劣モジュラ最適化submodular function minimization γ+ o n n 7 8 ( ) 5 γ o n m ( log ) 7 γ o...

45
岩田 (京都大学数理解析研究所) 劣モジュラ最適化

Upload: others

Post on 15-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

岩田 覚

(京都大学数理解析研究所)

劣モジュラ最適化

Page 2: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Outline• Submodular Functions

ExamplesDiscrete Convexity

• Minimizing Submodular Functions • Symmetric Submodular Functions• Maximizing Submodular Functions• Approximating Submodular Functions

Page 3: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Submodular Functions

• Cut Capacity Functions • Matroid Rank Functions • Entropy Functions

)()()()( YXfYXfYfXf ∪+∩≥+

VYX ⊆∀ ,

VX Y

R2: →Vf:V Finite Set

Page 4: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Cut Capacity Function

Cut Capacity ∑= } leaving :|)({)( XaacXκ

X

s t

Max Flow Value=Min Cut Capacity

0)( ≥ac

Page 5: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Matroid Rank Functions

:)()(

||)(,

ρρρ

ρYXYX

XXVX≤⇒⊆≤⊆∀

],[rank)( XUAX =ρMatrix Rank Function

Submodular

=A

X

V

U

Whitney (1935)

Page 6: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Entropy Functions

:)(Xh

0)( =φh

X

Information Sources

0≥

)()()()( YXhYXhYhXh ∪+∩≥+

Entropy of the Joint Distribution

Conditional Mutual Information

Page 7: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Positive Definite Symmetric Matrices

0)( =φf

=A ][XA][detlog)( XAXf =

X

)()()()( YXfYXfYfXf ∪+∩≥+

Ky Fan’s Inequality

Extension of the Hadamard Inequality∏∈

≤Vi

iiAAdet

Page 8: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Discrete Concavity

})({}){()(}){( ufuTfSfuSfTS

−∪≥−∪⇒⊆

V

T

Diminishing Returns

S u

Page 9: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Discrete Convexity

)()()()( YXfYXfYfXf ∪+∩≥+

V

X Y

Convex Function

x

y

Page 10: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Discrete Convexity

},{ ba

},,{ cbaV =

}{b

}{a}{c

},{ cb

φ

Lovász (1983)

f

: Linear Interpolation

: Convex

: Submodular

Murota (2003)

Discrete Convex Analysis

Page 11: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Submodular Function Minimization

X

)(Xf

?}|)(min{ VYYf ⊆

MinimizationAlgorithm

Evaluation Oracle

Minimizer

0)( =φfAssumption:

Ellipsoid MethodGrötschel, Lovász, Schrijver (1981)

Page 12: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Base Polyhedra

Submodular Polyhedron

)}()(,,|{)( YfYxVYxxfP V ≤⊆∀∈= R

∑∈

=Yv

vxYx )()(

}|{ RR →= VxV

)}()(),(|{)( VfVxfPxxfB =∈=Base Polyhedron

Page 13: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Greedy Algorithm

v

⎥⎥⎥⎥

⎢⎢⎢⎢

=

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

))((

))(())((

)(

)()(

1110

11001

2

1

2

1

nn vLf

vLfvLf

vy

vyvy

MM

L

OMM

MO

L

}){)(())(()( vvLfvLfvy −−=

Edmonds (1970)Shapley (1971)

Extreme Base

)(vL

)( Vv∈

:y

2v1v nv

Page 14: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Theorem

Min-Max Theorem

)}(|)(max{ )(min fBxVxYfVY

∈= −

)}(,0min{:)( vxvx =−

)()()( YfYxVx ≤≤−

Edmonds (1970)

Page 15: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Combinatorial Approach

Extreme Base

Convex Combination

Cunningham (1985)

LL

L yx ∑Λ∈

= λ

)( fByL ∈

x

|)(|max XfMVX⊆

=

)log( 6 nMMnO γ

Page 16: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Submodular Function Minimization

)( 87 nnO +γ)log( 5 MnO γ

)log( 7 nnO γ

Grötschel, Lovász, Schrijver (1981, 1988)

Iwata, Fleischer, Fujishige (2000) Schrijver (2000)

Iwata (2003)

Fleischer, Iwata (2000)

)log)(( 54 MnnO +γOrlin (2007)

)( 65 nnO +γ

Iwata (2002)

Fully Combinatorial

Ellipsoid Method

Cunningham (1985)

Iwata, Orlin (2009)

Page 17: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

)( subject to Minimize 2

fBxx∈

The Minimum-Norm Base

sol. opt. :∗x}0)(|{: <= ∗

− vxvX}0)(|{:0 ≤= ∗ vxvX

Minimal MinimizerMaximal Minimizer

∗x

Theorem Fujishige (1984)

Wolfe’s Algorithm Practically Efficient

Page 18: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Evacuation Problem (Dynamic Flow)

:)(Xo

:)(aτ

Hoppe, Tardos (2000)

:)(vb

:)(ac

SX ∩ XT \

TSXXoXb ∪⊆∀≤ ),()(

TSCapacity

Transit Time

Supply/Demand

Maximum Amount of Flow from to .

