G (z).

37

Page 43: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Isospectral Families of Operators

Let H be a Hilbert space, and let L(z) be a family ofdiagonalizable bounded linear operators operating on H, e.g.,

L(q(t, z)) = − ∂2

∂t2+ q(t, z).

If the eigenvalues of L(z) do not depend on z , then we refer toL(z) as an isospectral family of operators.For each z , L(z) is similar to a multiplication operator Λ (theoperator equivalent of a diagonal matrix), i.e.,

L(z) = G (z)ΛG−1(z),

for some operator G (z).The spectrum of an operator is defined as

σ(L) = {λ | L− λI is not invertible}.

Spectrum can be discrete (like matrices), continuous, residual, etc.

38

Page 44: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

The Lax Equation

We have L(z) = G (z)ΛG−1(z), where Λ does not depend on z .Assuming that L(z) varies smoothly with z , we can form

dL(z)

dz= G ′ΛG−1 + G Λ

(−G−1G ′G−1

)

= G ′G−1︸ ︷︷ ︸M(z)

(G ΛG−1

)︸ ︷︷ ︸

L(z)

−(G ΛG−1

)︸ ︷︷ ︸

L(z)

G ′G−1︸ ︷︷ ︸M(z)

= M(z)L(z)− L(z)M(z) = [M, L] (1)

where [M, L]∆= ML− LM is the commutator bracket.

In other words, every diagonalizable isospectral operator L(z)satisfies the differential equation (1).The converse is also true.

39

Page 45: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Lax Pairs

Lemma

Let L(z) be a diagonalizable family of operators. Then L(z) is anisospectral family if and only if it satisfies

dL

dz= [M, L], (2)

for some operator M, where [M, L] = ML− LM.

Definition

The operators L and M satisfying (2) arecalled a Lax Pair (after Peter D. Lax, whointroduced the concept [1968]).

40

Page 46: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Lax Pairs

Recall that L may depend on a function q(t, z) and so can M. Thecommutator bracket [M, L] can create nonlinear evolutionequations for q(t, z) in the form

Lz = [L,M] ⇔ ∂q

∂z= K (q),

where K (q) is some, in general nonlinear, function of q(t, z) andits time derivatives.

41

Page 47: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

KdV Equation

An example of this is the Korteweg-de Vries (KdV) equation(which arises in the evolution of waves on shallow water surfaces).Let q(t, z) be a real-valued function and choose

L =∂2

∂t2+

1

3q,

M = 4∂3

∂t3+ qt + q

∂t.

The Lax equation Lz = [M, L] is easily simplified to

1

3qz −

1

3(qttt + qqt) + (some terms)

∂t≡ 0,

where 0 is the zero operator. The zero-order term of this equation,which must be zero, produces the KdV equation qz = qttt + qqt .

42

Page 48: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

NLS equation

If q(t, z) varies based on the NLS equation

jqz = qtt + 2|q|2q

then the spectrum of

L = j

(∂∂t −q(t, z)

−q∗(t, z) − ∂∂t

)(3)

is preserved during the evolution (Zakharov-Shabat 1972).In addition, the operator M is given by

M =

(2jλ2 − j |q(t, z)|2 −2λq(t, z)− jqt(t, z)

2λq∗(t, z)− jq∗t (t, z) −2jλ2 + j |q(t, z)|2)

Thus the NLS equation is indeed generated by a Lax pair!

