分子動力学とナノテクノロジー application of cnts …...2016/10/25 2 transparent...

8
2016/10/25 1 Application of graphene and carbon nanotubes Shigeo Maruyama 丸山 茂夫 Department of Mechanical Engineering 機械工学専攻 http://www.photon.t.u-tokyo.ac.jp Molecular Dynamics and Nanotechnology 分子動力学とナノテクノロジー Basic Theory of Extended Nano Space 拡張ナノ空間理論 2016 Fullerene, Nanotubes, Graphene Fullerene Carbon Nanotubes Graphene 1996 Nobel Prize for Chemistry Kroto, Curl, Smalley 2010 Nobel Prize for Physics Geim, Novoselov Sep. 4, 2010 Tips of AFM Application of CNTs (1) Electrode of Fuel Cell FET Biosensor Nanowires Hydrogen Storage? Field Emission Li Ion Battery Sumsong NEC Noritake A.T.Woolley et al(2000) C. Dekker, Delft Endo, JJAP (2006) Application of CNTs (2) (5,5) SWNTs x 1.6 m 128000 atoms Thermal Device Super Capacitor Electrode of Fuel Cell Transparent Conductive Film Conductive Plastic Mechanical Strength Composite Material T. Hatanaka et al. ECS Trans. (2006) Yakobson et al. (1996) Alnair Lab. Z. Wu et al., Science (2004) Mode-locked Pulse laser (Saturable absorbance) Maruyama-Shiomi (2006) Electrode of Fuel Cell T. Hatanaka et al. ECS Trans. (2006) VA-MWNTs+Pt Better O2 access, Better Proton/Electron Transfer, Higher Durability TOYOTA FCHV BOOK Transparent Conductive Film Kaili Jiang Rong Xiang Shoushan Fan Yan Li Fei Wei

Upload: others

Post on 20-Jan-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

1

Application of graphene and carbon nanotubesApplication of graphene and carbon nanotubes

Shigeo Maruyama丸山 茂夫

Department of Mechanical Engineering機械工学専攻

http://www.photon.t.u-tokyo.ac.jp

Molecular Dynamics and Nanotechnology 分子動力学とナノテクノロジーBasic Theory of Extended Nano Space 拡張ナノ空間理論 2016

Fullerene, Nanotubes, GrapheneFullerene, Nanotubes, Graphene

Fullerene

Carbon Nanotubes

Graphene

1996Nobel Prize for Chemistry

Kroto, Curl, Smalley

2010Nobel Prize for Physics

Geim, Novoselov

Sep. 4, 2010

Tips of AFM

Application of CNTs (1)

Electrode of Fuel Cell

FETBiosensorNanowires

Hydrogen Storage?

Field Emission

Li Ion Battery

Sumsong

NEC

Noritake

A.T.Woolley et al(2000)

C. Dekker, Delft

Endo, JJAP (2006)

Application of CNTs (2)

(5,5) SWNTs x 1.6 m 128000 atoms

Thermal Device

Super Capacitor

Electrode of Fuel Cell

TransparentConductive Film

Conductive Plastic

Mechanical Strength

Composite Material

T. Hatanaka et al. ECS Trans. (2006)

Yakobson et al. (1996)

Alnair Lab.Z. Wu et al., Science (2004)

Mode-locked Pulse laser

(Saturable absorbance)

Maruyama-Shiomi (2006)

Electrode of Fuel Cell

T. Hatanaka et al. ECS Trans. (2006)

VA-MWNTs+Pt

Better O2 access, Better Proton/ElectronTransfer, Higher Durability

TOYOTA FCHV BOOK

Transparent Conductive Film

Kaili Jiang

Rong Xiang

Shoushan FanYan Li

Fei Wei

Page 2: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

2

Transparent Conductive Film

State of the art :84 /sq. @ 90%

Kauppinen Group at Aalto Univ.

Nasibulin et al. ACS Nano

5, 3214 (2011)

(a) (a)(b)

Field Effect Transistor (FET)電界効果トランジスタ

DrainCNT Channel

SiO2

Highly Doped Si

Gate

Source

C. Dekker, Delft

Aikawa et al., 2011

0 1000

100 200 300 400

2 1 0.9 0.8 0.7

Raman Shift (cm−1)

Inte

nsity

(ar

b. u

nits

)

Diameter (nm)

Patterned growth of SWNT for FET

: 488 nm

300 m

(a) SEM image

1 mmSAM removal region (SWNT

film)

(b) Raman spectrum

50 m

10 m

−10 0

−10

0

VDS [V]

I D [

A]

VGS = 10 [V]

Room Temp.