Feasible

Page 19: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Multiterminal Source Coding

X XR

Y

Encoder

Encoder YRDecoder

)(YH

)(XH

)|( XYH

)|( YXH

),( YXH

),( YXHXR

YR

Slepian, Wolf (1973)

Page 20: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Multiclass Queueing Systems

iμiλ

Server

Control Policy

Arrival Rate Service Rate

Multiclass M/M/1Preemptive

Arrival Interval Service Time

Page 21: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Performance Region

VXS

Xii

Xiii

Xiii ⊆∀

−≥

∑∑

∑∈

,1 ρ

μρρ

:s

,: iii μλρ =

YRjs

is

:js Expected Staying Time of a Job in j

Achievable

Coffman, Mitrani (1980)

:s1<∑

∈Viiρ

Page 22: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

A Class of Submodular FunctionsVzyx +∈R,,

))(()()()( XxhXyXzXf −=

:h

VXS

Xii

Xiii

Xiii ⊆∀

−≥

∑∑

∑∈

,1 ρ

μρρ

Nonnegative, Nondecreasing, Convex

)( VX ⊆

i

iiy

μρ

=:

xxh

−=

11:)(

iii Sz ρ=:

iix ρ=:

Submodular

Itoko & Iwata (2005)

Page 23: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Zonotope in 3D))(),(),(()( XzXyXxXw =

}|)({conv VXXwZ ⊆=

)(),,(~ xyhzzyxf −=

Zonotope

} ofPoint ExtremeLower :),,(|),,(~min{

}|)(min{

Zzyxzyxf

VXXf

=

Remark: ),,(~ zyxf is NOT concave!

z

Page 24: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Line Arrangementβ

iii zyx =+ βα

α

Topological Sweeping MethodEdelsbrunner, Guibas (1989) )( 2nO

Enumerating All the Cells

Page 25: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Symmetric Submodular Functions

. ),\()( VXXVfXf ⊆∀=

?},|)(min{ VXVXXf ≠⊂≠φ

)()()()( ,

YXfYXfYfXfVYXYX

∩+∪≥+⇒≠∪≠∩ φ

R→Vf 2:

Symmetric

Crossing Submodular

Symmetric Submodular Function Minimization

Page 26: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Maximum Adjacency Ordering

• Minimum Cut Algorithm by MA-orderingNagamochi & Ibaraki (1992)

• Simpler ProofsFrank (1994), Stoer & Wagner (1997)

• Symmetric Submodular Functions Queyranne (1998)

• Alternative ProofsFujishige (1998), Rizzi (2000)

Page 27: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Minimum Degree OrderingNagamochi (2007)

ISAAC’07, Sendai, Japan

Finding the family of all extreme sets for symmetric crossing submodular functionsin time. )( 3γnO

Symmetric Submodular Function Minimization

Page 28: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Extreme Sets

.: ),()( XZXZXfZf ≠≠⊂∀> φ

)\()\()()( XYfYXfYfXf +≥+

:f Symmetric Crossing Submodular Function

Extreme Set:X

The family of all extreme sets forms a laminar.

X YX Y

Page 29: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Flat Pair for Symmetric Submodular Functions

,}|)(min{)( XxxfXf ∈≥

.1|},{| s.t. =∩⊆∀ vuXVX

)( },{ vuVvu ≠⊆Flat Pair

uv

X

},{ vu

No Extreme SetsSeparate andu .v

Shrink into a single vertex.

},{ vu

Page 30: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

MD-Ordering for Symmetric Submodular Functions

X

)\( )()(:)( iii VVXXVfXfXf ⊆∪+=

iV

Symmetric, Crossing Submodular

MD-orderingVvvvv nn ∈− ,,...,, 121

jvEach has minimum value of among )(1 vf j− .\ 1−∈ jVVv

},...,{: 1 ii vvV =

Page 31: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

MD-Ordering for Symmetric Submodular Functions

nn vv ,1−

1−nv2−= ni

The last two vertices of an MD-ordering form a flat pair.

Proof by Induction:

:},{ 1 nn vv − if

.0,1,...,2−= ni

Flat Pair for on

nv

iVV \

Page 32: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Time Complexity

• Finding an MD-ordering in time.

• Finding all the extreme sets in time.

• Minimizing symmetric submodular functions in time.