43

Page 49: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Eigenvalues and Eigenvectors of L

The eigenvalues of the operator L, which are constant in anisospectral flow, are defined via

Lv = λv (4)

Taking the z derivative of (4) and using the Lax equationLz = [M, L], we can show that an eigenvector of L evolvesaccording to the linear equation vz = Mv .Furthermore, we can re-write (4) as vt = Pv for some operator P.Thus we get

Evolution of Eigenvectors of L

The eigenvectors of L evolve according to the linear system

vz = Mv (5)

vt = Pv (6)

44

Page 50: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Zero-Curvature Condition

Combining equations (5) and (6) by using the equality of mixedderivatives, i.e., vtz = vzt , the Lax equation (2) is reduced to the

Zero-curvature Condition

Pz −Mt + [P,M] = 0. (7)

Note that the nonlinear equation derived from (7) results as acompatibility condition between the two linear equations (5) and(6). Thus certain nonlinear evolution equations possess a certain“hidden linearity.”We can work with the Lax pair (L,M) or equivalently with the pair(P,M).

45

Page 51: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Integrable Systems

We refer to a system described by a Lax pair M, L, measured atdistance L, as the integrable system S = (L,M;L).

Lz(q) = [M(q), L(q)]x(t) = q(t, 0)

input waveform

y(t) = q(t,L)

output waveform

Definition (Lax Convolution)

The action of an integrable system S = (L,M;L) on the inputq(t, 0) is called the Lax convolution of q with S . We write thesystem output as q(t,L) = q(t, 0) ∗ (L,M;L).

Definition (Integrable communication channels)

A waveform communication channel C : x(t)× v(t, z)→ y(t)with inputs x(t) ∈ L1(R) and space-time noisev(t, z) ∈ L2(R,R+), and output y(t) ∈ L1(R), is said to beintegrable if the noise-free channel is an integrable system.

46

Page 52: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Spectrum of L

The Zakharov-Shabat operator for the NLS equation has two typesof spectra:

the discrete (or point) spectrum, which occurs in C+ andcorresponds to solitons.

The continuous spectrum, which in general includes thewhole real line, corresponds to the non-solitonic (or radiation)component of the signal.

<(λ)

=(λ)

47

Page 53: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Eigenspace Associated with λ

Associated with each point λ in the spectrum of L is atwo-dimensional eigenspace in which eigenvectors v evolve in timeaccording to

vt = Pv =

(−jλ q(t, z)

−q∗(t, z) jλ

)v .

Assuming q(t, z) is “pulse-like,” decaying to zero as |t| → ∞, theP operator approaches a diagonal matrix, and the eigenvectorsapproach

v(t, λ)→ (αe−jλt , βe jλt)T , α, β ∈ C.

48

Page 54: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Canonical Eigenvectors

For example, the “canonical” eigenvectors at t → −∞(

10

)e−jλt ,

(−10

)e−jλ

∗t

are bounded for λ in the upper (lower) half-complex planerespectively.We can propagate these vectors forward in time according tovt = Pv , let them “interact” with q(t, z), and measure what is“scattered” at t = +∞ in the basis

(01

)e jλt ,

(01

)e jλ

∗t

The corresponding coefficients a(λ) and b(λ) are called thenonlinear Fourier coefficients.

49

Page 55: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Continuous and Discrete Spectra

It can be shown that these scattering projections are well defined

at all points λ ∈ R, the real line ⇒ continuous spectrum

at those points λ ∈ C+, the upper-half complex plane, wherea(λ) = 0 (necessarily isolated points due to analyticity ofa(λ)) ⇒ discrete spectrum

50

Page 56: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Computing the Fourier coefficients

v1(+∞, λ) ∼(01

)ejλt

v1(∞, λ∗) ∼(10

)e−jλt

vt =

(−jλ q(t)−q∗(t) jλ

)v

v2(∞, λ)v2(−∞, λ) ∼(10

)e−jλt

Since the nonlinear Fourier coefficients are time independent,simply compute them at t = +∞, by projecting v 2(+∞, λ) andv 2(+∞, λ) onto the basis v 1(+∞, λ) and v 1(+∞, λ) to obtain

[v 2(+∞, λ), v 2(+∞, λ)

]=[v 1(+∞, λ), v 1(+∞, λ)

]S ,

where

S =

(a(λ) b∗(λ∗)b(λ) −a∗(λ∗)

).

