fgs assessment

51
KENEXIS Fire & Gas System (FGS) Integrity Analysis

Upload: baba-johneh

Post on 25-Nov-2015

44 views

Category:

Documents


6 download

DESCRIPTION

Fire and Gas

TRANSCRIPT

  • KENEXIS

    Fire & Gas System (FGS)Integrity Analysis

  • KENEXIS

    Background Fire&GasDetectionandSuppressionsystemsarecriticalinstrumentation/controlsystems

    FGSSystemscanbeakeysafeguardusedtoreducerisktotolerablelevels SafetyRisk EnvironmentalRisk AssetRisk(Commercial/Business)

    Allcriticalinstrumentation/controlsystemsrequireabasisofsafetyforspecifyingadequateequipmentdesignandfunctionaltestingrequirements Option1:PrescriptiveBasisofSafety,NFPAstandards,etc. Option2:PerformanceBasis/RiskAssessment

    Option2workswithCustomerCorporateRiskTolerancecriteria

    2

  • KENEXIS

    Typical FGS Components

    FGS Logic Solver

    Process

    Safetyvalve

    Logic solverProgrammable

    or non-Programmable

    OutputInput

    AreaFire or Gas

    Detector

    Final Element(s)Detector(s)

    SV

    IAS

  • KENEXIS

    Safety Integrity Level (SIL)

    PFD concept is highly relevant to design of Fire and Gas System Functions

    However, component equipment failures are not the only consideration!

  • KENEXIS

    Rules for Layers of Protection Independent Protection Layers (IPLs) MUST Completely

    Prevent Hazard More credit given to Hazard Prevention versus

    Mitigation Systems

  • KENEXIS

    FGS Design & Analysis Challenges WhenTryingtousetypicalRiskAnalysistechniquesforcompliancewithISA84/IEC61511StandardforSIS Fire&GassystemsMitigateConsequence TheyarenotPreventativesafeguards DetectorPlacementandCoveragecantbeignored UK/HSENorthSeadataindicatemorethan30%ofgasreleasesarenotdetectedbyautomatedsystems

    FireandGasHazardsaregeneralinnature,difficulttocharacterizeincontextofLayersofProtectionAnalysis(LOPA)

    HowtomakedecisionsabouttolerableriskwithrespecttoFire&GasSystems?

    WhenisitappropriatetotakecreditforFireandGasdetection/suppressioninthecontextofLOPA?

    6

  • KENEXIS

    0

    0

    0

    0

    0

    0

    3

    2

    1

    0

    0

    0

    4

    3

    2

    1

    0

    0

    5

    4

    3

    2

    1

    0

    6

    5

    4

    3

    2

    0

    7

    6

    5

    4

    3

    0

    0 1 2 3 4 5

    5

    4

    3

    2

    1

    0

    LIKELIHOOD

    S

    E

    V

    E

    R

    I

    T

    Y

    -

    S

    A

    F

    E

    T

    Y

    LOPA works well for Hazard Prevention

  • KENEXIS

    IPL 2 Success

    Fail

    Initiating Event Occurs

    (Fi per yr)

    IPL1 Success

    Fail

    F2

    S2

    S1

    F1

    TypicalRiskModelforLOPA

    No Hazard

    No Hazard

    No Hazard

    Hazard Occurs

    Fi * F1* F2*F3 = Hazard Frequency (per yr)

    IPL 3 Success

    Fail

    S3

    F3

    Based on QRA / Event Tree Analysis

    By definition: Only one branch results in hazard

    Hazard is a single event of definable magnitude, severity

    IPL = Independent Protection Layer

    Conditional Outcome

  • KENEXIS

    FGS Effectiveness(PFD)

    Hazard occurs(Fi per yr)

    DetectorCoverage

    F2

    S2

    Fi * (F1 + S1* F2) = Unmitigated Hazard Frequency

    S1* S2 = Effectiveness of FGS Function

    S1

    F1

    SimplifiedRiskModelforFire&GasSystemIntegrityAnalysis

    Mitigated Hazard

    Unmitigated Hazard

    Fi * (S1 * S2) = Mitigated Hazard Frequency

    Conditional Outcome

  • KENEXIS

    SimplifiedRiskModelforFire&GasSystemIntegrityAnalysis

    HazardsofvaryingmagnitudeoccuronseveralbranchesofFGSeventtree

    Possiblehazardousoutcomesareofdifferentmagnitude,severity

    FGSdetectorcoverageandsafetyavailabilityareimportantfactorsinoutcomes,buthavepracticallimits,especiallyondetectorcoverage.