)( 3γnO

)( 2γnO

)( 3γnO

Page 33: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Application to Clustering

A

V

AV \nXX ,...,1

),()()( )|()();(

BABA

ABBBA

XXHXHXHXXHXHXXI−+=

−=

Random variables

VPartition into andas independent as possible

);( \ AVA XXIMinimize subject to VA ≠≠φ

AV \A

Page 34: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Application to Clustering

)( jiVV ji ≠=∩ φ

∑=

k

iiVf

1)(Minimize

subject tokVVV ∪∪= L1

Greedy Split

)12( k− -Approximation

Page 35: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Submodurlar Function Maximization

Approximation AlgorithmsNemhauser, Wolsey, Fisher (1978)

Monotone SF / Cardinality Constraint(1-1/e)-Approximation

Feige, Mirrokni, Vondrák (FOCS 2007)Nonnegative SF2/5-Approximation

Vondrák (STOC 2008) Monotone SF / Matroid Constraint(1-1/e)-Approximation

Page 36: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Approximate Maximization

)()(:

}{:

}){(maxarg::

1

1

1

0

−=

∪=

∪==

jjj

jjj

jj

TfTf

vTT

vTfvT

ρ

φ

1−jv1vGreedy Algorithm

)(SfMaximize subject to kS ≤||

kj ,...,1=

1−jT

( ) kSSSfTf k ≤∀−≥ |:| ),(e11)(

Page 37: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Approximate Maximization

),...,1( kj =

)(: *Sf=η:*S

∑−

=

+≤1

1

j

iijk ρρη

[ ]

jj

TSujjj

j

kTf

TfuTfTf

TSfSf

j

ρ+≤

−∪+≤

∪≤

∈−−−

∑−

)(

)(}){()(

)()( )

1

\111

1**

1*

Q

Optimal Solution

∑−

=

1

1

j

iiρ

∑=

=k

iikTf

1)( ρ

Page 38: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Approximate Maximization

),...,1( 0 kjj =≥ρ

111:ˆ −

⎟⎠⎞

⎜⎝⎛ −=

j

j kkηρ

),...,1( kj =

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

⎥⎥⎥⎥

⎢⎢⎢⎢

η

ηη

ρ

ρρ

MM

L

OOM

MO

L

kk

kk

2

1

110

100

Minimize ∑=

k

ii

subject to

⎟⎠⎞

⎜⎝⎛ −≥

⎥⎥⎦

⎢⎢⎣

⎡⎟⎠⎞

⎜⎝⎛ −−=∑

= e11111ˆ

1ηηρ

kk

ii k

)(: *Sf=η

∑=

=k

iki Tf

1)(ρ

Page 39: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Feature Selection

nXXY ,...,, 1

AX

)|()(:);( AA XYHYHYXI −=

Random Variables

1XYPredict from subset

2X 3X

Y“Sick”

“Fever” “Rash” “Cough”);( YXI AMaximize

subject to kA ≤|| :X Conditionally Independent

)|()( YXHXH AA −= Submodular

Krause & Guestrin (2005)

Page 40: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Submodular Welfare Problem

(Monotone, Submodular)kff ,...,1Utility Functions

)( jiVV ji ≠=∩ φ

∑=

k

iiVf

1)(Maximize

subject tokVVV ∪∪= L1

e)11( − -ApproximationVondrák (2008)

Page 41: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Approximating Submodular Functions

X

)(XfAlgorithm Evaluation

Oracle

Function f̂ Y)(ˆ Yf

Page 42: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Construct a set function such that

For what function is this possible?

Approximating Submodular Functions

. ),(ˆ)()()(ˆ VXXfnXfXf ⊆∀≤≤ α

α

,0)( =φfAssumption . 0,)( VXXf ⊆∀≥Problem

1)( =nαnn =)(α

Remarksfor cut capacity functions

for general monotonesubmodular functions

Page 43: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Approximating Submodular Functions

• Algorithm with for matroid rank functions.

• Algorithm with for monotone submodular functions.

• No polynomial algorithm can achieve a factor better than even for matroid rank functions.

)log()( nnOn =α

)log()( nnn Ω=α

1)( += nnα

Goemans, Harvey, Iwata, Mirrokni (2009)

Page 44: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Submodular Load Balancing

?)(maxmin},...,{ 1

jjjVVVf

m

∑∈

=Xv

jvj pXf :)(

:,...,1 mffSvitkina & Fleischer (2008)

Monotone Submodular Functions

Scheduling

2-Approximation AlgorithmLenstra, Shmoys, Tardos (1990)

)log( nnO -Approximation Algorithm

Page 45: 劣モジュラ最適化Submodular Function Minimization γ+ O n n 7 8 ( ) 5 γ O n M ( log ) 7 γ O n n ( log ) Grötschel, Lovász, Schrijver (1981, 1988) Iwata, Fleischer, Fujishige

Pointers

• S. Fujishige: Submodular Functions and Optimization, Elsevier, 2005.

• ICML 2008 Tutorial Session http://www.submodularity.org

• 永野清仁,河原吉伸,岡本吉央:離散凸最適化手法による機械学習の諸問題へのアプローチ,回路とシステム軽井沢ワークショップ,2009.