ferdi schueth at basf science symposium 2015

45
A New Energy System: Challenges and Opportunities for the Chemical Industry Ferdi Schüth Max-Planck-Institut für Kohlenforschung

Upload: basf

Post on 14-Jul-2015

162 views

Category:

Science


1 download

TRANSCRIPT

A New Energy System:

Challenges and Opportunities for the Chemical IndustryFerdi Schüth

Max-Planck-Institut für Kohlenforschung

If it‘s not broken, don‘t fix it- why a new system?

Courtesy Klaus Müllen

Multi-model averages of global surface warming for different scenarios

Climate Change 2014 – Mitigation of Climate Change, IPCC 5 Report WG 3, Cambridge 2014, p. 176

Finite Ressources

Energiestudie 2014, BGR, Hannover 2014, p. 32

Oil

cumulatedproduction

Reserves

Ressourcesnon-conventional

Ressourcesconventional

Ressources: 334 GtReserves: 219 GtProduction 2013: 4.2 Gt

Changing boundary conditions…

CO2 will have an increasing price Currently low around 5 € in Europe Original target price 40 €

Increasing share of electricity in theenergy system Electromobility Improved insulation Renewables mostly electric

Strong fluctuations in oil prices Many reasons Production not easily increased

at inelastic demand structure

Uncertain and rapidly changinglegislation

CC-BY-SA 4.0 von Spitzl

0

200

400

600

800

1000

1 2

1973 2012

total primary energy electricity x 10

EJ

25

0

50

75

100

125

150

175

US$/bbl

1900 1995 2000 2005 2010 2015

Structure of Germany‘s Energy Consumption

Hard coal

Renewables

Mineral oil

Natural gas

others

nuclear

lignite coal

US: rather similar (2011)

102 000 PJ

Also similar on global scale (2012)

International Energy Agency, Key World Energy Statistics 2014

560 EJ

10 m

Sahara day&nightaverage,10 % efficiency:

ca. 830 kmworld

EU D

700.000 km2 desert area (Germany: 360.000 km2) is sufficient, to lift 7 billion people to EU-energy standard with respect to use of primary energy

1 m

Sahara-day, sunshine

Quelle: LBST

In principle, renewable energy is there…

Just if you want to know efficiencies…

Surprise: perovskite based cells

M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395 (2013)

NH3CH3+

Pb2+

Cl- or I-

But also more „mundane“ chemistrybusiness

Vestamid polyamide replaces fluorine polymers as backpanels

M. Wielpütz, elements 38, 1/2012

Storage density of different energy carriers fortransportation

U. Eberle, M. Felderhoff, F. Schüth, Angew.Chem.Int.Ed. 48, 6608 (2009)

400 kWh chemical energy

Biomass as versatile energy feedstock

Cellulose

HemicelluloseLignin

Mechanocatalytic depolymerization

N. Meine, R. Rinaldi, F. Schüth, ChemSusChem 5, 1449 (2012) and patent pending

From biomass to a fuel: overall 75 % yield!

1. Quantitative yield of water-soluble celloligomers

N. Meine, R. Rinaldi, F. Schüth, ChemSusChem 5, 1449 (2012)

3.

2. Close to 80% yield of HMF from celloligomers

R. Carrasquillo-Flores, M. Käldström, F. Schüth, J. A. Dumesic, R. Rinaldi, ACS Catal. 3, 993-997 (2013)

Close to 100 % yield of DMFfrom HMF

Guanghi Wang et al., Nature Materials 13, 293 (2014)

The alternative – or better synergy:battery cars

Courtesy of Dr. U. EberleAdam Opel AG

1899 1900-1917

In the early days of automobility: competition between electric cars and internalCombustion engine case with open ending

State-of-the-art: Li-Ionenbattery

©Cepheiden

18 wt.%

46 wt.%

2 wt..%

11 wt.%

15 wt.%

8 Gew.%: electrode additives, i.e. binders

Data from: M. Broussely, G. Archdale, J.Power Sources 136, 386 (2004)

charging

carbon

metal (cobalt)

non-aqueouselectrolyte

oxygen

lithium

discharging

What can be expected?