    Initiatingeventsincludeleaks,rupturesduetocorrosion,erosion,externalimpact.TypicallynotincludedinLOPA.

    EffectivenessofFGSfinalelementactionsneedstobeconsidered.

  • KENEXIS

    0

    0

    0

    0

    0

    0

    3

    2

    1

    0

    0

    0

    4

    3

    2

    1

    0

    0

    5

    4

    3

    2

    1

    0

    6

    5

    4

    3

    2

    0

    7

    6

    5

    4

    3

    0

    0 1 2 3 4 5

    5

    4

    3

    2

    1

    0

    LIKELIHOOD

    S

    E

    V

    E

    R

    I

    T

    Y

    -

    S

    A

    F

    E

    T

    Y

    LOPA does not work well for Hazard Mitigation

    - Multiple outcomes of same hazard scenario

    Unmitigated Hazard

    Mitigated Hazard

  • KENEXIS

    FGSIntegrityAnalysisGeneralApproach1. UseaRiskModelthataccountsforboth

    MitigatedandUnmitigatedHazards2. SamelevelofanalysisasLOPA...butOptionalfullQRA3. CalibratetoRiskToleranceCriteria4. UseRiskModeltoEstablishPerformanceParameters

    forFGSDesign Target:DetectorCoverage Target:FGSFunctionSafetyAvailability(PFDavg)

    5. Verifyperformancetargetshavebeenachieved Achieved:DetectorCoverage>Target Achieved:FGSFunctionSafetyAvailability(PFDavg)>TargetNote:QRA/safetycaseanalysisassumes probabilityvaluesfor

    DetectorCoverageandFGSAvailabilityFGSIntegrityAnalysisdoesnotassumeprobabilityvalues,it

    establishesdesigntargetsthataresubsequentlyverified

  • KENEXIS

    FGSIntegrityAnalysisProcedure

    1. DefineFireHazardZonesandGasHazardZones2. ClassifyFire&GasZoneHazardRank3. DetermineFGSPerformanceRequirements

    FireDetectorPlacementandPerformance FlammableGasDetectorPlacementandPerformance

    4. DetectorcoveragemappingandDetectorPlacement5. Detector/FGSPerformanceVerification6. ModificationofFGSdesign,asnecessarytoachieve

    performancetargets

  • KENEXIS

    DefineFireHazardZones

  • KENEXIS

    HazardZonesConsiderations GroupSimilarEquipmenttogetherinZone Considerdifferentiatingzonesby:

    Deck FGSsystemactions Segregationofhazards ClassifiedElectricalEquipment Specialoccupancies

    SeparateZonesfordifferenthazards: FlammableHazards(fireandcombustibleGas) ToxicHazards(H2S)

  • KENEXIS

    ListofZones

  • KENEXIS

    CategorizeZonesZone

    Category AreaDefinition Examples

    HHydrocarbonPossessingArea,GeneralFire/GasHazard

    wellbay,productionseparation,gascompression,

    N NonHydrocarbonFireHazard

    CombustibleLiquidStorageLubricationOilSystem

    DGeneralOccupancy,NoHydrocarbonFireHazard

    AccommodationsModuleControlModule

    ENonHydrocarbonSpecialEquipmentProtection

    NonclassifiedElectricalEquipment

    T GasTurbineorEngineEnclosuresGasTurbineandTurbineEnclosures

    V CombustionAirIntake/VentilationAirIntakesReboilerCombustionAirblower,

  • KENEXIS

    CategorizeZonestodetermineObjectivesofFGSIntegrityAnalysis

    ZoneH(Hydrocarbon)andZoneN(Nonhydrocarbon) AnalysisObjective:Determineadequacyofgeneralareacoverageofhydrocarbon/nonhydrocarbonfireandgasdetectionsystems

    ZoneD(GeneralOccupancy) Conformancewithapplicable,prescriptivestandards,NFPA72,EN54orequivalent

    ZoneE,ZoneT,ZoneV(ProtectionofNonhazardousAreas) AnalysisObjective:Determineadequacyofseparationofzonefromotherhydrocarbon/nonhydrocarbonfireorgashazards.

