fem zabaras cornell university strongandweakformsfor2dbvp

Upload: dr-ir-r-didin-kusdian-mt

Post on 30-May-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    1/38

    1

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    MAE4700/5700Finite Element Analysis for

    Mechanical and Aerospace DesignCornell University, Fall 2009

    Nicholas ZabarasMaterials Process Design and Control Laboratory

    Sibley School of Mechanical and Aerospace Engineering101 Rhodes Hall

    Cornell UniversityIthaca, NY 14853-3801

    http://mpdc.mae.cornell.edu/Courses/MAE4700/MAE4700.htmlhttp://mpdc.mae.cornell.edu/http://mpdc.mae.cornell.edu/http://mpdc.mae.cornell.edu/Courses/MAE4700/MAE4700.html
  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    2/38

    2

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Mathematical preliminaries

    Let us consider a domain with interior andboundary

    Usually the boundary is defined

    parametrically as follows: , where is thearc length along

    For a function f(x,y) on the boundary we canwrite:

    We denote the primary (scalar) variable in 2D as

    u(x,y). Until further notice, we assume that allfunctions used here are smooth enough for theoperations shown to be valid.

    .

    ( ), ( )x s y s

    ( ) ( ( ), ( )), .f s f x s y s s=

    ,

    .s

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    3/38

    3

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Mathematical preliminaries

    Recall that the gradient is the rate of change of uas we

    move from (x,y) to nearby locations:

    Many times we will interpret this as a mathematical operation of thedifferential operator on

    The gradient determines the rate of change of uat (x,y) inany direction

    The rate of change of u in a given direction

    is given as:

    ( , ).u x y

    ( , ) ( , )( , )

    u x y u x yu x y i j

    x y

    = +

    i jx y

    = +

    ( , ) ( , ) ( , )( , ) cos sin

    du x y u x y u x yu x y t

    dt x y

    = = +

    i

    ( , )u x y

    cos sint i j = +

    ( , )u x y

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    4/38

    4

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Flux

    Similarly to the gradient the flux is a vector-valued

    function or vector field.

    The flux at the boundary can be decomposed in normal andtangential components:

    ( ) ( ) ( )n

    s s n s =

    i

    ( ) ( ) ( )s s s =

    ( , )x y

    ( , )x y

    ( )s

    ( , )u x y

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    5/38

    5

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    If you divide by the area of the subregion, we can view theresult as the amount of flowing into per unit area.

    Flux

    Consider an arbitrary part containing point of the

    domain . Consider the normal flux

    across the boundary The total flux across this boundary is

    0 0( , )x y

    ( )n s ds

    =

    ( , )x y

    .

    ( ) ( ) ( )n s s n s = i

    A

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    6/386

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Taking as the square region shown,then:

    Dividing by the area and taking thelimit :

    Divergence of the flux

    The limit of as decreases in size always

    containing point is called the divergence of the flux at :0 0( , )x y

    0 0( , )div x y

    = + x y

    y x

    ( )( , )( , )

    ( , ) yx x yx y

    x ydiv x y i j i j x y x y

    = + = + +

    ( , )x y

    0P

    So is the density of the net flux per unit area at a point

    / ( ) / n A s ds A

    =

    , 0x y

    x y

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    7/387

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Gauss divergence theorem

    The total flux out of the region is then:

    We can now write using an earlier expression:

    This is the Gauss divergence theorem.

    dxdy

    =

    dxdy nds

    = =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    8/388

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Constitutive equation and balance law

    Constitutive equation: We consider problems with the

    following constitutive equation between the fluxand the state variable u(x,y).