What is the trajectory?

P. Bruce et al., Nature Mater. 11, 19 (2012)

The alternative: fuel cell cars

Reaction:2 H2 + O2 H2O

• About twice higherefficiency than ICE

• Only water as product

Electrolysis

Commerically available

Foto: Bertel Schmitt, CC BY-SA-3.0

Hydrogen storage possibilities

R. van Helmolt, U. Eberle, J.Power Sources 165, 833 (2007)

The high pressure (700 bar) tank

Compression of hydrogen to 700 bar

Established technology

Storage modules too expensive

Compression costs energy (15 %)

Volumetric storage density unsatisfactory

Cylinders cause packing problems

Source: U. Eberle, GM FCA

Challenges of the fuel cell

High amounts of platinum as catalyst (80 g) Better membranes (higher temperature, better conductivity)Gas- and liquid managment

pristine after 3600 cycles

C. Galeano, J. Meier et al., J.Am.Chem.Soc. 134, 20209 (2012)C. Baldizzone, S. Mezzavilla et al., Angew.Chem.Int.Ed. 53, 14250 (2014)

0,0

0,2

0,4

0,6

0,8

1,0

0,0

0,2

0,4

0,6

0,8

1,0

MA

(A/m

g Pt )

SA (m

A/c

m2 Pt

) Pt@Vulcan PtNi@HGS

DOE 2020 target

Does it help to reduce greenhouse gas emissions?

Courtesy of Dr. U. EberleAdam Opel AG

all renewable electricity fed in- charging means ramp-up of fossil plant

Emission shift from uncapped tocapped regime means zero emission

Windpower fluctuations east Germany

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Win

dpow

er [

MW

]

1.4.2011 8.4.2011 15.4.2011 22.4.2011 29.4.2011

Windpower in 50 Hertz control area April 2011Data downloaded from 50 Hertz webpage

Electrolysis

Alkaline PEM

T. Smolinka et al., Fraunhofer ISE 2011

• Mature technology• Limited pressure capability• Moderate dynamic behavior

• Technology still being developed• High pressure capability• From 5% to 300 % of nominal

power rating

Storage in Salt Caverns

F. Crotogino et al., Abstracts of 18th World Hydrogen Energy Conference 2010

for instance: Clemens Dome (Texas) 580 000 m3, 100 bar, 0.01 % leak rate / a

The hydrogen cost structure

€/kg H2

0 1 2 3 4 5

Natural gas reforming/captive

Natural gas reforming/merchant

biomass reforming/captive

electrolysis

Thermochemical cycles

F. Schüth, in: R. Rinaldi (Ed.) Catalytic Hydrogenation for Biomass Valorization, RSC 2014

Side remark: should we hydrogenate CO2?

1.1 kg H2

G&S turbine(60%)

22 kWh el. energy

1.5 kg Cfrom coal

5.5 kg CO2

2.0 kg CH4

16.7 kWh el. energy

+ 5.5 kg CO2

methanationat = 75 %

6 kWh el. energy

22.7 kWh el. energy+ 5.5 kg CO2

Windpower fluctuations east Germany

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Win

dpow

er [

MW

]

1.4.2011 8.4.2011 15.4.2011 22.4.2011 29.4.2011

Windpower in 50 Hertz control area April 2011Data downloaded from 50 Hertz webpage

How to deal with fluctuating supply(and demand)

Grid extension

Backup capacity

Demand side management

Storage

Foto: Walter Dvorak

Source: Netzentwicklungsplan 2012

©Adam Opel AG

Other big electricity consumers in chemicalindustry

Example: chlorine production in Germany (appr. 4 Mio. t) corresponds to one big power plant