  • KENEXIS

    FGSRiskModel SemiQuantitative(SimilartoLOPA)versusFully

    QuantitativeRiskAnalysis(QRA)

    DesireaRiskModelthatissensitiveto: DetectorCoverage FGSSystemProbabilityofFailureonDemand

    AnalysisConsiderationsinclude: AssessmentofHydrocarbonProcessingEquipment AssessmentofFireandGasConsequences AssessmentofReleaseLikelihood AssessmentofLevelofHumanOccupancyofZone AssessmentofProductionValueforProcess

  • KENEXIS

    SelectFGSRiskMethod

    ZoneCategory HazardofConcern

    PrimaryRiskAnalysisMethod

    AlternateRiskAnalysisMethod

    H HydrocarbonFire SemiQuantitative Quantitative

    H CombustibleGas SemiQuantitative Quantitative

    H ToxicGas Quantitative (none)

    N NonhydrocarbonFire SemiQuantitative Quantitative

    EAirintakeforSpecialEquipment Quantitative

    (none)

    TCombustibleGasatAirIntake Quantitative

    (none)

    VCombustibleGasatAirIntake Quantitative

    (none)

    Where no FGS is in place, then fully-quantitative method is used to determine if risk is acceptable without the benefit of any automated FGS.

  • KENEXIS

    HydrocarbonvsNonHydrocarbonZones

    Step 1:Define Zone Category

    NO YESStep 2:Select Processing Unit

    Use Prescriptive Standards

    Step 3:Adjust ForOccupancy

    Step 4:Adjust ForProduction Rate

    Step 5:Adjust ForConfinement Criteria

    Zone Category N or H ?

  • KENEXIS

    SemiQuantitativeMethod:AssignedGrades

    Hazard Grades assigned to Hydrocarbon Zones (fire and gas) and Non-Hydrocarbon Fire Zones

    Grade ExposureDefinition

    A HydrocarbonProcessing,HighExposure

    B HydrocarbonProcessing,

    ModerateExposure

    C HydrocarbonProcessing,LoworVeryLowExposure

    Semi-Quantitative Method

  • KENEXIS

    Grade ExposureDefinition HazardRank

    (Risk)

    FGSPerformance

    Targets

    A HydrocarbonProcessing,HighExposure

    HighRisk HighCoverageVeryLowPFD

    B HydrocarbonProcessing,

    ModerateExposure

    MediumRisk ModerateCoverageLowPFD,SIL1

    C HydrocarbonProcessing,LoworVeryLowExposure

    LowRisk Min.CoverageLowPFD,SIL1

    SemiQuantitativeMethod:AssignedGrades

    Semi-Quantitative Method

  • KENEXIS

    Grade ExposureDefinition HazardRank

    (Risk)

    FGSPerformance

    Targets

    A HydrocarbonProcessing,HighExposure

    3+ HighCoverageVeryLowPFD

    B HydrocarbonProcessing,

    ModerateExposure

    1or2 ModerateCoverageLowPFD,SIL1

    C HydrocarbonProcessing,LoworVeryLowExposure

    0 Min.CoverageLowPFD,SIL1

    SemiQuantitativeMethod:AssignedGrades

    Semi-Quantitative Method

  • KENEXIS

    ProcessingUnitsZoneHazard

    Rank ProcessingUnitsZoneHazard

    Rank

    ProductionWells 1 GasCompression(2500) 3

    GasLiftWells 2 FuelGas(

  • KENEXIS

    Occupancy ZoneHazardRankAdjustment

    NUI=NormallyunmannedInstallation +0

    MannedInstallationANDZone=

  • KENEXIS

    ProductionAdjustment

    ProductionRate(Oil/Gas) ZoneHazardRankAdjustment

    Oil40,000BPDorGas>150MMSCFD +1

    Semi-Quantitative Method

  • KENEXIS

    SpecialFactorsAdjustment

    DeckTypeZoneHazardRank

    Adjustment

    Grated +0

    Solid +1

    Semi-Quantitative Method

  • KENEXIS

    HydrocarbonZonesAssignedGrades

    Grade ExposureDefinition HazardRank

    (Risk)