6 [V]

8 [V]

−2 [V]

4 [V]

2 [V]

0 [V]

VDS

VGS

SD

G

−10 0 10

10−12

10−10

10−8

10−6

VGS [V]

|I D| [

A]

Room Temp.

VDS = −1 [V]

ION/IOFF: 106

Ron: 370 k

5m

SWNT electrode

SWNT channe

lOutput characteristics

Transfer characteristics

Properties of all-SWNT FET

Flexible all-SWNT FET

S. Aikawa, E. Einarsson, T. Thurakitseree, S. Chiashi, E. Nishikawa, S. Maruyama, Appl. Phys. Lett., (2012),

Thin Film Network FET

From Esko Kauppinen Seminar at Aalto Univ.

D-M. Sun et al., Nature Nanotech. 6, 156 (2011)

Page 3: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

3

20μm

X

Z

ST-cut AT-cut

Pristine

Annealed 13 h

R-cut

Horizontally Aligned Growth on Crystal Quartz

R

R

r

r

rm

mm

ST-cut

Z

X

Y

38°13’

42°45’

35°25’

AT-cut R-cut

X-cut

Y-cut

Z-cut

R

R

r

r

rm

mm

R

R

r

r

rm

mm

ST-cut

Z

X

Y

38°13’

42°45’

35°25’

Z

X

Y

Z

X

Y

38°13’

42°45’

35°25’

AT-cut R-cut

X-cut

Y-cut

Z-cut

S. Chiashi et al., J. Phys. Chem. C, 116 (2012) 6805.T. Inoue et al., Carbon, submitted.

X

For Dense and Long Growth

higher pressure

0 500 1000 15000

5

10

Ethanol Pressure (Pa)

De

nsi

ty (

tub

es/

µm

)

Ethanol pressure dependence of the density of the horizontally aligned SWNTs.

1300 Pa 300 Pa 60 Pa

higher density of horizontally aligned SWNTs

higher density in the catalyst area

T. Inoue et al., Carbon, submitted.

High Speed FET

John A. Rogers Group (University of Illinois), Jie Liu (Duke University), Avouris (IBM)

C. Kocabas et al., JPC C, 111(2007) 17879.

S. J. Kang et al., Nature Nanotech. 2 (2007) 230.

Saturable Excitonic Absorption

low optical intensity

saturable absorber

unsaturated

saturatedhigh optical intensity

absorption site(ground state)

absorption site(excited state)

photon

absorption site(ground state)

absorption site(excited state)

photon

ground sta te

excited sta te

electron

n

hole

Applications to passively mode-locked fiber lasers

Ref: S.Y.Set, OFC’03, PD44S.Y.Set, CLEO’03, CThPDA9

Professor S. Yamashita GroupDr. Set @ Alnair Labs Co.

isolator

lens

collimator collimator

SAINT sampleisolator

isolator980/1550coupler

40cmF:EDFA

10 mspot size

980nmpump LD

70%

30%output

coupler

Saturable Absorbers:Application to Mode-Locked Fiber Lasers

S. Yamashita, S. Maruyama, Y. Murakami, Y. Inoue, H. Yaguchi, M. Jablonski, S. Y. Set,

Optics Letters, 29 (2004) 1581.

All Fiber Passive Mode-Lockers

Y.-W. Song, E. Einarsson, S. Yamashita, S. Maruyama, Optics Letters, 32 (2007) 1399.Y.-W. Song, S. Yamashita, S. Maruyama, Appl. Phys. Lett., 92 (2008) 021115.

LP01-X

LP01-Y(Full Interaction

w/ CNTs)

(Non-interactionw/ CNTs)

VA-SWNT Film

ConceptualDescriptionof Aligned Individual CNTs

kZ

Core

EDFA

PC

Laser Output

5/95 Coupler

IsolatorIsolator

VA-CNT Film-CoatedD-Shaped Fiber

(Passive Mode-Locker)

1560 1561 1562 1563

-60

-50

-40

-30

-20

-10

Out

put

(dB

m)

Wavelength (nm)

FWHM: 0.5 nm

1560 1561 1562 1563

-60

-50

-40

-30

-20

-10

Out

put

(dB

m)

Wavelength (nm)

FWHM: 0.5 nm

(a)

-400 -200 0 200 4000.65

0.66

0.67

0.68

0.69

0.70

0.71

0.72

Out

put

(a.u

.)