Often not economical due to unfavorable splitbetween capex and opexGreat example for non-oxygen anode reaction

http://www.bayertechnology.com/uploads/pics/chlorine_electrolysis_service2.jpg

Other energy intensive production processes

Aluminum production (432 500 t/a)corresponds to continuous power of750 MW

Silicon production 52 000 t/a, metallurgical silicon12 MWh/t, corresponds to 70 MW continuous power

New approaches

BASF/BMBF plasma project methane splitting

Evonik methane-to-acetylen

Hydrogen metallurgy

Use your creativity…

©Trimet

Current storage option: pumped hydro

Foto: Dr. G. Schmitz, CC BY-SA-3.0

Man kan die Krafft des Windes spahren und gleichsam in vorrath legen. Solches ist zu verstehen, wenn man damit waßer in die teiche bringet, welches darinne in vorrath gehalten und hernach zu gemeinem Nutzen des Bergwercks auf Künste und Puchwercke etc. despensieret werden kann.

G.W.Leibniz um 1680, Gesammelte Werke 1950, Bd. I.4, S. 43

Size and time scales of storage options

1

102

104

106

108

1 kWh 1 MWh 1 GWh 1 TWh

typical size scale

typi

cal t

ime

scal

e [s

]

1 hour

1 year

1 day

1 Wh

1 month

CAES

(pumped) hydro

Chemical compoundsgrid scale

NaS battery

Redox-FlowLi-ion

(traction)Li-ion(electronics)

Pb battery

Enginefuel

Flywheel

capacitors

Why not even heat?

No energy conversion system cheaper than a water heater!

Why high exergy electricity to low exergy heat?storage

Salt melts

• Salts for use at higher temperatures• Stability• Corrosivity

• Ceramic particles• Stability• Sintering

• Molten metals• Heat transfer• Resistance of construction materials

Aspects for chemistry

28 500 t of NaNO3/KNO3 in 50 MW power plant

Cost: close to 20 Mio. Euro

Tem

pera

ture

Energy

sensible heat

Latent heatTPC

Latent heat storage: phase change materials

Ideal: phase change controllable independent of temperature

undercooled liquids or superheated solids

From handwarmer to industry scale container

CH3COONa . 3 H2O (solid) CH3COONa . 3 H2O (liquid)+ 270 kJ/kg

- 270 kJ/kg

Melting point 58.5 °C, undercooling down to -20 °C

ca. 2 MWh

Quelle: LaTherm

Latent heat storage: passive cooling

H.M. Henning, P. Schossig, Fraunhofer ISE

Lightweight wall

Paraffinmicrocapsule

plaster

With BASF: Micronal® PCM

Heat storage via reversible chemical reations

B. Bogdanovic et al., Angew.Chem.Int.Ed. 29, 223 (1990)

Interdependencies in the energy system

Mechanismus der astronomischen Uhr in der Kathedrale St-Jean, Besancon. Quelle: Watch-Wiki

Hypothesis: The energy system is so complex that no player understandsit fully, and thus often measures are taken which have the desired effectand many unintended, partly detrimental side effects

Some major mechanisms

3. Relevante Mechanismen im Energiesystem European Emission Trading System (ETS) Feed in tariff system (EEG) Cost allocation in the energy systemDefinition of the system boundaries Coupling of energy prices Storability of energy carriersMechanisms leading to rebound effects…

Energy systems research must include– beyond he engineering and naturalsciences – economics, law, psychology, sociology and many others

Take home

3. Relevante Mechanismen im Energiesystem Yes, our energy system is changing

Yes, this poses threats Uncertainty with respect to prices Uncertainty with respect to boundary

conditions Imbalances in different regions of the

world

But: there are new markets to be conquered

and there are new business models to be realized

25

0

50

75

100

125

150

175

US$/bbl

1900 1995 2000 2005 2010 2015