    FGSPerformance

    Targets

    A HydrocarbonProcessing,HighExposure

    3+ HighCoverageVeryLowPFD

    B HydrocarbonProcessing,

    ModerateExposure

    1or2 ModerateCoverageLowPFD,SIL1

    C HydrocarbonProcessing,LoworVeryLowExposure

    0 Min.CoverageLowPFD,SIL1

    Semi-Quantitative Method

  • KENEXIS

    FireGrade FireDetectionCoverage FGSSafetyAvailability

    A 0.90 0.97

    B 0.85 0.90

    C 0.60 0.90

    GasGrade GasDetectionCoverage FGSSafetyAvailability

    A 0.90 0.97

    B 0.85 0.90

    C 0.60 0.90

    FGSPerformanceTargets

    Semi-Quantitative Method

  • KENEXIS

    FGS Effectiveness(PFD)

    Hazard occurs(Fi per yr)

    DetectorCoverage

    F2 = 0.03

    S2 = 0.97

    Fi * (F1 + S1* F2) = Unmitigated Hazard Frequency

    S1* S2 = Effectiveness of FGS Function

    S1 = 0.90

    F1 = 0.10

    ApplicationFireGradeA HighExposure(NotehighcoveragetargetsandFGSEffectivenessTargetsforGradeA)

    Mitigated Hazard

    Unmitigated Hazard

    Fi * (S1 * S2) = Mitigated Hazard Frequency

    High-SIL 1 Equivalent Effectiveness

  • KENEXIS

    FGS Effectiveness(PFD)

    Hazard occurs(Fi per yr)

    DetectorCoverage

    F2 = 0.10

    S2 = 0.90

    Fi * (F1 + S1* F2) = Unmitigated Hazard Frequency

    S1* S2 = Effectiveness of FGS Function

    S1 = 0.85

    F1 = 0.15

    Mitigated Hazard

    Unmitigated Hazard

    Fi * (S1 * S2) = Mitigated Hazard Frequency

    ApplicationFireGradeB ModerateExposure(NotelowercoveragetargetsandFGSEffectivenessTargetsallowedforGradeB)

    SIL 1 Equivalent Effectiveness

  • KENEXIS

    FGS Effectiveness(PFD)

    Hazard occurs(Fi per yr)

    DetectorCoverage

    F2 = 0.10

    S2 = 0.90

    Fi * (F1 + S1* F2) = Unmitigated Hazard Frequency

    S1* S2 = Effectiveness of FGS Function

    S1 = 0.60

    F1 = 0.40

    Mitigated Hazard

    Unmitigated Hazard

    Fi * (S1 * S2) = Mitigated Hazard Frequency

    ApplicationFireGradeC LowExposure(NotelowercoveragetargetsandFGSEffectivenessTargetsallowedforGradeC)

    SIL 1 Equivalent Effectiveness

  • KENEXIS

    OptionalAnalysisMethod:FullyQuantitativeAnalysis Applicationsinclude:

    ToxicGasZones duetohighlylocationspecificanalysis

    SpecialExposureZones(E,T,V) AlternativeprocedureforHydrocarbonFire&GasZoneswhereSemiquantitativeMethoddoesnotprovideadequateresults

    Usedexclusivelywhenno(orlimited)FGSsystemexistsanddesiretojustifyadequacyofexistingsituation

  • KENEXIS

    HazardScenarioIdentification Hazardscenariosshouldincludegeneralrelease/firescenarios

    Identifyallcrediblereleasescenarios,including: Vessels, process piping, flanges, instruments, wellheads, pumps,

    compressors, heat exchangers, launchers/receivers, risers and pipelines

    Identifyspecificfactorseffectingreleasescenario Holesize,location,orientation,phase,toxicity(H2S),occupancy

    ReleaseScenarioswithextremelylowlikelihoodand/orconsequenceneednotbeconsidered

    Resultshouldbeadetailedlistofreleasescenarioswithenoughdetailtoundertakeconsequenceandlikelihoodanalysis

    Fully-Quantitative Method

  • KENEXIS

    HydrocarbonFireConsequenceAnalysis

    TwoConsequenceTypes: JetFire(EarlyIgnition,Turbulentdiffusion,momentum

    driven)