51

Page 57: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Nonlinear Fourier Transform

For the purpose of developing the inverse transform, it is sufficientto work with the ratios

q(λ) =b(λ)

a(λ)and q(λj) =

b(λj)

a′(λj).

52

Page 58: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Nonlinear Fourier Transform

Definition (Nonlinear Fourier transform)

Let q(t) be a sufficiently smooth function in L1(R). The nonlinearFourier transform of q(t) with respect to a given Lax operator Lconsists of the continuous and discrete spectral functionsq(λ) : R 7→ C and q(λj) : C+ 7→ C where

q(λ) =b(λ)

a(λ), q(λj) =

b(λj)

a′(λj), j = 1, 2, · · · ,N,

in which λj are the zeros of a(λ). Here, the spectral coefficientsa(λ) and b(λ) are given by

a(λ) = limt→∞

v 21 e jλt ,

b(λ) = limt→∞

v 22 e−jλt

53

Page 59: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

The (ordinary) Fourier Transform

The nonlinear Fourier transform measures, for each fixedeigenvalue λ, the interaction of a propagating eigenvector(initialized as a complex exponential) with a waveform q(t).The ordinary Fourier transform measures, for each fixedfrequency ω, the interaction of the complex exponential e jωt

with a waveform q(t) via the inner product

Q(ω) = 〈q(t), e jωt〉 =

∫ ∞

−∞q(t)e−jωtdt.

An “eigenvector evolution” version of the ordinary Fouriertransform is recovered by defining

vt =

(0 q(t)0 −jω

)v ,

giving

v = α

(10

)+ β

(∫ t−∞ q(τ)e−jωτdτ

e−jωt

)

54

Page 60: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Example: NFT of a Rectangular Pulse

Consider the rectangular pulse

q(t) =

{A, t ∈ [t1, t2];

0, otherwise.

Let T = t2 − t1 and T ′ = t2 + t1, and let ∆ =√λ2 + |A|2.

After some work, we find that the zeros of a(λ) in C+, satisfy

j tan(T√|A|2 + λ2) =

√1 +|A|2λ2

,

giving rise to the discrete spectrum. The continuous spectrum isgiven by

q(λ) =A∗

jλe−2jλt2

(1− ∆

jλcot(∆T )

)−1

→ −A∗Te−t1+t2

2 sinc(2Tf ).

55

Page 61: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Discrete & Continuous Spectra of Rectangular Pulse

0

0.5

1

1.5

2

2.5

-30 -20 -10 0 10 20 30

|q(λ)|

λ

-10123456

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

0

0.5

1

1.5

2

2.5

-40 -30 -20 -10 0 10 20 30 40

|q(λ)|

λ

-10123456

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

A = 1 A = 2

0

0.5

1

1.5

2

2.5

-40 -30 -20 -10 0 10 20 30 40

|q(λ)|

λ

-10123456

-1 -0.5 0 0.5 1

ℑ(λ)

ℜ(λ)

A = 6 56

Page 62: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

NFT Properties

Let q(t)↔ (q(λ), q(λk)) be a nonlinear Fourier transform pair.

(The ordinary Fourier transform as limit of the nonlinearFourier transform): If ||q||L1 � 1, there is no discretespectrum and q(λ)→ Q(λ), where Q(λ) is the ordinary(linear) Fourier transform of −q∗(t)

Q(λ) = −∞∫

−∞

q∗(t)e−2jλtdt.

(Weak nonlinearity): If |a| � 1, then aq(λ) ≈ aq(λ) andaq(λk) ≈ aq(λk). In general, however, aq(λ) 6= aq(λ) andaq(λk) 6= aq(λk).

(Constant phase change): e jφq(t)(λ) = e jφq(t)(λ) and

e jφq(t)(λk) = e jφq(t)(λk).