Time (ns)

174 ns

(b)

Commercial Mode-Lock Fiber Laser with SWNTs

by Alnair Labs

Page 4: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

4

NREL solar cell efficiency chart

http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

SWNT/n-Si Solar Cell

J. Wei et al., Nano Lett. 8 (2007) 2317

Y. Jia et al., Adv. Mater. 20 (2008) 4594

PCE 1.3 %

PCE 7%

Wu, Dehai, 呉 徳海, 清華大学

Only with (6,5) Nanotubes?

D. Kozawa, et al., Appl. Phys. Express 5 (2012) 042304

F. Wang, et al., Appl. Phys. Express 6 (2013) 102301

Doping for Higher Efficiency

Y. Jung et al., Nano Lett. 13 (2013) 95.

Superacid sliding coatingNitric Acid and gold salt

Yale Group Cao Group

Voc = 0.53 VJsc = 36.3 mA/cm2

FF = 72%, = 13.8%

Y. Jia et al., Nano Lett. 11(2011) 1901

VOC = 0.52 V, JSC = 22.1 mA/cm2

FF = 75 %, PCE 8.5%.

Wadhwa et al, Nano Lett. 10 (2010) 5001.

Rinzler Group

ionic liquid (EMI-BTI)

Jia et al., App. Phys. Lett. 98 (2011)133115.

24h in air, decrease to 8.4%

PDMS Seal20 days in air, decrease to 9.1 %

Transparent Conductive Film by Esko Kauppinen

State of the art :84 /sq. @ 90%

Kauppinen Group at Aalto Univ.

Nasibulin et al. ACS Nano

5, 3214 (2011)

Nasibulin et al. ACS Nano

5, 3214 (2011)

Transparent Conductive Film by Aerogel CVD

SWNTfilms

Transmittance (%)

SheetResistance(Ω/sq.)

TCF70 70.0 85

TCF80 81.5 134

TCF90 88.8 417

K. Cui et al., J. Mater. Chem. A, 2 (2014) 11311.

Page 5: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

5

Heterojuction Solar Cell

n-type Si (7.5-12.5 cm, ~1015 cm-3)With 100 nm SiO2

5 M NaOH at 90 ˚C for 30minRCA 2 Cleaning

200 nm SiO2, 100 nm Pt

Ti 10 nm, Pt 50 nm

3 mm x 3 mmOpening

(a) Fabrication process. (b) Schematics. (c) SEM.

Fabrication of Solar Cell

(a) (b)

(c) (d)

0 0.2 0.4 0.6

−30

−20

−10

0

10

Cu

rre

nt D

ens

ity (

mA

/cm

2 )

Bias (V)

TCF80−A

TCF80−B

TCF80−C

TCF80−D

−1 −0.5 0 0.5 1

0

50

100

150

200

−1 −0.5 0 0.5 110−4

10−3

10−2

10−1

100

101

102

103

TCF70

TCF80

TCF90

Bias (V)

Ln

(mA

/cm

−2 )

J

Bias (V)

0 0.2 0.4 0.6

−30

−20

−10

0

10

Cu

rre

nt D

en

sity

(m

A/c

m2 )

Bias (V)

TCF90 immediately

TCF90 after 6 months in air

0 0.2 0.4 0.6−40

−30

−20

−10

0

Cu

rren

t D

en

sity

(m

A/c

m2)

Bias (V)

TCF80

TCF70

TCF90

Cu

rren

t D

en

sity

(m

A/c

m2)

Reproducibility

Transparent Conductive Film by Aerogel CVD

dark condition

stability

K. Cui et al., J. Mater. Chem. A, 2 (2014) 11311.

Model Simulation

−0.2 0 0.2 0.4 0.6

−30

−20

−10

0

10

Cur

ren

t D

ensi

ty (

mA

/cm

2 )

Bias (V)

20 mW/cm2 AM1.5G

100 mW/cm2 AM1.5G

50 mW/cm2 AM1.5G

78 mW/cm2 AM1.5G

Experiment Modeling

0 0.2 0.4 0.6−30

−20

−10

0

10

20

Cu

rre

nt D

ensi

ty (

mA

/cm

2 )

Bias (V)

OxideTCF70 forward scan

OxideTCF70 reverse scan

TCF70 forward scan

TCF70 reverse scan

(b)