    PoolFire(LateIgnition,consequenceseverityisdefinedbypoolsizeandfueltype)

    Radiantheatoutputisbasisforsafetyconsensuses:

    Requiresdispersionandconsequencemodelingusingpurposebuiltsoftware(PHAST)

    Fully-Quantitative Method

  • KENEXIS

    HydrocarbonGasConsequenceAnalysis

    Consideroneormorepotentialhazardousoutcomes JetFire VaporCloudExplosion(VCE) VaporCloudFlashFire ToxicExposure(H2S)

    Sensitivetoatmosphericconditions(i.e.prevailingwinds,relativehumidity,ambienttemperature)

    Requiresdispersionandconsequencemodelingusingpurposebuiltsoftware(PHAST)

    Fully-Quantitative Method

  • KENEXIS

    FlashFireConsequenceAnalysis Resultofdelayed,unconfinedignitionofcombustiblegasrelease Intense,shortdurationfire Burnsfrompointofignitionbacktopointofrelease Potentialtoresultinresidualfireatpointofrelease(i.e.jet

    fire)

    LELisflammableendpointforvaporcloud Analysismustaccountforpocketsofflammablevaporwithin

    thevaporcloudathigherconcentrationthanthebulkvapor

    Fully-Quantitative Method

  • KENEXIS

    VaporCloudExplosionConsequenceAnalysis

    Ignitionofsemiconfinedhydrocarbongasreleaseinacongestedenvironment. Flamefrontaccelerationresultsindamagingoverpressure Transientblastfollowedbyresidualfireatpointofrelease

    AnalyzeFGSZonetodetermineifVCEispossible Overlayvaporclouddispersionresultswithplatformdeck

    plantoidentifyareasofpotentialconfinement

    Factorsforanalysisinclude: Considerationofdimensionalconfinement(1D,2D,3D) Considerationofblockageratio(low,medium,high) Sufficientvolumeofconfinedvapor(50m3,UKHealth&SafetyExec.) OverpressuregeneratedbyVCE(LethalBlastOverpressurethreshold) Presenceorabsenceofblastwalls

    Fully-Quantitative Method

  • KENEXIS

    ToxicGas(H2S)ConsequenceAnalysis

    Gasreleasewithoutignitionresultsintoxicexposure Analysisisextremelysensitivetometeorological

    conditions Modelingofmultiplereleaseorientations Considerationofgasdetectionsindownwind,upwindand

    crosswind

    Analysisrequirestoxicendpoints Lethalconcentrationendpoint ImmediatelyDangeroustoLifeandHealth

    Fully-Quantitative Method

  • KENEXIS

    LikelihoodAnalysis

    BasedonHistoricalOffshoreData: OffshoreReleaseStatistics,2001.UKHealth&SafetyExec.

    PARLOC2001:TheupdateofLossofContainmentDataforOffshorePipelines.UKHealth&SafetyExec.

    Sensitivetoholesizedistribution SensitivetoEquipmentType

    Fully-Quantitative Method

  • KENEXIS

    RiskIntegration

    JoinConsequenceandLikelihoodtogeneratealistofpossiblescenariooutcomes Eachoutcomehasanassociatedlevelofrisk(PLL,Financial

    Loss)

    EventTreesareusedtodetermineriskforeachoutcome

    EventoutcomesareintegratedtodetermineriskforaFGSzoneorPlatform RiskforFGSzone/platformiscomparedagainstCustomer

    tolerableriskcriteria

    Initiallyselectlowdetectorcoverageandprogressivelyincreaseuntiltolerableriskachieved.

    Fully-Quantitative Method

  • KENEXIS

    RiskIntegration EventTree

    Fully-Quantitative Method

  • KENEXIS

    Application WellheadPlatform

  • KENEXIS

    DetectorPerformanceVerificationApplication WellheadPlatform

    Baseline case includes two optical fire detectors in opposite corners of wellbay

    No Coverage

    2+ Detector Coverage

    Single Detector Coverage

  • KENEXIS

    FireGradeB,requires85%coverage AchievedGeographicCoverageof62% Largeportionofobstructedby:

    WellheadsPipingControlEquipment

    Designonlyused2detectors InsufficientcoverageasperguidelinesforFireGradeB

    DetectorPerformanceVerificationApplication WellheadPlatform

  • KENEXIS

    DetectorPerformanceVerificationApplication WellheadPlatform

    Improved coverage due to addition of flame detector for total of three.