    Conservation principle: Within any portion of thedomain, the net flux across the boundary of that part

    must be equal to the total quantity

    produced by internal sources.

    nds fdxdy

    =

    mod

    ( , ) 0

    ( , ) ( , ) ( , )material ulus

    k x y in

    x y k x y u x y

    >

    =

    f is sourceper unit area

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    9/389

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Balance law

    Using the divergence theorem:

    Since is arbitrary, we conclude thatthe local form of the balance equation is:

    To make things more interesting, we assume an

    additional source term proportional to u(x,y):

    ( ) 0 . f dxdy for all

    =

    ( , ) ( , )x y f x y =

    ( , ) ( , ) ( , ) ( , )x y b x y u x y f x y + =

    nds fdxdy

    =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    10/3810

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Conservation principle at interfaces

    Consider an interface separating two materials withdifferent modulus k1 and k2. Take a thin strip of thebody around a point on this interface. The balance law

    takes the form:

    The local balance at the interfacereduces to:

    2

    1

    ( ) ( )

    ( ) 0s

    sn n ds

    + = + =

    ( ) ( )( ) ( ) ( ) 0,n s s n s n s

    + = =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    11/3811

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Boundary conditions

    Let us assume that in the boundary

    we apply natural boundary

    conditions:

    On the boundary , we assume essential

    boundary conditions:1u

    2

    ( ) ( ) ( ) ( )

    ( )( ( ) ( )),

    n s s n s s

    p s u s u s

    s

    = =

    =

    1

    ( ) ( ),u s u s s=

    2q

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    12/3812

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Summary of the problem of interest

    What we are given:

    and the interface

    The source

    The material moduliThe boundary coefficients

    or

    ( , ) , 1, 2i

    f f x y in i= =( , ), ( , ) , 1, 2

    ( , ), ( , ) , 1, 2

    i i i

    i i i

    k k x y x y i

    b b x y x y i

    = =

    = =

    2( ), ( )p s u s in

    1 2,

    2( )s in

    With this data we want to compute u(x,y) in :

    ( ( , ) ( , )) ( , ) ( , ) ( , ), ( , ) , 1, 2ik x y u x y b x y u x y f x y x y i + = =

    2

    ( )( ) ( )[ ( ) ( )],u sk s p s u s u s s or n

    =

    2

    ( )( ) ( ),u sk s s sn

    =

    1( ) ( ),u s u s s= 0,k u n s =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    13/3813

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    A note regarding the boundary conditions

    The special case in which b=0and when only natural

    BC of the form is applied and when, needs special attention:

    The solution u(x,y) can only be determined up to aconstant

    For u to exist, the following compatibility conditionneeds to be satisfied:

    fdxdy ds

    =

    2

    ( )( ) ( ),

    u sk s s s

    n =

    2

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    14/3814

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Variational problem: Weak form

    We start by multiplying the residual r(x,y) by asufficient smooth function w(x,y) and integrate overeach domain in which rw is smooth and set theresulting weighted average equal to zero:

    We need to integrate by parts the first terms in eachof these integrals

    ( , ) ( ( , ) ( , )) ( , ) ( , ) ( , )r x y k x y u x y b x y u x y f x y= +

    1

    2

    ( ( , ) ( , )) ( , ) ( , ) ( , ) ( , )

    ( ( , ) ( , )) ( , ) ( , ) ( , ) ( , ) 0

    k x y u x y b x y u x y f x y w x y dxdy

    k x y u x y b x y u x y f x y w x y dxdy

    + +

    + =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    15/38

    15

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Variational problem

    Integration by parts gives:

    The last 2 integrals can be simplified with use of thedivergence theorem.

    1

    2

    ( ( , ) ( , )) ( , ) ( , ) ( , ) ( , )

    ( ( , ) ( , )) ( , ) ( , ) ( , ) ( , ) 0

    k x y u x y b x y u x y f x y w x y dxdy

    k x y u x y b x y u x y f x y w x y dxdy

    + +

    + =

    1

    2

    1 2

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    ( ) ( ) 0

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy

    wk u dxdy wk u dxdy

    + +

    +

    =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    16/38

    16

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Variational problem

    We can separate integration over in the last 2 terms:

    1

    2

    1 2

    1

    ( ) ( )

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    Boundary of the Boundary of thedomain

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy

    u uk wds k n n

    + +

    +

    2

    0

    domain

    wds

    =

    1 2 1 2

    ( ) ( ) ( ) ( )

    1 2

    1 2

    ( ) ( )

    evaluated in region evaluated in region

    u u u uk wds k wds k wds k wds

    n n n n

    u uk wds k wds

    n n

    =

    + +

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    17/38

    17

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Variational problem

    Note that the outward normal n1 to

    region 1 is the negative of n2 ateach point on .