57

Page 63: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Fourier Transform Properties (cont’d)

(Time dilation): q( ta) = |a|q(aλ) and q( t

a) = |a|q(aλk);

(Time shift): q(t − t0)↔ e−2jλt0 (q(λ, )q(λk));

(Frequency shift): q(t)e−2jωt ↔ (q(λ− ω), q(λk − ω));

(Parseval identity):∞∫−∞‖q(t)‖2 dt = E + E , where

E =1

π

∞∫

−∞

log(1 + |q(λ)|2

)dλ, E = 4

N∑

j=1

= (λj) .

The quantities E and E represent the energy contained in thecontinuous and discrete spectra, respectively.

58

Page 64: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

The Key NFT Property

(Lax convolution): If q2(t) = q1(t) ∗ (L,M;L), thenq2(λ) = c(λ,L)q1(λ) and q2(λk) = c(λ,L)q1(λk).

For the NLS equation, c(λ,L) = exp(−4jλ2L).

59

Page 65: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Signals and Systems

LTI systems:

y(t) = h(t) ∗ x(t) + z(t)⇔ Y (ω) = H(ω)X (ω) + Z (ω)

Nonlinear Integrable systems:

y(t) = x(t)∗(L,M;L)+z(t)⇔{

Y (λ) = H(λ)X (λ) + Z (λ),

Y (λj) = H(λj)X (λj) + Z (λj)

where the channel filter is H(λ) = e−4jλ2z .

We see that the operation of the Lax convolution in the nonlinearFourier domain is described by a simple multiplicative (diagonal)operator (i.e., filters), much in the same way that the ordinaryFourier transform maps x(t) ∗ y(t) to X (ω) · Y (ω).

60

Page 66: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 0 km

61

Page 67: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 200 km

61

Page 68: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 500 km

61

Page 69: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−10 −5 0 5 100

2

4

6

8

10

12

t (soliton units)

|q(t

)|

z = 1000 km

61

Page 70: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−6 −4 −2 0 2 4 60

1

2

3

4

5

6

λ

|q

(λ)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 0 km

62

Page 71: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−6 −4 −2 0 2 4 60

1

2

3

4

5

6

λ

|q

(λ)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 200 km

62

Page 72: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−6 −4 −2 0 2 4 60

1

2

3

4

5

6

λ

|q

(λ)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 500 km

62

Page 73: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−6 −4 −2 0 2 4 60

1

2

3

4

5

6

λ

|q

(λ)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 1000 km

62

Page 74: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−4 −3 −2 −1 0 1 2 3 40

1

2

3

4

5

6

7

8

t (soliton units)

|q(t

)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 0 km

63

Page 75: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−4 −3 −2 −1 0 1 2 3 40

1

2

3

4

5

6

7

8

t (soliton units)

|q(t

)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 200 km

63

Page 76: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−4 −3 −2 −1 0 1 2 3 40

1

2

3

4

5

6

7

8

t (soliton units)

|q(t

)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 500 km

63

Page 77: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−4 −3 −2 −1 0 1 2 3 40

1

2

3

4

5

6

7

8

t (soliton units)

|q(t

)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 1000 km

63

Page 78: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Launching a Pulse (revisited)

−4 −3 −2 −1 0 1 2 3 40

1

2

3

4

5

6

7

8

t (soliton units)

|q(t

)|

−1 0 1

0

2

4

Re(λ)

Im(λ

)

z = 2000 km

63

Page 79: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Nonlinear FDM

Immediate application: encode data in the nonlinear spectrum!

{λj , q(λj), q(λ)}TX

S/P INFT P/S D/A LPF

P/S NFT S/P A/D LPF

{λj , q(λj), q(λ)}RX

......

......

channel

See also: A. Hasegawa and T. Nyu, “Eigenvalue Communication,”J. of Lightwave Technology, vol. 11, pp. 395–399, March 1993.