    No Coverage

    2+ Detector Coverage

    Single Detector Coverage

  • KENEXIS

    FGSDesignModificationsObjectiveistoSatisfyFGSPerformanceTargets

    ImproveCoverage Increasenumberofdetectors Changesensororientation Changevotingarchitecture(2ooN,1ooN)

    ReduceProbabilityofFGSFunctionFailureonDemand ChangeDetectorTechnology, ChangeLogicSolverTechnology, IncreaseFunctiontesting,etc.

  • KENEXIS

    RiskToleranceCriteria

    RiskAcceptancedecisionsbasedonCustomerRiskManagementGuidelinesSemiQuantitativeRiskMatrixIndividualRiskBenchmark

  • KENEXIS

    CalibrationofSemiQuantitativeMethodtoCorporateRiskTarget

    FGS Effectiveness(PFD)

    Gas Release Occurs

    (0.01 per yr)

    DetectorCoverage

    F2 = 0.10

    S2 = 0.90

    Fi * (F1 + S1* F2) * Pignition = Unmitigated Hazard Frequency

    S1 = 0.85

    F1 = 0.15

    Fi * (S1 * S2) * Pignition = Mitigated Hazard Frequency

    1-Pignition = 0.95

    Pignition = 0.03

    Ignition Probability1-Pignition = 0.99Pignition = 0.01

    1-Pignition = 0.95

    Pignition = 0.03

    Fatality PLL

    0.0

    0.1

    0.0

    1.0

    0.0

    1.0

    0E-0

    8E-6

    0E-0

    3E-5

    3E-5

    0E-0

    PLL Sum = 7E-5

  • KENEXIS

    FGSIntegrityAnalysisConclusion

    1. RiskModelallowsforperformancespecificationsonFire&GasSystemDesign:

    DetectorCoverage FGSFunctionSafetyAvailability(PFDavg)

    2. SamelevelofsimplifiedriskanalysisasLOPA,withoptionforfullyquantitativeanalysis

    3. CalibratedtoCorporateRiskTargets4. Allowsperformancetobeverifiedanddesign/

    testingmodifiedaccordingly5. AllowsanalysisofexistingFGSsystemstodetermine

    theiracceptabilityforcontinueduse.

    Fire & Gas System (FGS)Integrity AnalysisSlide Number 2Slide Number 3Slide Number 4Slide Number 5FGS Design & Analysis ChallengesSlide Number 7Slide Number 8Simplified Risk Model for Fire & Gas System Integrity AnalysisSimplified Risk Model for Fire & Gas System Integrity AnalysisSlide Number 11Slide Number 12FGS Integrity Analysis ProcedureDefine Fire Hazard ZonesHazard Zones ConsiderationsList of ZonesCategorize ZonesCategorize Zones to determine Objectives of FGS Integrity AnalysisFGS Risk ModelSelect FGS Risk MethodHydrocarbon vsNon-Hydrocarbon ZonesSemi-Quantitative Method:Assigned GradesSlide Number 23Slide Number 24Baseline Zone Hazard RankOccupancy AdjustmentProduction AdjustmentSpecial Factors AdjustmentSlide Number 29Slide Number 30Application Fire Grade A High Exposure(Note high coverage targets and FGS Effectiveness Targets for Grade A)Application Fire Grade B Moderate Exposure(Note lower coverage targets and FGS Effectiveness Targets allowed for Grade B)Application Fire Grade C Low Exposure(Note lower coverage targets and FGS Effectiveness Targets allowed for Grade C)Optional Analysis Method: Fully-Quantitative AnalysisHazard Scenario Identification Hydrocarbon Fire Consequence AnalysisHydrocarbon Gas Consequence AnalysisFlash Fire Consequence AnalysisVapor Cloud Explosion Consequence AnalysisToxic Gas (H2S) Consequence AnalysisLikelihood AnalysisRisk IntegrationRisk Integration Event TreeApplication Wellhead PlatformSlide Number 45Slide Number 46Slide Number 47Slide Number 48Risk Tolerance CriteriaCalibration of Semi-Quantitative Method to Corporate Risk TargetSlide Number 51