    ( ) ( )( ) ( )

    1 2

    1 2

    ( ) ( ) ( )

    evaluated in region evaluated in region

    u u u uk wds k wds k k wds

    n n n n

    + +

    + = +

    1 2 1 2

    1 2( ) ( ) ( ) ( )

    1 2

    ( ) ( )

    evaluated in region evaluated in region

    u u u u u uk wds k wds k wds k wds k wds k wds

    n n n n n n

    = + +

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    18/38

    18

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Variational problem

    The last integral is nothing else but: , which is 0!

    Finally, we can summarize our weak form as:

    ( )nw s

    1

    2

    1 2( ) ( )

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    0

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy

    u uk wds k wdsn n

    + +

    +

    =

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0u

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy k wdsn

    + =

    ( ) ( )

    ( ) ( )

    1 2

    1 2

    ( ) ( ) ( )

    evaluated in region evaluated in region

    u u u u

    k wds k wds k k wdsn n n n

    + +

    + = +

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    19/38

    19

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Variational problem

    Substitution of the natural boundary condition

    gives:

    We write:

    2

    1 1

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( ) 0

    ( , ) ( 0 ,sin ( ) ( ), )

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy p u u wds

    for all admissible functions w x y w on ce we require u s u s s

    + + =

    = =

    2 2 2 2 2

    ( ) p u u wds puwds puwds puwds wds

    = =

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0

    Boundary of thewhole domain

    u

    k x y u x y w x y b x y u x y w x y f x y w x y dxdy k wdsn

    + =

    2

    ( )( ) ( )[ ( ) ( )], q

    u sk s p s u s u s s

    n

    =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    20/38

    20

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Space of admissible functions: H1() Finally the weak form looks like:

    What is the class of admissible functions?

    We indicate this space of functions as

    1 reflecting that first derivatives are square integrable

    indicates the domain over which these functions are defined.

    2 2

    1

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    ( , ), 0

    k x y u x y w x y b x y u x y w x y dxdy puwds f wdxdy wds

    for all admissible functions w x y w on

    + + = +

    =

    22

    2w w w dxdyx y

    + + <

    1( ),H

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    21/38

    21

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Summary of weak problem

    Find a function such that and

    the following holds:

    We can repeat the above weak statement using matrix

    notation as follows (more appropriate for FEMimplementation)

    2 2

    1

    1

    ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

    ( , ) ( ) 0 .

    k x y u x y w x y b x y u x y w x y dxdy puwds f wdxdy wds

    for all functions w x y H with w on

    + + = +

    =

    1( , ) ( ),u x y H 1( ) ( ),u s u s s=

    1( , ) ( ),u x y H 1( ) ( ), ,u s u s s= Find such that

    1

    1( , ) ( ) 0w x y H with w on = the following holds:

    ( )

    2 22 1

    1 11 2

    ( , ) ( , ) ( , ) ( , )T

    xxx

    w k x y u b x y u x y w x y dxdy puwds f wdxdy wds

    + + = +

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    22/38

    22

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Matrix form of the weak statement

    The gradient operator here is defined as a column

    vector:

    We will be interchanging the 2 notations here hoping

    that from the context you know which notation is

    implied.

    1( , ) ( ),u x y H 1( ) ( ), ,u s u s s= Find such that

    1

    1( , ) ( ) 0w x y H with w on = the following holds:

    ( )

    2 22 11 11 2

    ( , ) ( , ) ( , ) ( , )T

    xxx

    w k x y u b x y u x y w x y dxdy puwds f wdxdy wds

    + + = +

    ( ), ,T

    u

    w wx xu w

    u x y

    y y

    = = =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    23/38

    23

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Appendices

    Some extra slides are included here with:

    mathematics background,

    proof of equivalence of weak and strong formulations, Examples of deriving weak forms for 2D BVP,

    Including anisotropy (e.g. generalized Fouriers law),

    etc.