(c)

(a)

RS

RSH Bias

0 20 40 60 80 1000.4

0.45

0.5

0.55

0.6

Power Density Percentage (%)

Ope

n−C

ircui

t V

olta

ge

(V)

modeling

10 mW/cm−2

Experiment

20 mW/cm−2

42 mW/cm−2

50 mW/cm−2

69 mW/cm−2

78 mW/cm−2

95 mW/cm−2

57 mW/cm−2

100 mW/cm−2

30 mW/cm−2

0

lnI

I

q

nkTV SC

OC

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−30

−20

−10

0

10

Cur

rent

Den

sity

(m

A/c

m2 )

Bias (V)

TCF80

TCF70

TCF90

Exp. Mod.

Under 100 mW/cm−2

AM1.5G illumination

(d)

SH

SSsc R

IRV

nkT

IRVqIII

exp0

0

oc lnI

RVI

q

nkTV SH

ocSC

0

lnI

I

q

nkTV SC

OC

K. Cui et al., J. Mater. Chem. A, 2 (2014) 11311.

Spectral Response

400 600 800 10000

0.2

0.4

0.6

Sp

ect

ral R

esp

on

s (A

/W)

Wavelength (nm)

TCF80 responseTCF90 response

reference Si solar cell response

SWNT absorption

Ab

sorp

tion

(a

. u.)

(b)

K. Cui, A. S. Anisimov, T. Chiba, S. Fujii, H. Kataura, A. G. Nasibulin, S. Chiashi, E. I. Kauppinen, S. Maruyama, J. Mater. Chem. A, 2 (2014) 11311.

Self-organized Honeycomb Structure

K. Cui, T. Chiba, S. Omiya, T. Thurakitseree, P. Zhao, S. Fujii, H. Kataura, E. Einarsson, S. Chiashi, S. Maruyama, J. Phys. Chem. Lett., 4 (2013) 2571.

Water Vapor Condensation (Water Droplet Nucleation)on Hydrophobic SWNT Surface

“Breath Figure Method”

Page 6: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

6

0 0.2 0.4 0.6−30

−20

−10

0

J (m

A/c

m2)

Bias (V)

3 hours after

21 days after

acid−doping

Dark AM1.5

K. Cui, T. Chiba, S. Omiya, T. Thurakitseree, P. Zhao, S. Fujii, H. Kataura, E. Einarsson, S. Chiashi, S. Maruyama, J. Phys. Chem. Lett., 4 (2013) 2571.

CNT-Si solar cells with self-organized honeycomb structure

30 μm 30 μm

2 μm 2 μm

Optimization of honeycomb nanotubesOptimization of honeycomb nanotubes

Honeycomb 2.5 μm PCE: 8.85%FF: 72%Voc: 520 mVJsc: 23.5 mA/cm2

Honeycomb 5 μm PCE: 6.01%FF: 72%Voc: 520 mVJsc: 15.9 mA/cm2

−0.2 0 0.2 0.4 0.6−30

−20

−10

0

10

20

30

J (m

A/c

m2)

Bias (V)

Honeycomb (5 um thick)

Honeycomb (2.5 um thick)

K. Cui & S. Maruyama, Nanotechnology Magazine, IEEE 10 (2016) 34.

HNO3 Doping

0 0.2 0.4 0.6−30

−20

−10

0

J (m

A/c

m2)

Bias (V)

3 hours after

21 days after

acid−doping

Dark AM1.520 μm

(a)

5 μm

(b)

PCE % FF % Jsc Voc

Pristine 21 days 6.04 72 15.90 0.53

Acid dope 1 hour 10.02 73 25.01 0.55

1 μmK. Cui, T. Chiba, S. Omiya, T. Thurakitseree, P. Zhao, S. Fujii, H. Kataura, E. Einarsson, S. Chiashi, S. Maruyama, J. Phys. Chem. Lett., 4 (2013) 2571.