64

Page 80: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Multisoliton Communication

Multisolitons are signals whose NFT spectrum only contains thediscrete component, i.e., the corresponding L operator has onlydiscrete eigenvalues

−5 0 50

0.5

1

1.5

2

t

|q|

−1 0 1

0

1

2

Re(λ)

Im(λ

)

−5 0 50

0.5

1

1.5

2

2.5

3

3.5

4

t

|q|

−1 0 1

0

1

2

Re(λ)

Im(λ

)

2sech(t) — Satsuma-Yajima 2-soliton

65

Page 81: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Generation of Multisoliton Signals

Inverse NFT problem: Given a set of points in C+, compute a signalq(t) such that the eigenvalues of its corresponding L operator areexactly these points

Several approaches: Riemann–Hilbert system of linear equations,Hirota bilinearization scheme, Darboux transformation

Darboux method (recursive construction)

Starting with a multisoliton signal q(t, λ1, λ2, . . . , λk), and asolution, φ(t, λk+1), of

vt(t, λ) =

(−jλ q(t, z)

−q∗(t, z) jλ

)v(t, λ),

compute q = q − 2j(λ∗k+1 − λk+1)φ∗2φ1

|φ1|2 + |φ2|2.

q has eigenvalues of q and new eigenvalue from φ

66

Page 82: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

On-Off Eigenvalue Encoder (OOK)

−1 −0.5 0 0.5 1

0

1

2

3

4

5

Re(λ)

Im(λ

)

b0 = 0

b3= 0

b1 = 0

b2 = 1

−5 0 50

1

2

3

4

5

6

t

|q(t

)|−1 −0.5 0 0.5 1

0

1

2

3

4

5

Re(λ)

Im(λ

)

b0 = 0

b2 = 1

b1 = 1

b3= 1

−5 0 50

1

2

3

4

5

6

t|q

(t)|

OOK signals for input bits [0 0 1 0] and [0 1 1 1]

Problem: Spectral efficiency drops as the number of points isincreased

67

Page 83: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

On-Off Eigenvalue Encoder (OOK)

−1 −0.5 0 0.5 1

0

1

2

3

4

5

Re(λ)

Im(λ

)

b0 = 0

b3= 0

b1 = 0

b2 = 1

−5 0 50

1

2

3

4

5

6

t

|q(t

)|−1 −0.5 0 0.5 1

0

1

2

3

4

5

Re(λ)

Im(λ

)

b0 = 0

b2 = 1

b1 = 1

b3= 1

−5 0 50

1

2

3

4

5

6

t|q

(t)|

OOK signals for input bits [0 0 1 0] and [0 1 1 1]Problem: Spectral efficiency drops as the number of points is

increased

67

Page 84: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Multi-eigenvalue position encoding

−1 −0.5 0 0.5 1−1

0

1

2

3

4

5

6

Re(λ)

Im(λ

)

−2 0 20

2

4

6

−10 0 100

2

4

6

tt

|q(t)| |q(t)|

Multi-eigenvalue position encoding 68

Page 85: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Multi-eigenvalue position encoding

Generate(N

1

)+(N

2

)+ · · ·+

(Nk

)signals for a given grid of N

points, and at most k eigenvalues in a transmit signalSelect cut-off bandwidth and pulsewidth

010

2030

40 01

23

0

1

2

3

4

Tc (in ns)

Bc (in GHz)

SE

(in

bits/s

/Hz)

Spectral efficiency as a function of the cutoff parameters (N=50,∆ = 0.1j , k = 5)

69

Page 86: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Multi-eigenvalue position encodingAchievable spectral efficiencies

k M M Tc Bc SE (in bits/s/Hz)

3 20,876 201 0.88 ns 6.54 GHz 1.344 251,176 804 0.88 ns 5.08 GHz 2.175 2,369,936 2,569 1 ns 3.64 GHz 3.14

Table : Spectral efficiencies of the multi-eigenvalue position encoder(N = 50 and ∆ = 0.1)