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    24/38

    24

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Equivalence between the weak and strong problems

    Consider the following simplified BVP and the

    corresponding weak form:

    The weak form is: Find

    We want to show that this weak form is equilavent to

    the strong problem (recover the PDE + natural BCs)

    ( ( , )) ( , ), ( , )q x y f x y x y =

    : ,where q k u=

    ( )( ) , , ( )q u q uu sk s q n q on and u u on withn

    = =

    1 1( , ) ( ) : ( ) 0 :uu x y H w H with w on =

    q

    q wdxdy fwdxdy qwd

    + =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    25/38

    25

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Equivalence between the weak and strong problems

    Integration by parts of the first term gives the

    following:

    q

    q wdxdy fwdxdy qwd

    + =

    q

    wq nd w qd fwdxdy qwd

    + =

    ( ) 0u q q

    wq nd wq nd w q f d qwd

    + =

    ( ) ( ) 10 ( ) 0q u

    uw q n q d wq nd w q f d w H with w on

    + = =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    26/38

    26

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Equivalence between the weak and strong problems

    Deriving the PDE first: Select was follows:

    The first equation above then results in:

    ( ) ( )

    10 ( ) 0

    q u

    u

    w q n q d wq nd w q f d w H with w on

    + = =

    ( )( ) , 0 0w x q f with on and on= = >

    ( )2

    0 0q f d q f in

    = =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    27/38

    27

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Equivalence between the weak and strong problems

    We next derive the natural BC: Select was follows:

    The first equation above then results in:

    ( )

    10 ( ) 0

    q uu

    w q n q d wq nd w H with w on

    + = =

    ( )( ) , 0 0u qw x q n q with on and on= = >

    ( )2

    0 0

    q

    qq n q d q n q on

    = =

    G li d F i l

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    28/38

    28

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Generalized Fouriers law

    In general, the flux and temperature gradient are

    related with the anisotropic (generalized) Fourierslaw:

    For isotropic materials

    For a 2D BVP with prescribed flux on andtemperature on and a source term f, can you show

    that the weak form in matrix notation is: Find

    2 12 2

    [ ] x xx xy

    y yx yy x x conductivity matrix

    u

    q k k xD u

    uq k k

    y

    = =

    2 2

    0[ ] [ ]

    0 x identity matrix

    k D k I

    k

    = =

    q

    u

    1 1( , ) ( ) : ( ) 0 :

    uu x y H w H with w on = ( )

    2 12 21 2

    [ ]

    q

    T

    xxx

    w D u dxdy qwd fwdxdy

    = +

    q

    A di G th

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    29/38

    29

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Appendix: Greens theorem

    If then:

    Recall the one-dimensional version of this (where the

    boundary is only 2 points):

    0( , ) int ,u x y C egrable

    ud und

    =

    | ( ) ( 0)du

    dx un u x L u xdx

    = = = =

    A di Di th

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    30/38

    30

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Appendix: Divergence theorem

    If then:

    Note that:

    Explicilty, we can write the divergence theorem as:

    0( , ) int ,q x y C egrable

    qd q nd

    =

    yxqq

    qx y

    = +

    ( )yx

    x x y y

    qq

    d q n q n d x y

    + = +

    A di G th

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    31/38

    31

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Appendix: Greens theorem

    This is the analogue of integration by parts in 1D:

    The proof of this is simple if you notice that:

    This together with the divergence theorem give:

    w qd wq nd w qd

    =

    ( ) ( ) ( )yx

    x y x y

    qqw wwq wq wq q w q w

    x y x x y y

    = + = + + +

    ( )wq w q w q = +

    ( )w qd wq d w qd wq nd w qd

    = =

    A di G th i 1D

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    32/38

    32

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Appendix: Greens theorem in 1D