Pt 50 nm/Ti 15 nm

SiO2 200 nm

n-type Si

Ti 10 nm/Pt 50 nm

PMMA/Graphene

3 mm × 3mmbare Si window

PMMA/GraphenePCE: 11.37%FF: 56.8%

Voc: 500 mVJsc: 40.0 mA/cm2−0.2 0 0.2 0.4 0.6

−40

−20

0

20

40

60

Cur

rent

Den

sity

J (

mA

/cm

2)

Voltage Bias (V)

Multi−crystalline Graphene

Graphene

PMMA/Graphene

GraphenePCE: 5.14%FF: 40.0%

Voc: 500 mVJsc: 26.2 mA/cm2

Multi-Grain GraphenePCE: 1.50%FF: 21.1%

Voc: 500 mVJsc: 15.5 mA/cm2

Graphene-Si Solar CellsGraphene-Si Solar Cells

X. Chen, K. Cui, S. Kim

Organic Thin FilmNormal structure

Inverted structureP3HT DonorPC61BM Acceptor

Glass or PET

ITO or FTO

PEDOT:PSS or MoOx

P3HT or PTB7

PCBM or PC71BM:DIO

Ca or LiF

Al

PC61BM

3.8

6.01

4.8ITO

PEDOT:PSS

5.1 5.1

Au

P3HT

3.3

5.2

3.0

e

++ZnO

4.2

7.5

e

e

+

e

PC61BM

3.8

6.01

4.3Al4.8

ITO

PEDOT:PSS

5.1

P3HT

3.3

5.2

3.0

2.6LiF

e

++

+

e

e

Glass or PET

ITO or FTO

ZnO

PCBM or PC71BM:DIO

P3HT or PTB7

PEDOT:PSS

Au

Perovskite Solar CellsNormal structure Inverted structure

Pb2+

CH3NH3+

I-, Cl-, Br-

CH3NH3PbX3

Glass

FTO

TiO2

Perovskite

Spiro-MeOTAD

Au

Perovskite

3.75

5.35.1Au

4.5FTO

TiO2

4.0

7.4

Spiro-MeTAD

2.0

5.2

En

erg

y le

vel (

eV

vs

vacu

um)

e

+ + +

e

e Perovskite

3.75

5.3

PC61BM

3.8

6.01

4.3Al4.8

ITO

PEDOT:PSS

5.1

e

++

+

e

e

Glass

ITO

PEDOT:PSS

Perovskite

PCBM

Al

Page 7: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

7

ITO-Free Organic Solar CellITO-Free Organic Solar Cell

Flexible Substrate

LiF

PTB7:PC71BM:DIO

Al

h+

e-

MoOx doped CNT Network and PEDOT capping

Hole transfer from MoOx to CNT

PTB7

Hole transfer from MoOx to CNT

++ +

+

5 um

MoOx

CNT

High qual. AerosolSWCNT

Il Jeon, K. Cui, T. Chiba, A. Anisimov, A. G. Nasibulin, E. Kauppinen, S. Maruyama, Y. Matsuo, JACS 137 (2015) 7982.

ITO-Free Organic Solar CellITO-Free Organic Solar Cell

AnodeVOC

(V)JSC

(mA/cm2)FF

Rs (Ω)

Rsh(Ω)

PCE (%)

ITO 0.74 15.45 0.64 92.0 2.85E+06 7.31

SWCNT 90% 0.71 13.51 0.50 137 7.46E+04 4.79

SWCNT 80% 0.73 13.79 0.57 116 9.77E+03 5.77

SWCNT 65% 0.72 13.72 0.61 51.6 1.22E+04 6.04

Il Jeon, K. Cui, T. Chiba, A. Anisimov, A. G. Nasibulin, E. Kauppinen, S. Maruyama, Y. Matsuo, JACS 137 (2015) 7982.

Diluted HNO3-SWNT

PEDOT:PSS

CH3NH3PbI3

Glass/PET Substrate

PC61BM

Al

SWNT

Modified-PEDOT

CH3NH3PbI3

Glass Substrate

PC61BM

Al

I. Jeon, T. Chiba, C. Delacou, Y. Guo, A. Kaskela, O. Reynaud, E. I. Kauppinen, S. Maruyama, Y. Matsuo, Nano Lett., 15 (2015) 6665.