70

Page 87: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Experimental Demonstration

ECL

laser

I/Q

modulatorEDFA

AWG

AOM

AOM

OBPF

EDFA

PC

I Q

Fiber recirculating loop

3dB

Coupler

50 km SSMF

Ramanpump

Coh

eren

tR

ecei

verLO

Rea

l-ti

me

Osc

illos

cop

e

&offl

ine

DS

PIxQx

IyQy

Z. Dong, S. Hari, T. Gui, K. Zhong, M. I. Yousefi, C. Lu, P.-K. A. Wai,

F. R. Kschischang, and A. P.-T. Lau, “Nonlinear Frequency Division

Multiplexed Transmissions based on NFT,” IEEE Photonics

Techn. Letters, vol. 27, no. 15, pp. 1621–1623, Aug. 2015.

71

Page 88: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

4 eigenvalues (300km)

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

−1 0 1

1

2

3

4

5

(0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

(0,1,0,1)

(0,0,1,1)

(1,0,0,1) (0,1,1,0) (1,0,1,0) (1,1,0,0)

(0,1,1,1) (1,0,1,1) (1,1,0,1) (1,1,1,0) (1,1,1,1) 72

Page 89: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

3 eigenvalues (1800km)

−1 0 1

1

2

3

4

−1 0 1

1

2

3

4

−1 0 1

1

2

3

4

−1 0 1

1

2

3

4

−1 0 1

1

2

3

4

−1 0 1

1

2

3

4

−1 0 1

1

2

3

4

(1,0,0)

(1,0,1)

(0,0,1) (0,1,0) (0,1,1)

(1,1,0) (1,1,1)

73

Page 90: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Received Signal (1800km)

 

74

Page 91: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Recent Result (Yousefi and Yangzhang, 2016)

−25 −20 −15 −10 −5 00

2

4

6

8

10

12

14

P [dBm]

Achievable

rate

[bits/2D

]

AWGNNFDMWDM

(2000 km, normal-dispersion, NFDM vs 15 channel WDM in 60 GHz bandwidth)

M. I. Yousefi and X. Yangzhang, “Linear and Nonlinear

Frequency-Division Multiplexing,” arXiv:1603.04389v2, May 2016. 75

Page 92: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Conclusion

Pulse train transmission and WDM may not be the besttransmission strategy for the nonlinear optical channel.

All deterministic distortions are zero for all users under NFDM:

NFDM removes inter-channel interference (cross-talk) betweenusers of a network sharing the same fiber channel;

NFDM removes inter-symbol interference (ISI) (intra-channelinteractions) for each user;

with NFDM, information in each channel of interest can beconveniently read anywhere in a network without knowledge of thedistance or any information about other users;

spectral invariants are remarkably stable features of the NLS flow.

Exploiting the integrability of the NLS equation, NFDM modulatesnon-interacting degrees of freedom and thereby does not sufferfrom cross-talk, a major limiting factor for prior work.

76

Page 93: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Conclusions

1955 1965 1967 1968 1968 1972 1972 1973 1974 1990s 1993 2000s 2012

FPU

Zabusky-Kruskal

Gardneretal.

Lax

RMMiura

Hirota

Zakharov-Shabat

Hasegawa

Ablowitzetal.

WDM, optical solitons

Hasegawa

WDMdisp/nonlin

manag.

NFT

The NFT can be used for transmission of informationNFT solves at least two major problems

1 it removes ISI2 spectral data appear to be more robust to noise compared with

time-domain processing (e.g., digital backpropagation)

Is it better than existing methods? We do not know yet. Sofar we can match existing methods. However, our insightssuggest that the achievable rates for NFDM will trendupwards for increasing SNRs.disadvantages:

1 critically relies on integrability2 it is hard to implement or sometimes to simulate.