    The 1D analogue of Greens theorem is as follows:

    or more explicitly as:

    w qd wq nd w qd

    =

    xx x

    q ww d wq nd q d x x

    =

    ( )0| | |x

    x x x x L x x x

    q w ww dx wq n q dx wq wq q dx

    x x x = =

    = =

    Recall that we had used this compact form in 1D to treat boundary conditionson the left (x=0) and the right (x=L) end points in a unified way

    E l bl di th

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    33/38

    33

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Example problem on divergence theorem

    Consider the vector function

    defined in the domain shown in the figure below.

    Demonstrate the validity of the divergence theorem,

    i.e.

    2 3 3( . ) (3 ,3 ),

    x yq q q x y y x y= = + +

    qd q nd

    =

    E l bl di th

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    34/38

    34

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Example problem on divergence theorem

    From we compute the

    following:

    Using this, we compute as follows:

    2 3 3( . ) (3 , 3 ),

    x yq q q x y y x y= = + +

    qd

    ( ) 2 26 (3 ) 6 3yxqq

    q xy y xy yx y

    = + = + = +

    2 1 0.5 2

    2 2 3

    0 0 0

    (6 3 ) [3 (1 0.5 ) (1 0.5 ) ] 1.5

    x

    qd xy y dydx x x x dx

    = + = + =

    dx

    1 0.5y x=

    Example problem on divergence theorem

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    35/38

    35

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Example problem on divergence theorem

    Also:

    Note that on segment BC: and . Thus

    dx

    1 0.5y x=

    (0, 1) ( 1,0)5 5(1,2)5 2

    dx dy AB BC CAdx

    q nd q n d q n d q n d

    = + +

    2 2

    2

    2

    | |

    5| |

    2 2

    ds dx dy

    dxdx dx

    = + =

    + =

    0 02 3 22 3 3 3

    002 10 1 0.5

    5 5(3 ) (3 ) 2(3 ) ( ) ( 3 )( )

    5 2x

    q nd x y dx x y y x y dx x y y dy

    = + + + + + +

    2

    2 3 3

    0

    1

    6 (3 (1 0.5 ) (1 0.5 ) ) 2(3 (1 0.5 ) ) 0.252q nd x x x x x dx = + + + +

    5

    2ds dx=

    (2) 5(1, 2)

    5n =

    6 7.75 0.25q nd

    = +

    6 7.75 0.25 1.5q nd

    = + =

    qd q nd

    =

    Example: Deriving the weak form

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    36/38

    36

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N. Zabaras (11/06/2009)

    Example: Deriving the weak form

    Consider isotropic heat conduction in the domain

    shown with the boundary conditions indicated. Providea complete weak statement of the problem.

    We start by

    multiplying with theweight function w

    and integrating over the domain:

    ( ( , ) ( , )) ( , )k x y T x y f x y =

    ( ( , ) ( , )) ( , ) ( , ) 0,k x y T x y f x y w x y dxdy sufficiently smooth w

    =

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    37/38

    Example: Deriving the weak form

  • 8/9/2019 FEM Zabaras Cornell University StrongAndWeakFormsFor2DBVP

    38/38

    MAE 4700 FE Analysis for Mechanical & Aerospace Design

    N Z b (11/06/2009)

    Example: Deriving the weak form

    The final weak form is then:

    10, ( ), 0

    q h

    T

    uk T w fw dxdy k wds w H with w on

    n +

    = =

    1, ( ), 0

    h q h

    Tk T w fw dxdy hTwds qwds hT wds w H with w on

    + = + =

    1( , ) ( ),

    TFind T x y H with T T on such that =

    In matrix form, we can also

    write the weak form as:

    ( )

    1 1 2 11 2

    1( ), 0

    h q h

    T

    x xx

    T

    w k T fw dxdy

    hTwds qwds hT wds

    w H with w on

    + = +

    =