Substrate Anode HTLVOC

(V)JSC

(mA/cm2)FF

PCE (%)

Glass ITO PEDOT:PSS 0.83 16.3 0.64 9.05

Glass SWNT IPA-PEDOT:PSS 0.77 11.1 0.50 4.27

Glass SWNT Surfactant-PEDOT:PSS 0.61 11.8 0.38 2.71

Glass 70 v/v% HNO3-SWNT PEDOT:PSS 0.77 14.4 0.55 6.09

Glass 50 v/v% HNO3-SWNT PEDOT:PSS 0.76 14.5 0.52 5.84

Glass 35 v/v% HNO3-SWNT PEDOT:PSS 0.79 14.9 0.54 6.32

Glass 15 v/v% HNO3-SWNT PEDOT:PSS 0.77 13.6 0.39 3.88

PET 35 v/v% HNO3-SWNT PEDOT:PSS 0.71 11.80 0.56 5.38

ITO-Free Perovskite Solar Cells

Perovskite Solar Cells

Normal structure

Pb2+

CH3NH3+

I-, Cl-, Br-

CH3NH3PbX3

• Use of Perovskite PCE 3.8 %A. Kojima, et al., J. Am. Chem. Soc., 2009

• Solid state solar cell PCE 10.9 %M. M. Lee, et al., Science, 2012

• Highest PCE 20.1 %N. J. Jeon, et al., Nature, 2014

Glass

FTO

TiO2

Perovskite

Spiro-MeOTAD

Au

500 nmFTO

dense TiO2

perovskite

HTMAu

Perovskite

3.75

5.35.1Au

4.5FTO

TiO2

4.0

7.4

Spiro-MeTAD

2.0

5.2

En

erg

y le

vel (

eV

vs

vacu

um)

e

+ + +

e

e

Perovskite Solar Cells

Pb2+

CH3NH3+

I-, Cl-, Br-

CH3NH3PbX3

• Use of Perovskite PCE 3.8 %A. Kojima, et al., J. Am. Chem. Soc., 2009

• Solid state solar cell PCE 10.9 %M. M. Lee, et al., Science, 2012

• Highest PCE 20.1 %N. J. Jeon, et al., Nature, 2014

500 nmFTO

dense TiO2

perovskite

HTMAu

Normal structure

Glass

FTO

TiO2

Perovskite

Spiro-MeOTAD

Au

Perovskite

3.75

5.35.1Au

4.5FTO

TiO2

4.0

7.4

Spiro-MeTAD

2.0

5.2

En

erg

y le

vel (

eV

vs

vacu

um)

e

+ + +

e

e

Perovskite solar cell fabricated in airPerovskite solar cell fabricated in air

0 0.4 0.80

10

20

Voltage (V)

Cur

rent

Den

sity

(m

A/c

m2 )

Sample 1Sample 2Sample 3Sample 4

500 nm 500 nm

JSC (mA/cm2) VOC (V) PCE (%) FF (%)Best cell 19.08 0.91 11.02 63.5Average 18.36±0.55 0.89±0.02 10.55±0.46 64.9±1.69

1 cm TiO2

FTO

perovskiteAu HTM

Au HTM

Page 8: 分子動力学とナノテクノロジー Application of CNTs …...2016/10/25 2 Transparent Conductive Film Stateof the art : 84 /sq. @ 90% Kauppinen Group at Aalto Univ. Nasibulin

2016/10/25

8

0 0.5 10

10

20

Voltage (V)

Cu

rre

nt D

en

sity

(m

A/c

m2 ) Sample 1

Sample 2Sample 3Sample 4

Perovskite solar cell with Esko’s SWNT filmPerovskite solar cell with Esko’s SWNT film

1 mm

SWNT

perovskite

1 cm

SWNT

JSC

(mA/cm2)VOC (V) PCE (%) FF (%)

Best cell 14.70 0.86 5.13 40.6Average 14.17±0.56 0.79±0.04 3.75±0.84 33.1±4.59

TiO2FTO

perovskiteSWNT R=30

0 0.4 0.80

10

20

Voltage (V)

Cu

rre

nt D

en

sity

(m

A/c

m2 ) before HTM coating

after HTM coating

Perovskite solar cell with Esko’s SWNT filmPerovskite solar cell with Esko’s SWNT film

JSC (mA/cm2) VOC (V) PCE (%) FF (%)before HTM coating 14.7 0.86 5.13 40.6after HTM coating 14.29 0.97 9.07 65.4

1 cm

TiO2FTO

perovskiteSWNT

HTM

1 mm

R=30

R=9.7

Illumination from SWNT sideIllumination from SWNT side

0 0.4 0.80

10

20

Voltage (V)

Cu

rre

nt D

en

sity

(m

A/c

m2 ) FTO side

SWNT side

JSC

(mA/cm2)VOC (V) PCE (%) FF (%)

FTO side 15.04 0.92 8.94 64.6SWNT side 12.68 0.89 7.20 63.8

TiO2FTO

perovskite

SWNT HTM

Light

Light