77

Page 94: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Open Problems

Plenty of open problems:

Entropy (rate) evolution (production) in NLS equation withadditive noise

Rigorous bounds on capacity

Vector models (for polarization, multimode, multicore)

Discrete models

Development of fast algorithms

· · ·

78

Page 95: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

References

1 A. Hasegawa and T. Nyu, “Eigenvalue Communication,” J. ofLightwave Technology, vol. 11, pp. 395–399, March 1993.

2 R.-J. Essiambre, G. Kramer, P. J. Winzer, G. J. Foschini, B. Goebel,“Capacity limits of optical fiber networks,” J. Lightw. Technol., vol.28, pp. 662–701, Sept./Oct. 2010.

3 M. I. Yousefi and F. R. Kschischang, “Information Transmissionusing the Nonlinear Fourier Transform, Part I: Mathematical Tools,”“Part II: Numerical Methods,” “Part III: Discrete SpectrumModulation,” IEEE Trans. on Inform. Theory, July 2014.

4 E. Meron, M. Feder and M. Shtaif, “On the achievablecommunication rates of generalized soliton transmission systems,”arXiv:1207.02, 2012.

5 P. Kazakopoulos and A. L. Moustakas, “Transmission of informationvia the non-linear Schrodinger equation: The random Gaussianinput case,” ArXiv:1210.794, 2013.

6 S. Wahls and H. V. Poor, “Fast numerical nonlinear Fouriertransforms,” to appear in IT Transactions, 2015.

79

Page 96: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

References (cont’d)

7 H. Bulow, “Experimental assessment of nonlinear Fourier transformbased detection under fiber nonlinearity,” ECOC 2014.

8 J. E. Prilepsky, et al., “Nonlinear inverse synthesis and eigenvaluedivision multiplexing in optical fiber channels,” PRL, Jul. 2014.

9 H. Terauchi and A. Manuta, “Eigenvalue modulated opticaltransmission system based on digital coherent technology,” OECC,2013.

10 H. Terauchi, Y. Matsuda, A. Toyota, and A. Maruta, “Noisetolerance of eigenvalue modulated optical transmission systembased on digital coherent technology,” OECC/ACOFT, 2014.

11 S. Wahls, S. T. Le, J. E. Prilepsky, H. V. Poor, S. K. Turitsyn,“Digital backpropagation in the nonlinear Fourier domain,” SPAWC,Stockholm, Sweden, Jun. 2015.

12 V. Aref, H. Bulow, K. Schuh, W. Idler, “Experimentaldemonstration of nonlinear frequency division multiplexedtransmission,” ECOC 2015, Sept. 2015.

80

Page 97: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

2006 Steele Prize

For their discovery in the 1970s of the mathematical frameworkunderlying the nonlinear Fourier transform, Clifford S. Gardner,John M. Greene, Martin D. Kruskal and Robert M. Miura receivedthe prestigious 2006 Leroy P. Steele Prize for a SeminalContribution to Research, awarded by the American MathematicalSociety.

From the Steele Prize Announcement:

Nonlinearity has undergone a revolution: from a nuisance to beeliminated, to a new tool to be exploited.

81

Page 98: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Acknowledgment

This work was supported:

by the Natural Sciences and Engineering ResearchCouncil of Canada through the Discovery Grants Program,and

by the Institute for Advanced Study, TechnischeUniversitat Munchen, through a Hans Fischer SeniorFellowship.

I am profoundly grateful for all support.

Thank You!

82

Page 99: Fiber-Optic Communication via the Nonlinear Fourier … · Fiber-Optic Communication Systems TX Hybrid Ampli er Forward pump span 1 span 2 span N SSMF Hybrid Ampli er Forward pump

Acknowledgment

This work was supported:

by the Natural Sciences and Engineering ResearchCouncil of Canada through the Discovery Grants Program,and

by the Institute for Advanced Study, TechnischeUniversitat Munchen, through a Hans Fischer SeniorFellowship.

I am profoundly grateful for all support.

Thank You!

82